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Abstract—We present a graph-based method for illustration 

and specification of the data structures to persist 3D models. We 

define the mapping from the object graphs to the relations in a 

relational database. Our ORM scheme fully opens the structures 

of the underlying relations so that the data can be easily 

manipulated and used by other tools and under other schemes. 

By this method, 3D models can be accumulated from large 

amount of contributors in the long run, and used by various 

types of applications, such as real-time rendering and geometric 

searching. Our graph notation and ORM scheme support arrays 

and variants, which are essential in the specification of complex 

data structures. Algorithms are provided to illustrate how the 

mappings are implemented, as well as how the database can be 

used. An independent versioning system is implemented on top 

of the 3D model database, showing the flexibility and advantage 

of this graph-based method. We implemented a minimal 3D 

model database following this design, and present the evaluation 

of the performance of loading models from the database. 

 

Index Terms—Object-relational mapping, class graph, 3D 

model, versioning, open database.  

 

I. INTRODUCTION 

Many virtual reality systems involve rendering of city 

scenes, such as in urban planning and digital reproduction of 

historical city areas [1]. These VR systems require a large 

number of 3D models of buildings, streets and other elements, 

even for a relatively small city region. The work for 

construction these models can span over several projects or 

phases. Therefore, a database for storing and accumulating 

the models is required. It is obvious that the 3D model 

database must be independent to the applications that make 

use of it. Also, the structure of the database should be open in 

a way that it can be easily adopted by future applications.  

3D models, including meshes, materials and texture maps, 

are naturally represented as objects and the relations between 

these objects [2]. These structures can be well represented by 

class graphs with the ease of understanding, a rigorously 

defined semantics [3] and a transformation theory [4]. On the 

other hand, in terms of other data applications, such as 

searching of features and re-composition of data components, 

tables of relations in a traditional relational database are more 

efficient. In order to take the benefits of expressing structures 

in class graphs and storing data as relations, we provide 

1) a set of graph notations for the specification of the data 
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structures of 3D models, and 

2) an open graph-to-relational mapping scheme for 

persisting the object graphs, which are instances of the 

class graphs, to a relational database. 

With the open mapping scheme, model data stored in the 

database can be manipulated independently to the structures 

of the models. Fine grained data features can be extracted, 

indexed and even recombined into newer structures. This 

provides the flexibility for future applications of the existing 

model data. It is very important that we can make use of those 

ever accumulated 3D models from past hard work, especially 

in smaller educational projects with limited resources and yet 

a city-scale large scene to deal with. 

In addition, our class graph design method allows the 

introduction of new structures to the database without 

breaking existing structures and data items. It is inevitable 

that we need to keep adding new structures as the system 

evolves in the long run. Easy migration from the old dataset to 

the new dataset is essential. Based on our graph method, we 

demonstrate 

3) a versioning and naming scheme on the top of the model 

database with tagging capability, and the scheme is also 

able to simulate a conventional file system hierarchy. 

Versioning and tagging [5] is a critical feature in a long 

running 3D model database for rendering city scenes. There 

are regular updates to an existing model. There are also 

different versions of the same model, so as to present the 

chronological evolution of an area. Our versioning scheme 

fully illustrates the principle of using standalone structures to 

implement new features without affecting any existing data. 

A. Related Work 

There is a number of literatures on general object-relational 

mappings [6]-[8]. They focus on the transparent persistence 

of objects to relational databases, with data intentionally 

viewed only as objects. Applications that want to use the data 

have to turn them into objects, limiting the flexibility and 

re-composability. Also, they do not have a close 

correspondence to the graph notation used to design the data 

structures. For 3D model databases, several functional issues 

are addressed in [9], with the context of GIS. It focuses on 

what model features are stored and how they can be retrieved. 

The use of intuitive objects and graphs in the design method is 

not discussed. In [10], a graph database is actually used to 

simplify the generation of GIS test data and virtual cities. A 

general survey and comparison of graph databases is 

presented in [11]. However, directly using a graph database to 

store 3D models limits the types of applications, for relational 

database are far more sophisticated and ubiquitous. 

B. Outline of Structure 
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The remaining of the article is arranged as follows. We 

present the graph notations for various types of structures and 

how they are mapped to relations in Section II, along with 

some examples of 3D model structures. We emphasize the 

formulation of arrays and variants. In Section III, we 

demonstrate how the versioning and naming scheme can be 

added independently to the model data. We also have a brief 

discussion of the way to add non-model data as annotations to 

the database. Next, we give the algorithms in Section IV to 

import and export 3D models from/to conventional model 

files. Finally, we study the caching of a partial database as a 

subgraph for off-line execution of applications in Section V, 

before we respectively evaluate and conclude in Section VI 

and VII. 
 

 
Fig. 1. The Face and Point classes. 

 

II. CLASS GRAPHS AND THE OBJECT-RELATIONAL MAPPING 

As in most OO languages, an object is an aggregation of 

values and references to other objects. Values are data items 

that are embedded directly in an object, and references are 

just pointers or identities that refer to other objects. Value 

types include common primitive data types, such as int, 

double, decimal and string. The structure of an object is 

defined by its class, represented by a directed graph, called a 

class graph [3]. A field in class C with name a and of type T is 

illustrated as an edge C ¾®
a

T. If T is a value type, it does not 

have outgoing edges. Otherwise, T may have further outgoing 

edges to other types. Thus, a graph can represent several 

classes. For each class C, its structure is defined by those 

reachable edges and nodes from C. To prevent a graph from 

being too large, we draw classes separately when needed. For 

example, Fig. 1 shows the structures of class Face and Point, 

while class UV and Normal are not defined in this graph. 

The objects of each class are stored in one table, where 

each object occupies a row and each field of the object takes 

up a column. Each object has an identity, represented by a 

value of serial, which is a 64-bit unsigned integer that is 

unique in a table, and associated with the row of the object. A 

field of a value type is embedded directly in the object. For a 

field of a class type T, the identity of some object of T is stored 

instead. For example, the Point class illustrated in Fig. 1 

corresponds to the following Table I structure. 
 

TABLE I: THE POINT CLASS ILLUSTRATED IN FIG. 1 CORRESPONDS TO THE 

FOLLOWING STRUCTURE 

Point : 
 

id x y z w field 

name 

serial double double double double field type 

 

A. Arrays and Tuples 

 
Fig. 2. The Raw class. 

 

Besides named classes and value types, there are two 

unnamed class types, the array type and the tuple type. 

We use the [] symbol to represent the array type in a graph. 

Since the array type is generic [12], whose element type can 

vary, we use a type variable, in Greek letters, to label the 

relation between the array and the element type T, [] ¾®
a 

T. 

This notation G ¾®
a 

T also applies to other generic types, 

when we instantiate a generic type G by substituting a 

concrete type T for the type variable a. In the graph definition 

of a generic type G, the present of a type variable a is thus 

represented by G ¾®
a 

a.  

We use the () symbol to represent the tuple type. Usually, 

the components of a tuple each have a name, just like the 

fields in a class. This component name labels the edge from 

the tuple to the component type. For example, () ¾®
m

T 

means there is a component with name m and type T in the 

tuple. 

There is an array in each object of the Face class, as 

illustrated in Fig. 1. We store all arrays of the same element 

type in a table. Each array in the table has an array id and each 

element has an element index within the array. For a tuple type, 

we do not create a separate table as we do for a named class. 

Instead, we level the components of the tuple up, as if they are 

the fields of the enclosing class. The following Table I shows 

the table structure for the array of tuple (Point, Normal, UV), 

which is the type of the vertices field of Face. 
 

TABLE II: THE TABLE STRUCTURE FOR THE ARRAY OF TUPLE (POINT, 

NORMAL, UV) 

[(Point, Normal, UV)] : 
 

id index point normal uv  

serial int serial serial serial  table 

to 

  Point Normal UV 

 look

up 

 

The objects of the Face class are stored in another Table III 

and refer to the corresponding array id in the above Table II.  
 

TABLE III: THE OBJECTS OF THE FACE CLASS 

Face : 

id vertices 

serial serial 

 [(Point, Normal, UV)] 

 

TABLE IV: THE FACE CLASS 

Face : 

id vertices 

serial [()] 

 point normal uv 

 serial serial serial 

 

However, some database systems support arrays and tuples 

as native types, where an array or a tuple can be stored in a 

field directly, simplifying the above mapping. For such a 

database system, the Face class is stored as simple as follows 
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in Table IV. 

B. Raw Data 

Some data files are stored directly without knowing their 

internal structures. These files are interpreted by programs 

outside the database system. We store these files each as a 

block of raw bytes in a table with an additional (mime-)type 

annotation, to help find the external handlers. The structure of 

Raw is shown in Fig. 2. 
 

 
Fig. 3. The Mesh class. 

 

C. Variants 

A class of objects or a type of values may have several 

forms, such as internal nodes and leaf nodes in a tree, or real 

numbers represented in different formats. This is well-known 

as a variant type or a disjoint union. We denote a variant type 

which has a variant field with name v and type T by ⊎¾®
v

T 

in a graph. Since we refer to objects through references, and 

references to different variants occupy the same amount of 

storage space. We partition the reference space (serial space) 

so that objects of different forms (variants) have references in 

different disjoint ranges. For example, as shown in Fig. 3, a 

mesh contains a list of items, and each of the items can be a 

face (leaf node) or a submesh (internal node). The faces and 

the submeshes are stored in two tables, where the id of a face 

is in a different range from the id of a submesh. The Table V 

structure of the Mesh class is given below. 
 

TABLE V: STRUCTURE OF THE MESH CLASS 

Mesh :   

id items trans material 

serial [⊎] serial serial 

 submesh face Trans Materia

l  serial1/2 serial2/

2 

Mesh Face 

 

We write serial
m
/n for the range [|serial|  (m1)/n, |serial| 

 m/n). If an item reference is in serial
1
/2, we know it is a 

reference to a submesh, and we search for it in the table of the 

Mesh class. Otherwise, it must be a reference to a face, we 

then search for it in the table of the Face class. 

To partition the serial space, we must make sure the range 

of a class is unique in all the variant types it participates. If 

two variant types have an intersection, all the types in the two 

variant types must be considered in the partitioning. This 

forms an equivalence relation between types, and all the types 

can be partitioned into a number of disjoint sets using the 

union-find algorithm [13]. The types in one of the disjoint set 

share a single serial space. This information can be used to 

partition the serial space either evenly by the number of types 

in the set, or by also taking into consideration the weight of 

each type involved.  

D. Variant Lifting 

 

 
Fig. 4. The multi-format Point class. 

 

 
Fig. 5. The lifted multi-format Point class. 

 

Unlike objects of classes, data of value types are stored 

directly in a table, this makes storing variants which contain 

values difficult, since different types of values may occupy 

different amounts of space. As shown in Fig. 4, each of the 

coordinates of a point can be stored in two formats, a double 

precision floating point of fixed size of space, or a sequence 

of digits of variable size of space. We cannot mix such two 

formats in one column of a table. To handle this case, we 

choose to lift the variant type for each coordinate up to the 

Point class itself, that the class is split into two variants, one 

contains coordinates all in the double type, the other contains 

coordinates all in the decimal type, as illustrated in Fig. 5. 

This transforms the variant type to a class type, thus objects of 

the class can be split into two tables and accessed via 

references of the same storage size, as described earlier, 

although we sacrifice the flexibility of mixing different 

formats for the coordinates within one point. The tables of the 

variants are shown below.  
 

TABLE VI: THE TABLES OF THE VARIANTS 

Point ⊎: 
 

id x y z w  

serial1/2 double (PointDbl)  

Serial2/2 decimal (PointDec) 

 

With the class graph notation that supports arrays, tuples 

and variants, we can represent the structures of other complex 

elements, such as Material, Normal and UV, of 3D models in 

graphs. The graphs can then be mapped to a relational 

database according to the mapping scheme. The table 

structures are completely static that the data items are fully 

open to other applications.  

 

III. VERSIONING AND NAMING 

Objects, such as 3D models and textures, often have 

multiple versions, for example, a series of updates, or a 

collection of dialects of the same model. We call such an 

object with different versions a versioned object, and each 



  

version is a real object. A versioned object is just an identity 

associated with all the real objects that represent the different 

versions. We use the VerId class to represent versioned 

objects, and this class has no field but an id of type serial. 

Thus, each versioned object is identified by a versioned id. 
 

 
Fig. 6. The Version, File and Dir classes. 

 

The versioning scheme manages an association between a 

versioned id and a real object as a version. Each version has a 

version number that is unique to the versioned id, a reference 

to the immediate previous version, and a set of string tags. 

While the version number tracks the update history, the set of 

tags can be used to select among the dialects of a versioned id. 

Fig. 6 shows the structure of the Version class. Given some 

tags and a versioned id, the object of the most up-to-date 

version can be determined by Alg. 1. 
 

Alg. 1: Selecting an object by tags and a versioned id 

Input tags: [string]; verId: serial 

Output object: serial 

V  {v: Version | tags  v.tags  verId  v.verId} 

find u  V where 

 u.number  max{u.number | u  V} 

if u is found then 

 object  u.object 

else 

object is undefined 

 

Similarly, the naming scheme associates a (file) name and a 

(file) name extension with a versioned id, and this association 

is called a file. To support file paths, which are common to 

organize files in hierarchical structures, we treat a file name as 

a sequence of components split by the path separator „/‟. A 

directory is just a mapping from a file name prefix to the list of 

files with this prefix. A table of directories can be built solely 

from the table of files, as shown in Alg. 2. This table of 

directories serves just as a cache. For database systems that 

support finding a range of data items, the list of files in 

directory $D$ can be retrieved simply by finding the range of 

file names between 

 

D„/‟min(string) and D„/‟ max(string), 

 

and the table of directories is completely unnecessary. 

 

Alg. 2: Building the directory cache 

for f  File do 

 P  split f.name by separator „/‟ 

 p  empty 

 for p  P do 

  p  p„/‟p 

  find d  Dir where d.name  p 

  if d is found then 

   update d in Dir with 

    d.items  d.items {f.id} 

  else 

   add a new d to Dir with 

    d.name  p  d.items  {f.id} 

 

While, within the database, data structures can refer to each 

other internally through object ids, which are unique numbers 

of type serial, we can force objects to only be accessed from 

the outside world through files and versions. In this case, if an 

object is to be retrieved externally, we must assign a file to the 

object. Versioning is automatic for objects of the same file. 

 

IV. IMPORTING AND EXPORTING 3D MODELS 

Model data must be imported into the model database. A 

model is a collection of material groups, and the texture maps 

referred to by the materials are separately imported. Models 

and texture maps are the two kinds of top level data. The top 

level data are referred to by file names when they are imported. 

In this section, we give the algorithms based on the previously 

illustrated structures, to show how the model databases can be 

built by importing from model files, and how models can be 

exported back to model files. We adopt the commonly 

accepted Wavefront .obj file format as our base for 3D 

models [14]. For simplicity, we omit the structures and 

algorithms for materials, which contain too many trivial 

fields. 

A. Binary Files 

The content of a binary file is stored as a byte array in the 

Raw table, and the file name is stored in the File table, 

associated with a versioned id. A new version is created in the 

Version table linking the versioned id with the corresponding 

byte array. Alg. 3 shows how to associate a file name and a 

versioned id with an object id, and Alg. 4 imports the binary 

data. 

 

Alg. 3: Importing a file 

Inpu

t 
name, extension: string; id: serial 

// add a new file 

find f  File where  

 f.(name, extension)  (name, extension) 

if f is not found then 

 add a new w to VerId 

 add a new f to File with 

  f.(name, extension, verId) 

   (name, extension, w.id) 
 

// add a new version 

find v  Version where v.verId  f.verId 

if v is found then 

 add a new v to Version with 

  v.(prev, number, tags, verId, object) 

   (v.id, v.number1, , f.verId, id) 

else 

 add a new v to Version with 

  v.(prev, number, tags, verId, object) 

   (0, 1, , f.verId, id) 

 

Alg. 4: Importing a binary block 

Input name, extension, mimeType: string; 

bytes: binary 

// add a new binary block 

add a new b to Raw with 
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 b.(type, bytes)  (mimeType, bytes) 

 
// add a file and version 

call Alg. 3 with name, extension and b.id to import the file 

 

B. Numeric Tuples and Faces 

There are many numeric tuples in a model, such as points 

and normal vectors. These tuples are stored separately from 

the model, and referred to by their ids. In the database, the ids 

are stored along with the tuples, while in memory, the ids are 

indices into the arrays of the tuples. When we import the 

tuples from an array into the corresponding database table, we 

need to establish a map from the array indices to the ids in the 

table. This map is used when importing other data that refer to 

the tuples by ids. Alg. 5 shows the procedure to import an 

array of points. Other numeric tuples are handled similarly. 

 

        

      

 
    

   

          

        

          

        

 

The components of a face are indices of numeric tuples. 

When importing a model, these indices are local to the 

imported data, so we need to convert them to global indices of 

the database. See Alg. 6. 

 

Alg. 6: Importing a face 

Input MP, MN, MU: int  serial; V: [(int, int, int)] 

Output id: serial 

V    

for (jpoint, jnormal, juv)  V[i]  V do 

 V [i].(jpoint, jnormal, juv)  (MP[jpoint], MN[jnormal], MU[juv]) 

add a new f to Face with f.vertices  V  

id  f.id 

 

C. Models 

A 3D model consists of meshes (faces), materials and 

texture maps. We separate the latter two because of that 

texture map files can be manipulated independently. We 

import the texture maps as binary files, followed by the 

materials, then the arrays of numeric tuples, finally the groups 

of faces with each group associated with a material. Alg. 8 

details this procedure. We can then call Alg. 3 to associate a 

model with a file name.  

 

Alg. 7: Importing a mesh 

Input MP, MN, MU, MA, (jmaterial, matrix, S) 

ida  MA[jmaterial] 

add a new trans to Trans with trans.matrix  matrix 

S    

for each face f  S do 

 idf   call Alg. 6 with MP, MN, MU and f to  

    import the face 

 add idf to S  

for each submesh s  S do 

 ids  call Alg. 7 with MP, MN, MU and s to 

    import the submesh 

 add ids to S  

add a new ms to Mesh with 

 ms.(material, trans, items)  (ida, trans.id, S ) 

id  ms.id 

 

In the algorithms, we use MP, MN, MU, MA to denote the 

maps from an index to a point, a normal vector, a UV mapping 

and a material, respectively. These maps are generated in the 

importing of the corresponding model components. 

 

Alg. 8: Importing a model 

Input texture map files, points, normals, UVs, 

materials and meshes 

Output id: serial 

call Alg. 4 to import the texture map files 

MA  the map from a material index to a material id 

MP, MN, MU   call Alg. 5 to import the points, 

       normals and UVs 

S   

for each mesh s do 

 ids  call Alg. 7 with MP, MN, MU, MA and s to 

    import the mesh 

 add ids to S 

add a new mo to Model with mo.meshes  S 

id  mo.id 

 

D. Exporting 

Model data must be exported from the database into 

memory before they can be processed by a program. A model 

consists of a list of meshes, each of which has a material, a 

transformation matrix and a collection of faces and 

submeshes hierarchically structured in a tree. The vertices of 

the faces and the materials of the meshes are separately stored 

in arrays. The faces and the meshes respectively refer to the 

vertices and the materials by array indices. Also, several 

materials can share some texture maps, therefore, texture 

maps of a model are stored in an array and referred to by array 

indices similarly. 

 

Alg. 9: Exporting a mesh 

Input id: serial 

Output (mat, fs, sms, ps, ns, uvs) 

fs, sms, ps, ns, uvs, MP, MN, MU   

find ms  Mesh where ms.id  id 

for idf  ms.items | idf  Face do 

 find f  Face where f.id  idf 

 f    

 for (idP, idN, idU)  f.vertices do 

  for (id, M, T, A)  {(idP, MP, Point, ps), 

   (idN, MN, Normal, ns), (idU, MU, UV, uvs)} 

  do if id    M then 

    find r  T where r.id  id 

    add id  |A| to M 

    append r to A 

  append (MP[idP], MN[idN], MU[idU]) to f  

 add f  to fs 

for ids  ms.items | ids  Mesh do 

 s  call Alg. 9 with ids 

 add s to sms 

find tr  Trans where tr.id  ms.trans 

mat  tr.mat 

 

To export a model, we need to export the materials, the 

vertices and the meshes. As we export a mesh, we accumulate 

those vertices that are referred to by the faces of the mesh, 

together with the maps from ids to array indices. Vertices are 

not shared by the faces in different submeshes. The 
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Alg. 5: Importing an array of points (tuples)

Input
P: [(double, double, double,

double)]

Output MP: int  serial

MP 

for (x, y, z, w)  P[i]  P do

add a new p to PointDbl with

p.(x, y, z, w)  (x, y, z, w)

add an entry i  p.id to MP



  

construction of a mesh is recursively done. Alg. 8 lists the 

steps, where we respectively denote the matrix, faces, 

submeshes, points, normal vectors and UV mappings as mat, 

fs, sms, ps, ns, uvs. 

We export a model by constructing the materials and the 

meshes, and by accumulating the arrays of shared vertices, 

materials and texture maps. 

 

V. CACHING 

To run an application off-line, or in the case to speed up the 

loading of data, we need to cache the data retrieved from the 

database and package them for saving in the local storage. 

With the locally cached data package, the application can run 

in the same way, at least with only a few parameter changes, 

as if the data are still retrieved from the database. The 

packaging and delivering of the cache data are obvious. The 

only problems are to figure out what data need to be cached, 

and how the originally successful queries can be redirected to 

the cached package in the off-line executions. 

An application issues queries through resource locators, 

which are actually text strings [15]. Since resource locators 

are interpreted, it is very convenient to associate the data 

retrieved from the database with the resource locator in the 

interpreter. When caching is required, we build a map from 

resource locators to exported models, and other data records 

can also be handled similarly. Then the map can be stored in 

the application requesting the local copy of the cache. When 

the application runs off-line, the resource locators are 

redirected to the local copy of map, and the associated data 

records are returned as the results. 

However, when we review our graph-based design of the 

3D model database, we can easily find out that there are many 

shared pieces of information. Saving a data record for each 

resource locator produces many duplicated data members. To 

address this space-efficiency issue, we further analyze the 

data records stored in the database. We find that each data 

record starts from a node in the object graph representing the 

database. This node is called the root of the object 

representing the data record. Instead of associating the entire 

data record with the resource locator, we associate the root 

node. At the same time, we maintain an in-memory subgraph 

of the entire object graph of the database as the cached dataset. 

This can be done when we retrieve the data records. We view 

a data retrieval as a navigation in the object graph, when we 

visit an edge of the graph, we add it to the in-memory 

subgraph. That way, when we finish retrieving the data, we 

have a subgraph that contains all the edges and nodes we need 

for the cache. We then save this map and subgraph for local 

off-line executions. 

 

Alg. 10: Construction of the data access subgraph 

Reference E: serial  string  V 

for each successful (find r where r.id  requested id)  do 

 for each field f  r do 

  add an edge (r.id, name of f )  r.f to E 

  

We use an edge list to represent the subgraph. The list can 

be formulated as a map from an id and a field name to another 

id or a value, serial  string  V, where V  serial  int  

double  decimal  string  binary. Arrays are expanded 

to edges from an id and an index to another id or a value, i.e., 

serial  int  V, We show this process in Alg. 10. 
 

 
Fig. 7. Database vs. file system load time comparison. 

 

With the data subgraph, the map from resource locators to 

data records is simply a map string  serial. This map can be 

constructed when we interpret a resource locator successfully 

and have a result. Once these maps are stored locally, data 

records then can be retrieved by navigating the subgraph 

without any further access to the database. 

 

VI. EVALUATION 

While a model database provides the convenience in 

indexing and collecting of 3D models, it has certain 

performance impact on loading models into 3D application 

programs, compared with direct sequential component read 

from model files. This is because the components of a model 

must be individually selected from the database. For this 

particular database design, when loading a model, data rows 

are mainly selected by their ids, which can be set as the 

primary keys of the tables. Therefore, logarithmic time of 

locating a requested row is expected, hence the overhead of 

selecting components should only have a near constant factor 

on the model load time, when the model dataset becomes very 

large. 

We implemented a minimal 3D model database according 

to the graph-based design presented in this article, and 

compared the time of loading various numbers of complex 3D 

models from the database with that from a file system. The 

configuration of the database is listed in Table VII. 
 

TABLE VII: CONFIGURATION OF THE TESTING PLATFORM 

Database Engine:  PostgresSQL 9.3 

Number of Tables: 17 

Linux Version: 3.5.0-23 (gcc 4.7.2) Ubuntu 12.10 

Processor:  Intel(R) Xeon(R) E5-2640@2.50GHz 

Memory: 32GB 

Total Primitives: 108 

 

The database server was connected to the test computer via 

LAN. The test application loaded a series of model packages 

from both the database of 10
8
 total primitives and the local file 

system, and measured the load times. The packages were of 

sizes up to 10
4
 models each consisted of 10

4
 primitives. The 

comparison result is shown in Fig. 7. We observe a constant 

factor performance hit with the database, and both load times 
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are linear to the size of the loaded model package. 

Based on the experiment, as many VR applications are still 

using file systems to manage their 3D resources, we can 

expect that moving to our database will not introduce 

unacceptable negative effect on the model loading 

performance, while we can access the ever growing number of 

3D models with almost no further maintenance cost, through 

using the model database. 

 

VII. CONCLUSION 

We present a graph-based method for designing a long 

running open 3D model database aiming at accumulating 3D 

models for both current and future virtual reality applications, 

particularly those involving large scale city scenes. The entire 

database is represented as a large object graph following the 

structure defined by the class graphs of the database. We 

provide the graph-to-relational mapping for storing the model 

data in a traditional relational database. The mapping is fully 

open that the data in the relational database can be accessed 

independently by other applications. We design and 

implement the graph notation and the mapping scheme with 

the support of arrays and variants, and provide key algorithms 

to manipulate the data. We add the versioning and naming 

scheme using the graph-based method to show the flexibility. 

This scheme is simple but powerful enough to handle 

versioning and tagging, and is able to simulate the tree 

structure of a conventional file system. Many VR applications, 

such as 3D game engines, that use file paths to locate 

resources may find this naming scheme handy. For 

applications that need to run off-line of the database, we give 

a general method to cache the application traversed data as a 

subgraph, and the applications can use this method to store the 

cached subgraph locally for future off-line executions. We 

also use a minimal implementation of the database to evaluate 

the model loading performance, compared with a 

conventional local file system. 

Future work. Based on our rigorously and completely 

defined graph notation, we can build graphical tools in the 

future to help users use the graph-based method visually. We 

also consider building tools that read the graph-based design 

and generate the tables in the relational database 

automatically. 
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