



Abstract—We present a graph-based method for illustration

and specification of the data structures to persist 3D models. We

define the mapping from the object graphs to the relations in a

relational database. Our ORM scheme fully opens the structures

of the underlying relations so that the data can be easily

manipulated and used by other tools and under other schemes.

By this method, 3D models can be accumulated from large

amount of contributors in the long run, and used by various

types of applications, such as real-time rendering and geometric

searching. Our graph notation and ORM scheme support arrays

and variants, which are essential in the specification of complex

data structures. Algorithms are provided to illustrate how the

mappings are implemented, as well as how the database can be

used. An independent versioning system is implemented on top

of the 3D model database, showing the flexibility and advantage

of this graph-based method. We implemented a minimal 3D

model database following this design, and present the evaluation

of the performance of loading models from the database.

Index Terms—Object-relational mapping, class graph, 3D

model, versioning, open database.

I. INTRODUCTION

Many virtual reality systems involve rendering of city

scenes, such as in urban planning and digital reproduction of

historical city areas [1]. These VR systems require a large

number of 3D models of buildings, streets and other elements,

even for a relatively small city region. The work for

construction these models can span over several projects or

phases. Therefore, a database for storing and accumulating

the models is required. It is obvious that the 3D model

database must be independent to the applications that make

use of it. Also, the structure of the database should be open in

a way that it can be easily adopted by future applications.

3D models, including meshes, materials and texture maps,

are naturally represented as objects and the relations between

these objects [2]. These structures can be well represented by

class graphs with the ease of understanding, a rigorously

defined semantics [3] and a transformation theory [4]. On the

other hand, in terms of other data applications, such as

searching of features and re-composition of data components,

tables of relations in a traditional relational database are more

efficient. In order to take the benefits of expressing structures

in class graphs and storing data as relations, we provide

1) a set of graph notations for the specification of the data

Manuscript received December 5, 2015; revised March 11, 2016. The

research present in this article is funded by Project 043/2009/A2 of The

Science and Technology Development Fund of Macau S.A.R.

The authors are with the Computing Program, Macao Polytechnic

Institute, Macao S.A.R., China (e-mail: wke@ipm.edu.mo,

lmhoi@ipm.edu.mo).

structures of 3D models, and

2) an open graph-to-relational mapping scheme for

persisting the object graphs, which are instances of the

class graphs, to a relational database.

With the open mapping scheme, model data stored in the

database can be manipulated independently to the structures

of the models. Fine grained data features can be extracted,

indexed and even recombined into newer structures. This

provides the flexibility for future applications of the existing

model data. It is very important that we can make use of those

ever accumulated 3D models from past hard work, especially

in smaller educational projects with limited resources and yet

a city-scale large scene to deal with.

In addition, our class graph design method allows the

introduction of new structures to the database without

breaking existing structures and data items. It is inevitable

that we need to keep adding new structures as the system

evolves in the long run. Easy migration from the old dataset to

the new dataset is essential. Based on our graph method, we

demonstrate

3) a versioning and naming scheme on the top of the model

database with tagging capability, and the scheme is also

able to simulate a conventional file system hierarchy.

Versioning and tagging [5] is a critical feature in a long

running 3D model database for rendering city scenes. There

are regular updates to an existing model. There are also

different versions of the same model, so as to present the

chronological evolution of an area. Our versioning scheme

fully illustrates the principle of using standalone structures to

implement new features without affecting any existing data.

A. Related Work

There is a number of literatures on general object-relational

mappings [6]-[8]. They focus on the transparent persistence

of objects to relational databases, with data intentionally

viewed only as objects. Applications that want to use the data

have to turn them into objects, limiting the flexibility and

re-composability. Also, they do not have a close

correspondence to the graph notation used to design the data

structures. For 3D model databases, several functional issues

are addressed in [9], with the context of GIS. It focuses on

what model features are stored and how they can be retrieved.

The use of intuitive objects and graphs in the design method is

not discussed. In [10], a graph database is actually used to

simplify the generation of GIS test data and virtual cities. A

general survey and comparison of graph databases is

presented in [11]. However, directly using a graph database to

store 3D models limits the types of applications, for relational

database are far more sophisticated and ubiquitous.

B. Outline of Structure

A Graph-Based Design of an Open Database for 3D

Models with Versioning

Wei Ke and Lap-Man Hoi

International Journal of Information and Education Technology, Vol. 7, No. 5, May 2017

385doi: 10.18178/ijiet.2017.7.5.899

mailto:wke@ipm.edu.mo

International Journal of Information and Education Technology, Vol. 7, No. 5, May 2017

386

The remaining of the article is arranged as follows. We

present the graph notations for various types of structures and

how they are mapped to relations in Section II, along with

some examples of 3D model structures. We emphasize the

formulation of arrays and variants. In Section III, we

demonstrate how the versioning and naming scheme can be

added independently to the model data. We also have a brief

discussion of the way to add non-model data as annotations to

the database. Next, we give the algorithms in Section IV to

import and export 3D models from/to conventional model

files. Finally, we study the caching of a partial database as a

subgraph for off-line execution of applications in Section V,

before we respectively evaluate and conclude in Section VI

and VII.

Fig. 1. The Face and Point classes.

II. CLASS GRAPHS AND THE OBJECT-RELATIONAL MAPPING

As in most OO languages, an object is an aggregation of

values and references to other objects. Values are data items

that are embedded directly in an object, and references are

just pointers or identities that refer to other objects. Value

types include common primitive data types, such as int,

double, decimal and string. The structure of an object is

defined by its class, represented by a directed graph, called a

class graph [3]. A field in class C with name a and of type T is

illustrated as an edge C ¾®
a

T. If T is a value type, it does not

have outgoing edges. Otherwise, T may have further outgoing

edges to other types. Thus, a graph can represent several

classes. For each class C, its structure is defined by those

reachable edges and nodes from C. To prevent a graph from

being too large, we draw classes separately when needed. For

example, Fig. 1 shows the structures of class Face and Point,

while class UV and Normal are not defined in this graph.

The objects of each class are stored in one table, where

each object occupies a row and each field of the object takes

up a column. Each object has an identity, represented by a

value of serial, which is a 64-bit unsigned integer that is

unique in a table, and associated with the row of the object. A

field of a value type is embedded directly in the object. For a

field of a class type T, the identity of some object of T is stored

instead. For example, the Point class illustrated in Fig. 1

corresponds to the following Table I structure.

TABLE I: THE POINT CLASS ILLUSTRATED IN FIG. 1 CORRESPONDS TO THE

FOLLOWING STRUCTURE

Point :

id x y z w field

name

serial double double double double field type

A. Arrays and Tuples

Fig. 2. The Raw class.

Besides named classes and value types, there are two

unnamed class types, the array type and the tuple type.

We use the [] symbol to represent the array type in a graph.

Since the array type is generic [12], whose element type can

vary, we use a type variable, in Greek letters, to label the

relation between the array and the element type T, [] ¾®
a

T.

This notation G ¾®
a

T also applies to other generic types,

when we instantiate a generic type G by substituting a

concrete type T for the type variable a. In the graph definition

of a generic type G, the present of a type variable a is thus

represented by G ¾®
a

a.

We use the () symbol to represent the tuple type. Usually,

the components of a tuple each have a name, just like the

fields in a class. This component name labels the edge from

the tuple to the component type. For example, () ¾®
m

T

means there is a component with name m and type T in the

tuple.

There is an array in each object of the Face class, as

illustrated in Fig. 1. We store all arrays of the same element

type in a table. Each array in the table has an array id and each

element has an element index within the array. For a tuple type,

we do not create a separate table as we do for a named class.

Instead, we level the components of the tuple up, as if they are

the fields of the enclosing class. The following Table I shows

the table structure for the array of tuple (Point, Normal, UV),

which is the type of the vertices field of Face.

TABLE II: THE TABLE STRUCTURE FOR THE ARRAY OF TUPLE (POINT,

NORMAL, UV)

[(Point, Normal, UV)] :

id index point normal uv

serial int serial serial serial table

to

 Point Normal UV 

 look

up

The objects of the Face class are stored in another Table III

and refer to the corresponding array id in the above Table II.

TABLE III: THE OBJECTS OF THE FACE CLASS

Face :

id vertices

serial serial

 [(Point, Normal, UV)]

TABLE IV: THE FACE CLASS

Face :

id vertices

serial [()]

 point normal uv

 serial serial serial

However, some database systems support arrays and tuples

as native types, where an array or a tuple can be stored in a

field directly, simplifying the above mapping. For such a

database system, the Face class is stored as simple as follows

International Journal of Information and Education Technology, Vol. 7, No. 5, May 2017

387

in Table IV.

B. Raw Data

Some data files are stored directly without knowing their

internal structures. These files are interpreted by programs

outside the database system. We store these files each as a

block of raw bytes in a table with an additional (mime-)type

annotation, to help find the external handlers. The structure of

Raw is shown in Fig. 2.

Fig. 3. The Mesh class.

C. Variants

A class of objects or a type of values may have several

forms, such as internal nodes and leaf nodes in a tree, or real

numbers represented in different formats. This is well-known

as a variant type or a disjoint union. We denote a variant type

which has a variant field with name v and type T by ⊎¾®
v

T

in a graph. Since we refer to objects through references, and

references to different variants occupy the same amount of

storage space. We partition the reference space (serial space)

so that objects of different forms (variants) have references in

different disjoint ranges. For example, as shown in Fig. 3, a

mesh contains a list of items, and each of the items can be a

face (leaf node) or a submesh (internal node). The faces and

the submeshes are stored in two tables, where the id of a face

is in a different range from the id of a submesh. The Table V

structure of the Mesh class is given below.

TABLE V: STRUCTURE OF THE MESH CLASS

Mesh :

id items trans material

serial [⊎] serial serial

 submesh face Trans Materia

l serial1/2 serial2/

2

Mesh Face

We write serial
m
/n for the range [|serial|  (m1)/n, |serial|

 m/n). If an item reference is in serial
1
/2, we know it is a

reference to a submesh, and we search for it in the table of the

Mesh class. Otherwise, it must be a reference to a face, we

then search for it in the table of the Face class.

To partition the serial space, we must make sure the range

of a class is unique in all the variant types it participates. If

two variant types have an intersection, all the types in the two

variant types must be considered in the partitioning. This

forms an equivalence relation between types, and all the types

can be partitioned into a number of disjoint sets using the

union-find algorithm [13]. The types in one of the disjoint set

share a single serial space. This information can be used to

partition the serial space either evenly by the number of types

in the set, or by also taking into consideration the weight of

each type involved.

D. Variant Lifting

Fig. 4. The multi-format Point class.

Fig. 5. The lifted multi-format Point class.

Unlike objects of classes, data of value types are stored

directly in a table, this makes storing variants which contain

values difficult, since different types of values may occupy

different amounts of space. As shown in Fig. 4, each of the

coordinates of a point can be stored in two formats, a double

precision floating point of fixed size of space, or a sequence

of digits of variable size of space. We cannot mix such two

formats in one column of a table. To handle this case, we

choose to lift the variant type for each coordinate up to the

Point class itself, that the class is split into two variants, one

contains coordinates all in the double type, the other contains

coordinates all in the decimal type, as illustrated in Fig. 5.

This transforms the variant type to a class type, thus objects of

the class can be split into two tables and accessed via

references of the same storage size, as described earlier,

although we sacrifice the flexibility of mixing different

formats for the coordinates within one point. The tables of the

variants are shown below.

TABLE VI: THE TABLES OF THE VARIANTS

Point ⊎:

id x y z w

serial1/2 double (PointDbl)

Serial2/2 decimal (PointDec)

With the class graph notation that supports arrays, tuples

and variants, we can represent the structures of other complex

elements, such as Material, Normal and UV, of 3D models in

graphs. The graphs can then be mapped to a relational

database according to the mapping scheme. The table

structures are completely static that the data items are fully

open to other applications.

III. VERSIONING AND NAMING

Objects, such as 3D models and textures, often have

multiple versions, for example, a series of updates, or a

collection of dialects of the same model. We call such an

object with different versions a versioned object, and each

version is a real object. A versioned object is just an identity

associated with all the real objects that represent the different

versions. We use the VerId class to represent versioned

objects, and this class has no field but an id of type serial.

Thus, each versioned object is identified by a versioned id.

Fig. 6. The Version, File and Dir classes.

The versioning scheme manages an association between a

versioned id and a real object as a version. Each version has a

version number that is unique to the versioned id, a reference

to the immediate previous version, and a set of string tags.

While the version number tracks the update history, the set of

tags can be used to select among the dialects of a versioned id.

Fig. 6 shows the structure of the Version class. Given some

tags and a versioned id, the object of the most up-to-date

version can be determined by Alg. 1.

Alg. 1: Selecting an object by tags and a versioned id

Input tags: [string]; verId: serial

Output object: serial

V  {v: Version | tags  v.tags  verId  v.verId}

find u  V where

 u.number  max{u.number | u  V}

if u is found then

 object  u.object

else

object is undefined

Similarly, the naming scheme associates a (file) name and a

(file) name extension with a versioned id, and this association

is called a file. To support file paths, which are common to

organize files in hierarchical structures, we treat a file name as

a sequence of components split by the path separator „/‟. A

directory is just a mapping from a file name prefix to the list of

files with this prefix. A table of directories can be built solely

from the table of files, as shown in Alg. 2. This table of

directories serves just as a cache. For database systems that

support finding a range of data items, the list of files in

directory D can be retrieved simply by finding the range of

file names between

D„/‟min(string) and D„/‟ max(string),

and the table of directories is completely unnecessary.

Alg. 2: Building the directory cache

for f  File do

 P  split f.name by separator „/‟

 p  empty

 for p  P do

 p  p„/‟p

 find d  Dir where d.name  p

 if d is found then

 update d in Dir with

 d.items  d.items {f.id}

 else

 add a new d to Dir with

 d.name  p  d.items  {f.id}

While, within the database, data structures can refer to each

other internally through object ids, which are unique numbers

of type serial, we can force objects to only be accessed from

the outside world through files and versions. In this case, if an

object is to be retrieved externally, we must assign a file to the

object. Versioning is automatic for objects of the same file.

IV. IMPORTING AND EXPORTING 3D MODELS

Model data must be imported into the model database. A

model is a collection of material groups, and the texture maps

referred to by the materials are separately imported. Models

and texture maps are the two kinds of top level data. The top

level data are referred to by file names when they are imported.

In this section, we give the algorithms based on the previously

illustrated structures, to show how the model databases can be

built by importing from model files, and how models can be

exported back to model files. We adopt the commonly

accepted Wavefront .obj file format as our base for 3D

models [14]. For simplicity, we omit the structures and

algorithms for materials, which contain too many trivial

fields.

A. Binary Files

The content of a binary file is stored as a byte array in the

Raw table, and the file name is stored in the File table,

associated with a versioned id. A new version is created in the

Version table linking the versioned id with the corresponding

byte array. Alg. 3 shows how to associate a file name and a

versioned id with an object id, and Alg. 4 imports the binary

data.

Alg. 3: Importing a file

Inpu

t
name, extension: string; id: serial

// add a new file

find f  File where

 f.(name, extension)  (name, extension)

if f is not found then

 add a new w to VerId

 add a new f to File with

 f.(name, extension, verId)

  (name, extension, w.id)

// add a new version

find v  Version where v.verId  f.verId

if v is found then

 add a new v to Version with

 v.(prev, number, tags, verId, object)

  (v.id, v.number1, , f.verId, id)

else

 add a new v to Version with

 v.(prev, number, tags, verId, object)

  (0, 1, , f.verId, id)

Alg. 4: Importing a binary block

Input name, extension, mimeType: string;

bytes: binary

// add a new binary block

add a new b to Raw with

International Journal of Information and Education Technology, Vol. 7, No. 5, May 2017

388

 b.(type, bytes)  (mimeType, bytes)

// add a file and version

call Alg. 3 with name, extension and b.id to import the file

B. Numeric Tuples and Faces

There are many numeric tuples in a model, such as points

and normal vectors. These tuples are stored separately from

the model, and referred to by their ids. In the database, the ids

are stored along with the tuples, while in memory, the ids are

indices into the arrays of the tuples. When we import the

tuples from an array into the corresponding database table, we

need to establish a map from the array indices to the ids in the

table. This map is used when importing other data that refer to

the tuples by ids. Alg. 5 shows the procedure to import an

array of points. Other numeric tuples are handled similarly.

The components of a face are indices of numeric tuples.

When importing a model, these indices are local to the

imported data, so we need to convert them to global indices of

the database. See Alg. 6.

Alg. 6: Importing a face

Input MP, MN, MU: int  serial; V: [(int, int, int)]

Output id: serial

V   

for (jpoint, jnormal, juv)  V[i]  V do

 V [i].(jpoint, jnormal, juv)  (MP[jpoint], MN[jnormal], MU[juv])

add a new f to Face with f.vertices  V 

id  f.id

C. Models

A 3D model consists of meshes (faces), materials and

texture maps. We separate the latter two because of that

texture map files can be manipulated independently. We

import the texture maps as binary files, followed by the

materials, then the arrays of numeric tuples, finally the groups

of faces with each group associated with a material. Alg. 8

details this procedure. We can then call Alg. 3 to associate a

model with a file name.

Alg. 7: Importing a mesh

Input MP, MN, MU, MA, (jmaterial, matrix, S)

ida  MA[jmaterial]

add a new trans to Trans with trans.matrix  matrix

S   

for each face f  S do

 idf  call Alg. 6 with MP, MN, MU and f to

 import the face

 add idf to S 

for each submesh s  S do

 ids  call Alg. 7 with MP, MN, MU and s to

 import the submesh

 add ids to S 

add a new ms to Mesh with

 ms.(material, trans, items)  (ida, trans.id, S )

id  ms.id

In the algorithms, we use MP, MN, MU, MA to denote the

maps from an index to a point, a normal vector, a UV mapping

and a material, respectively. These maps are generated in the

importing of the corresponding model components.

Alg. 8: Importing a model

Input texture map files, points, normals, UVs,

materials and meshes

Output id: serial

call Alg. 4 to import the texture map files

MA  the map from a material index to a material id

MP, MN, MU  call Alg. 5 to import the points,

 normals and UVs

S  

for each mesh s do

 ids  call Alg. 7 with MP, MN, MU, MA and s to

 import the mesh

 add ids to S

add a new mo to Model with mo.meshes  S

id  mo.id

D. Exporting

Model data must be exported from the database into

memory before they can be processed by a program. A model

consists of a list of meshes, each of which has a material, a

transformation matrix and a collection of faces and

submeshes hierarchically structured in a tree. The vertices of

the faces and the materials of the meshes are separately stored

in arrays. The faces and the meshes respectively refer to the

vertices and the materials by array indices. Also, several

materials can share some texture maps, therefore, texture

maps of a model are stored in an array and referred to by array

indices similarly.

Alg. 9: Exporting a mesh

Input id: serial

Output (mat, fs, sms, ps, ns, uvs)

fs, sms, ps, ns, uvs, MP, MN, MU  

find ms  Mesh where ms.id  id

for idf  ms.items | idf  Face do

 find f  Face where f.id  idf

 f   

 for (idP, idN, idU)  f.vertices do

 for (id, M, T, A)  {(idP, MP, Point, ps),

 (idN, MN, Normal, ns), (idU, MU, UV, uvs)}

 do if id    M then

 find r  T where r.id  id

 add id  |A| to M

 append r to A

 append (MP[idP], MN[idN], MU[idU]) to f 

 add f  to fs

for ids  ms.items | ids  Mesh do

 s  call Alg. 9 with ids

 add s to sms

find tr  Trans where tr.id  ms.trans

mat  tr.mat

To export a model, we need to export the materials, the

vertices and the meshes. As we export a mesh, we accumulate

those vertices that are referred to by the faces of the mesh,

together with the maps from ids to array indices. Vertices are

not shared by the faces in different submeshes. The

International Journal of Information and Education Technology, Vol. 7, No. 5, May 2017

389

Alg. 5: Importing an array of points (tuples)

Input
P: [(double, double, double,

double)]

Output MP: int  serial

MP 

for (x, y, z, w)  P[i]  P do

add a new p to PointDbl with

p.(x, y, z, w)  (x, y, z, w)

add an entry i  p.id to MP

construction of a mesh is recursively done. Alg. 8 lists the

steps, where we respectively denote the matrix, faces,

submeshes, points, normal vectors and UV mappings as mat,

fs, sms, ps, ns, uvs.

We export a model by constructing the materials and the

meshes, and by accumulating the arrays of shared vertices,

materials and texture maps.

V. CACHING

To run an application off-line, or in the case to speed up the

loading of data, we need to cache the data retrieved from the

database and package them for saving in the local storage.

With the locally cached data package, the application can run

in the same way, at least with only a few parameter changes,

as if the data are still retrieved from the database. The

packaging and delivering of the cache data are obvious. The

only problems are to figure out what data need to be cached,

and how the originally successful queries can be redirected to

the cached package in the off-line executions.

An application issues queries through resource locators,

which are actually text strings [15]. Since resource locators

are interpreted, it is very convenient to associate the data

retrieved from the database with the resource locator in the

interpreter. When caching is required, we build a map from

resource locators to exported models, and other data records

can also be handled similarly. Then the map can be stored in

the application requesting the local copy of the cache. When

the application runs off-line, the resource locators are

redirected to the local copy of map, and the associated data

records are returned as the results.

However, when we review our graph-based design of the

3D model database, we can easily find out that there are many

shared pieces of information. Saving a data record for each

resource locator produces many duplicated data members. To

address this space-efficiency issue, we further analyze the

data records stored in the database. We find that each data

record starts from a node in the object graph representing the

database. This node is called the root of the object

representing the data record. Instead of associating the entire

data record with the resource locator, we associate the root

node. At the same time, we maintain an in-memory subgraph

of the entire object graph of the database as the cached dataset.

This can be done when we retrieve the data records. We view

a data retrieval as a navigation in the object graph, when we

visit an edge of the graph, we add it to the in-memory

subgraph. That way, when we finish retrieving the data, we

have a subgraph that contains all the edges and nodes we need

for the cache. We then save this map and subgraph for local

off-line executions.

Alg. 10: Construction of the data access subgraph

Reference E: serial  string  V

for each successful (find r where r.id  requested id) do

 for each field f  r do

 add an edge (r.id, name of f)  r.f to E

We use an edge list to represent the subgraph. The list can

be formulated as a map from an id and a field name to another

id or a value, serial  string  V, where V  serial  int 

double  decimal  string  binary. Arrays are expanded

to edges from an id and an index to another id or a value, i.e.,

serial  int  V, We show this process in Alg. 10.

Fig. 7. Database vs. file system load time comparison.

With the data subgraph, the map from resource locators to

data records is simply a map string  serial. This map can be

constructed when we interpret a resource locator successfully

and have a result. Once these maps are stored locally, data

records then can be retrieved by navigating the subgraph

without any further access to the database.

VI. EVALUATION

While a model database provides the convenience in

indexing and collecting of 3D models, it has certain

performance impact on loading models into 3D application

programs, compared with direct sequential component read

from model files. This is because the components of a model

must be individually selected from the database. For this

particular database design, when loading a model, data rows

are mainly selected by their ids, which can be set as the

primary keys of the tables. Therefore, logarithmic time of

locating a requested row is expected, hence the overhead of

selecting components should only have a near constant factor

on the model load time, when the model dataset becomes very

large.

We implemented a minimal 3D model database according

to the graph-based design presented in this article, and

compared the time of loading various numbers of complex 3D

models from the database with that from a file system. The

configuration of the database is listed in Table VII.

TABLE VII: CONFIGURATION OF THE TESTING PLATFORM

Database Engine: PostgresSQL 9.3

Number of Tables: 17

Linux Version: 3.5.0-23 (gcc 4.7.2) Ubuntu 12.10

Processor: Intel(R) Xeon(R) E5-2640@2.50GHz

Memory: 32GB

Total Primitives: 108

The database server was connected to the test computer via

LAN. The test application loaded a series of model packages

from both the database of 10
8
 total primitives and the local file

system, and measured the load times. The packages were of

sizes up to 10
4
 models each consisted of 10

4
 primitives. The

comparison result is shown in Fig. 7. We observe a constant

factor performance hit with the database, and both load times

International Journal of Information and Education Technology, Vol. 7, No. 5, May 2017

390

are linear to the size of the loaded model package.

Based on the experiment, as many VR applications are still

using file systems to manage their 3D resources, we can

expect that moving to our database will not introduce

unacceptable negative effect on the model loading

performance, while we can access the ever growing number of

3D models with almost no further maintenance cost, through

using the model database.

VII. CONCLUSION

We present a graph-based method for designing a long

running open 3D model database aiming at accumulating 3D

models for both current and future virtual reality applications,

particularly those involving large scale city scenes. The entire

database is represented as a large object graph following the

structure defined by the class graphs of the database. We

provide the graph-to-relational mapping for storing the model

data in a traditional relational database. The mapping is fully

open that the data in the relational database can be accessed

independently by other applications. We design and

implement the graph notation and the mapping scheme with

the support of arrays and variants, and provide key algorithms

to manipulate the data. We add the versioning and naming

scheme using the graph-based method to show the flexibility.

This scheme is simple but powerful enough to handle

versioning and tagging, and is able to simulate the tree

structure of a conventional file system. Many VR applications,

such as 3D game engines, that use file paths to locate

resources may find this naming scheme handy. For

applications that need to run off-line of the database, we give

a general method to cache the application traversed data as a

subgraph, and the applications can use this method to store the

cached subgraph locally for future off-line executions. We

also use a minimal implementation of the database to evaluate

the model loading performance, compared with a

conventional local file system.

Future work. Based on our rigorously and completely

defined graph notation, we can build graphical tools in the

future to help users use the graph-based method visually. We

also consider building tools that read the graph-based design

and generate the tables in the relational database

automatically.

REFERENCES

[1] M. Portman, A. Natapov, and D. Fisher-Gewirtzman, “To go where no

man has gone before: Virtual reality in architecture, landscape

architecture and environmental planning,” Computers, Environment

and Urban Systems, 2015.

[2] K. McHenry and P. Bajcsy, “An overview of 3d data content, file

formats and viewers,” National Center for Supercomputing

Applications, vol. 1205, 2008.

[3] W. Ke, Z. Liu, S. Wang, and L. Zhao, “A graph-based generic type

system for object-oriented programs,” Frontiers of Computer Science,

vol. 7, no. 1, pp. 109–134, 2013.

[4] R. Bruni, Z. Liu, and L. Zhao, “Graph representation of sessions and

pipelines for structured service programming,” Formal Aspects of

Component Software, Springer, 2012, pp. 259–276.

[5] A. Seering, P. Cudre-Mauroux, S. Madden, and M. Stonebraker,

“Efficient versioning for scientific array databases,” in Proc. 2012

IEEE 28th International Conference on Data Engineering (ICDE),

IEEE, 2012, pp. 1013–1024.

[6] J. Juneau, “Object-relational mapping,” Java EE 7 Recipes, Springer,

2013, pp. 369–408.

[7] N. Kojic and D. Milicev, “A survey of object-relational transformation

patterns for high-performance UML-based applications,” in Proc.

2015 3rd International Conference on Model-Driven Engineering and

Software Development (MODELSWARD), IEEE, 2015, pp. 280–285.

[8] E. J. O‟Neil, “Object/relational mapping 2008: Hibernate and the

entity data model (edm),” in Proc. the 2008 ACM SIGMOD

International Conference on Management of Data, ACM, 2008, pp.

1351–1356.

[9] W. Xu, Q. Zhu, Z. Du, and Y. Zhang, “Design and implementation of

3D model database for general-purpose 3D GIS,” Geo-spatial

Information Science, vol. 13, no. 3, pp. 210–215, 2010.

[10] T. Płuciennik and E. Płuciennik-Psota, “Using graph database in

spatial data generation,” Man-Machine Interactions 3, Springer, 2014,

pp. 643–650.

[11] R. Angles, “A comparison of current graph database models,” in Proc.

2012 IEEE 28th International Conference on Data Engineering

Workshops (ICDEW), IEEE, 2012, pp. 171–177.

[12] D. R. Musser and A. A. Stepanov, “Generic programming,” Symbolic

and Algebraic Computation, Springer, 1989, pp. 13–25.

[13] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, “Chapter 21:

Data structures for disjoint sets,” Introduction to Algorithms, pp.

498–524, 2001.

[14] Appendix B1. Object Files (.obj), Advanced Visualizer Manual.

[Online]. Available:

http://www.cs.utah.edu/boulos/cs3505/obj_spec.pdf

[15] AssetManager, jMonkeyEngine Documentation for Advanced Users.

[Online]. Available: Available:

http://wiki.jmonkeyengine.org/doku.php/jme3:advanced:asset_manag

er

Wei Ke received the PhD degree from School of

Computer Science and Engineering, Beihang

University. He is an associate professor of computing

program, Macao Polytechnic Institute. His research

interests include programming languages, functional

programming, formal methods, and tool support for

object-oriented and component-based engineering and

systems. His recent research focuses on the design and

implementation of open platforms for virtual reality applications, including

programming tools, environments, and frameworks.

Lap-Man Hoi got his bachelor degree in computer

science at York University, Canada, and the master

degree in internet computing at the University of

London. He is now working as a researcher in Macao

Polytechnic Institute. The main duties are researching

in the gaming industry and teaching the computing

courses.

International Journal of Information and Education Technology, Vol. 7, No. 5, May 2017

391

