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Abstract—Our preceding study proposed the possibility of 

producing video previews that enhance viewer motivations 

towards assembly work in practical training classes by picking 

scenes of work situations with good performance from the 

videos of past classes. In the study, two conceptual attributes for 

categorizing work situations from the viewpoint of the 

performance were introduced with reference to previous studies 

for evaluating productivity of human intellectual work with 

computers. Based on those two conceptual attributes, our 

preceding study employed observable features for estimating 

work situations in the videos and showed that those features 

seem to reflect the difference of work situations with respect to 

the conceptual attributes. However, quantitative precision for 

estimating work situations from those features has not yet been 

evaluated. Moreover, those observable features are employed 

without considering whether humans actually pay attention to 

them. It is also not clear whether videos with work situations 

sufficient for each of the conceptual attributes actually enhance 

viewer motivations towards the work. This article clarifies these 

issues based on our recent experimental results with 

experimental participants. 

 
Index Terms—Practical training class, assembly task, work 

situation estimation, observable feature, physical activity, 

mental concentration. 

 

I. INTRODUCTION 

With recent progress in the introduction of information 

technologies to the field of education, it has become typical 

for various educational institutions, especially universities 

and colleges, to take videos of actual classes. One of the 

typical uses of these videos is viewer learning, such as 

massive open online courses (MOOCs) [1]. Another use is 

evaluation of the classes by the instructors to facilitate further 

improvement.  

Conventionally, videos of actual classes are mainly taken 

for mass classroom lectures where all the attendees listen to 

the talks by the lecturers to acquire knowledge of specific 

areas. However, it is also useful to take videos of practical 

training classes where each trainee performs practical work 

individually to acquire a particular skill. Those videos are not 

only useful for instructors to grasp the work situations of each 

trainee for further improvement of instruction methods but 

also for producing video previews that enhance motivations 

of new trainees towards the practical work before they start to 
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work themselves. Actually, a previous study of self-modeling 

[2] claimed that repetitive viewing of videos including 

successful actions for accomplishing a task enhances the 

confidence and motivation of the viewer, and it has been 

shown that learning by watching those videos is effective for 

increasing the self-efficacy [3] and performance of the 

learners in educational institutions including universities [4]–

[6].  

Our preceding study [7] proposed a possibility of 

producing video previews to enhance motivation of trainees 

towards practical work by picking the scenes of work 

situations with good performance from the videos of past 

classes. Since it is necessary to realize a kind of video 

indexing process that estimates work situations of each 

trainee in the videos to produce such video previews 

automatically, our preceding study discussed the possibility 

by focusing on an assembly task as a representative example 

of the work for practical training classes. In the study, the 

physical activity involved in the assembly work and the 

mental concentration of the trainees on the assembly work 

were introduced as conceptual attributes to categorize work 

situations, because those attributes are also considered in 

previous studies evaluating productivity of human 

intellectual work with computers [8]. For the observable 

features that are useful to discriminate the different situations 

with respect to those two attributes and obtainable from 

videos by image processing, our preceding study employed 

the distance from the face of each trainee to work objects and 

the temporal change in the dispersion of their positions on the 

work surface. From the experimental result of the study, it 

appears that the values of those observable features take 

different values for the video clips with different work 

situations in those attributes.  

However, the preceding study described above does not 

quantitatively evaluate precision for estimating work 

situations with respect to the two conceptual attributes from 

the employed observable features. Moreover, in the first 

place, the study employs those observable features without 

considering whether humans actually paid attention to them. 

It is also not clear whether our motivations towards the 

assembly work are actually enhanced by watching videos 

with work situations estimated to be sufficient with respect to 

the two conceptual attributes. In summary, the following 

unanswered questions remain: 

1) What observable features do humans actually pay 

attention to when we categorize work situations with 

respect to physical activity and mental concentration? Are 

those observable features similar to those employed in our 

preceding study? 

2) How precisely can the work situations be estimated with 

respect to the two conceptual attributes from the 
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observable features in (1)? 

3) Are videos of assembly work with different work 

situations estimated from the observable features in (1) 

with the precision in (2) different for enhancing the 

motivations of the viewers towards the work? 

In this article, these questions are resolved based on our 

recent experimental results with experimental participants. 

 

II. OUR PRECEDING STUDY 

A. Conceptual Attributes for Categorizing Situations of 

Assembly Work 

In many previous studies on the methodology for 

evaluating productivity of human intellectual work mainly 

with computers, the productivity is evaluated primarily with 

respect to the physical activity involved in the work in 

progress and the worker's mental concentration on the work. 

Some of these studies focus on either of the two conceptual 

attributes [9]–[15] while the others consider both [8]. Since 

these two attributes are not specific for particular tasks but, 

rather, are general portions applicable to any physical work 

by humans having mental states, our preceding study 

introduced the same two attributes for categorizing assembly 

work situations of practical training where the physical 

activity means how actively each trainee performs the 

required assembly work and mental concentration means 

how closely the attention of the trainee is concentrated on the 

assembly work. As a result, work situations are classified into 

four categories: high activity & high concentration, high 

activity & low concentration, low activity & low 

concentration, and low activity & high concentration. 

B. Observable Features Reflecting Difference in Work 

Situations 

To estimate work situations from observation of actual 

work, observable features useful for discriminating 

differences in work situations need to be employed. Previous 

studies for evaluating human intellectual work with 

computers employ amount and types of operations performed 

on the computers as observable features for evaluating 

physical activity of the work, because every operation 

performed on the computers can be easily obtained from their 

log data. However, in assembly work performed in the 

physical world, it is not easy to recognize the type of each 

operation by image processing for the videos of the work. 

Thus, our preceding study simply measures the temporal 

change in the dispersion of the positions of the work objects 

scattered on the work surface as the observable feature of the 

physical activity. 

For an observable feature of mental concentration, 

previous studies for human intellectual work evaluation 

employ the distance from the face of the worker to the display 

of the computer. By referring to these studies, our preceding 

study employs the distance from the face of each trainee to 

the work surface as the observable feature of mental 

concentration on assembly work. Both of these observable 

features of the physical activity and mental concentration for 

assembly work are obtained from video images by image 

processing as described in the next section. 
 

 
Fig. 1. Image features employed to evaluate the dispersion for the position of 

work objects on the work surface [7]. 

 

C. Difference in Observable Features Obtained from 

Videos of Assembly Work Situations 

As described in B, the observable feature of the physical 

activity of assembly work is given by temporal change in the 

dispersion for the positions of work objects in our previous 

study. This observable feature is obtained by image 

processing for the images captured by a camera installed right 

above the work surface. This camera is called the overhead 

camera hereafter. All the pixels of image frame at any 

moment t are separated into the work surface region and the 

hand region denoted by 𝑊(𝑡)  and ℋ(𝑡) , respectively, as 

well as work object regions denoted by 𝑅1(𝑡), 𝑅2(𝑡), ⋯ , 

based on their colors. The dispersion for the positions of work 

objects at t is denoted here by 𝑑(𝑡), which is calculated as the 

sum of squared deviations of the work object region centroids 

denoted by 𝒄1(𝑡), 𝒄2(𝑡), ⋯ , from their average position 

denoted by 𝒄̂(𝑡) (see Fig. 1). The temporal change in the 

dispersion during any period [𝑡, 𝑡 + ∆𝑡] in a video is denoted 

by 𝐷[𝑡, 𝑡 + ∆𝑡], which is defined as follows: 

 

 

 

International Journal of Information and Education Technology, Vol. 8, No. 1, January 2018

39

𝐷[𝑡, 𝑡 + ∆𝑡] =   ∑ |𝑑(𝜏 + 1) − 𝑑(𝜏)|

𝑡+∆𝑡−1

𝜏=𝑡

For the observable feature of mental concentration, the 

distance between the face of any trainee and the work surface 

needs to be calculated in our previous study, as described in B. 

This distance is obtained by facial image processing for the 

images captured by another camera installed in front of the 

trainee. This camera is called the front camera hereafter. For 

simplicity, the distance from the face to the work surface is 

approximated as that from the face to the front camera along 

with its optical axis. The three-dimensional (3D) position of 

A brief introduction of the conceptual attributes as well as 

observable features employed in our preceding study is given 

in Section II. In Section III, question 1) is discussed based on 

our experimental results with experimental participants. 

Based on the experimental results, some candidate 

observable features are considered, and the best observable 

feature is determined for each of the two conceptual attributes 

in Sections IV and V. In Section VI, precision of the work 

situations estimated from the best observable features is

evaluated to answer question 2). Motivations of the viewers 

who watch videos with different work situations towards the 

assembly work are also evaluated to resolve question 3) in 

this section. Concluding remarks and future work are 

described in Section VII.



  

the face in the front-camera-centered coordinate system is 

denoted by 𝒇𝐶(𝑡), which is estimated from the size and the 

orientation of the face obtained by facial image processing 

for the image frame of the front camera at t. The 

approximated distance from the face to the front camera is 

given as z coordinate of 𝒇𝐶(𝑡) . The average of this z 

coordinate during any period [𝑡, 𝑡 + ∆𝑡] is employed as the 

observable feature of mental concentration. 
 

 

 
Fig. 2. Measurements of the observable features for the physical activity and 

mental concentration for video clips manually classified into different 

categories of work situations [7]. 

 

In the experiment in our preceding work, an assembly task 

using a moss robot [16] is performed by six experimental 

participants who play roles of trainees in a practical training 

class. The symbols on the graph of Fig. 2 illustrate pairs of 

the values for the two observable features for 50 video clips 

of various work situations by their positions on the graph. 

Each video clip is 10 seconds long and includes a pair of 

images captured by the overhead and front cameras. Work 

situations in those video clips are manually classified into the 

four categories described in section A and displayed by 

different symbols in the graph. As shown in this figure, the 

video clip classified as the same category seems to take 

similar values for the observable features. 

The above result of our preceding study implies that the 

observable features roughly reflect the difference in work 

situations with respect to the two conceptual attributes. 

However, it is not quantitatively evaluated how precisely 

those observable features can actually estimate the correct 

categories of work situations. Moreover, in the first place, it 

is not discussed what our humans actually pay attention to as 

observable features for discriminating different work 

situations. It is also not evaluated whether the videos with the 

work situation estimated as high activity & high 

concentration actually enhance the motivation of viewers 

towards the assembly work more than the other videos. In the 

following sections, these issues are discussed based on 

evaluation of the videos with many experimental 

participants.   

III. FINDING OBSERVABLE FEATURES TO WHICH HUMANS 

PAY ATTENTION 

A. Experimental Settings 

The objective of the first experiment in this article is to 

clarify what our humans actually pay attention to when we 

evaluate the physical activity and mental concentration by 

watching videos. In this experiment, 151 experimental 

participants were asked to categorize work situations 

appearing in video clips. These video clips are the same as 

those employed in our preceding study described in section 

II.C. However, the facial region in each image frame of the 

front camera is masked in this experiment so that the facial 

expression does not affect evaluation by experimental 

participants. This is because human facial expressions could 

be interpreted in various ways depending on the viewer’s 

subjective viewpoints, and this article only considers 

observable features in general viewpoint for the first step. 

Sample images are shown in Fig. 3. 
 

  
(a) Front camera image.                  (b) Overhead camera image. 

Fig. 3. Sample images in video clips obtained by the front and overhead 

cameras. The facial region is masked as shown in (a). 

 

The 50 video clips obtained above are divided into five 

groups, each of which includes 10 video clips. Three groups 

among them are presented to 83 experimental participants, 

and two groups are presented to 68 participants. Each 

participant is asked to classify the work situation in each 

video clip included in the presented groups into one of the 

four categories described in section II.A and to describe the 

reason why the video clip is classified into such category, 

using the following procedure: 

1) Receive an explanation about the meaning of the physical 

activity and mental concentration with an example of 

Japanese origami (paper folding), which has no relevance 

to the assembly work to be evaluated later. 

2) Categorize the physical activity and mental concentration 

of the work situation in the presented video clip as high or 

low. 

3) Give the reason for the categorization in (2) by free 

descriptive texts. 

4) Repeat steps (2) and (3) for all the video clips included in 

the presented groups.  

B. Result of Morpheme Analysis 
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To find the observable features that humans actually pay 

attention for estimating work situations with respect to the 

physical activity and mental concentration, a morpheme 

analysis is provided for the free descriptive texts in the 

answers obtained in step (3). Major words frequently used to 

describe the reason for categorizing work situations as high

or low for the physical activity and mental concentration are 

extracted by the analysis. Table I shows English translation 

of those major words in descending order of the number of 

occurrences.



  

TABLE I: OCCURRENCE OF MAJOR KEY WORDS IN THE ANSWERS FOR THE 

REASON FOR CLASSIFYING THE WORK SITUATIONS 

(a) With respect to the physical activity 

High Low 

“hand” 226 “not” 269 

“parts” 126 “hand” 234 

“move” 122 “move” 182 

“fast” 39 “parts” 106 

“task” 37 “hold” 93 

“motion” 36 “stop” 41 

“assemble” 28 “little” 24 

(b) With respect to the mental concentration 

High Low 

“parts” 165 “not” 175 

“gaze” 126 “parts” 111 

“forward” 66 “gaze” 72 

“face” 50 “back” 57 

“think” 46 “hand” 42 

“task” 42 “task” 40 

“posture” 24 “face” 29 

 

As shown in the table, negative words, translated here as 

“not,” are used much more frequently in the description of the 

reason for categorizing work situations as low than that for 

categorizing them as high, regardless of the conceptual 

attributes. Since frequent use of negative words for the 

categories of low implies disappearance of certain observable 

features in those situations, frequently used words for 

situations categorized as high should be considered as 

possible observable features. 

The description of the reason for giving the category of 

high for the physical activity often includes words meaning 

“hand” or “parts” as well as those meaning “move.” Since the 

words meaning “fast,” “task,” “motion,” and “assemble” also 

occur with a certain frequency, humans seem to pay attention 

to the amount or speed of the motion of the hands or work 

objects as well as the progress of the assembly task to 

categorize the work situations of the physical activity. 

For mental concentration, on the other hand, words 

meaning “parts” and “gaze” occur relatively more frequently 

than the others. Words meaning “forward” and “face” also 

appear with a certain frequency. From these words, the 

direction or the distance from the face to work objects seems 

to be attended to. 

Based on the result of the morpheme analysis above, the 

observable features to be employed for the physical activity 

and mental concentration are reconsidered in the following 

sections. 

 

IV. CANDIDATE OBSERVABLE FEATURES FOR MENTAL 

CONCENTRATION 

A. Distance from the Face to Work Objects 

As described in section II.C, our preceding study employs 

the distance from the face of each trainee to the work surface 

as the observable feature for mental concentration. Since this 

observable feature does not contradict the result of 

morpheme analysis described in section III, the same 

observable feature is also considered for mental 

concentration in this article. However, this observable feature 

is not correctly measured in the preceding study but is 

approximated as the distance from the face to the front 

camera for simplicity. Thus, in this article, the distance from 

the face to work objects is properly measured without any 

approximation to use the distance as the observable feature of 

mental concentration. 

However, to calculate this distance, two options can be 

considered as the position of the work objects. One is the 

position representing all the work objects on the work surface, 

and the other is that representing only the work objects being 

manipulated by hands. The former position can be obtained 

as 𝒄̂(𝑡), which has already been acquired in our preceding 

study, as described in II.C. The latter position can be obtained 

as the centroid of hand region ℋ(𝑡), because the manipulated 

objects are always with the hands. The position of this 

centroid is denoted by 𝒉̂(𝑡). Here, if ℋ(𝑡) is obtained not as 

a single region but as two separated regions, ℋ1(𝑡)  and 

ℋ2(𝑡), corresponding to different hands, the centroids of 

ℋ1(𝑡) and ℋ2(𝑡) are denoted by 𝒉1(𝑡) and 𝒉2(𝑡), and 𝒉̂(𝑡) 

is defined as their average position. 

Since 𝒄̂(𝑡)  and 𝒉̂(𝑡)  are both represented by the 2D 

coordinate system associated with the image frames of the 

overhead camera whereas 𝒇𝐶(𝑡)  is represented by the 

front-camera-centered 3D coordinate system, they need to be 

transformed into the same 3D coordinate system to calculate 

the distances between them in 3D space. By calibrating the 

geometric relation between these two different coordinate 

systems via some reference points, such as corners on the 

work surface, in advance, 𝒄̂(𝑡) , 𝒉̂(𝑡) , and 𝒇𝐶(𝑡)  can be 

transformed into 3D coordinates 𝒄̂𝑊(𝑡), 𝒉̂𝑊(𝑡), and 𝒇𝑊(𝑡) 

in the work-surface-centered coordinate system. 

The distance from the face to work objects scattered on the 

work surface or manipulated objects among them can be 

evaluated by the Euclidean distance from 𝒇𝑊(𝑡) to 𝒄̂𝑊(𝑡) or 

𝒉̂𝑊(𝑡), which is denoted by 𝛿𝑐(𝑡) (= ‖𝒄̂𝑊(𝜏) − 𝒇𝑊(𝜏) ‖) or 

𝛿ℎ(𝑡) (= ‖𝒉̂𝑊(𝜏) − 𝒇𝑊(𝜏)‖). The average of this distance 

during any period [𝑡, 𝑡 + ∆𝑡]  in a video is considered a 

candidate observable feature for mental concentration in this 

article. This measurement denoted here by 𝛿𝑐̅[𝑡, 𝑡 + ∆𝑡] or 

𝛿ℎ
̅̅ ̅[𝑡, 𝑡 + ∆𝑡] is defined as follows: 

𝛿𝑐̅[𝑡, 𝑡 + ∆𝑡] =
1

∆𝑡
∑ 𝛿𝑐(𝜏)𝑡+∆𝑡

𝜏=𝑡                      (1) 

𝛿ℎ̅[𝑡, 𝑡 + ∆𝑡] =
1

∆𝑡
∑ 𝛿ℎ(𝜏)𝑡+∆𝑡

𝜏=𝑡                       (2) 

B. Gaze at Work Objects 

From the result in section III, it should also be considered a 

candidate observable feature whether each trainee is gazing 

at work objects or not. However, this is not considered in our 

preceding study. Thus, in this article, departure of the 

trainee’s gaze from the direction towards work objects is 

considered one of the candidate observable features for 

mental concentration.  

The unit normal vector of a trainee’s face in the 

front-camera-centered coordinate system at t is denoted by 

𝒈𝐶(𝑡), which can be calculated from the face orientation 
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obtained in the process of estimating 3D face position 𝒇𝐶(𝑡) 

in section II.C. Vector 𝒈𝐶(𝑡)  transformed into the 

work-surface-coordinate system is denoted by 𝒈𝑊(𝑡). If the 

gaze direction can be assumed to coincide with the face 

normal, the departure of gaze from the direction towards 

working objects can be evaluated by the angle of 𝒈𝑊(𝑡) from 

that direction. Similar to the discussion in section A, the 

destination of this direction can be specified by either 𝒄̂𝑊(𝑡) 

or 𝒉̂𝑊(𝑡) whereas the source of the direction is given only by 

𝒇𝑊(𝑡). For either of the two possible destinations, the angle 

of 𝒈𝑊(𝑡) from 𝒄̂𝑊(𝑡) − 𝒇𝑊(𝑡) or 𝒉̂𝑊(𝑡) − 𝒇𝑊(𝑡), denoted 

here by 𝜃𝑐(𝑡)  or 𝜃ℎ(𝑡) (0 ≤ 𝜃𝑐(𝑡), 𝜃ℎ(𝑡) < 𝜋 ) , can be 

considered. Thus, the average of this angle during any period 

[𝑡, 𝑡 + ∆𝑡]  in a video is introduced as another candidate 

observable feature for mental concentration. This 

measurement is denoted by 𝜃̅𝑐[𝑡, 𝑡 + ∆𝑡]  or 𝜃̅ℎ[𝑡, 𝑡 + ∆𝑡] , 

which is defined as follows: 

𝜃̅𝑐[𝑡, 𝑡 + ∆𝑡] =
1

∆𝑡
∑ 𝜃𝑐(𝜏)𝑡+∆𝑡

𝜏=𝑡                      (3) 

𝜃̅ℎ[𝑡, 𝑡 + ∆𝑡] =
1

∆𝑡
∑ 𝜃ℎ(𝜏)𝑡+∆𝑡

𝜏=𝑡                      (4) 

Furthermore, this departure of gaze considered above and 

the distance from the face to work objects considered in 

section A can be combined into another candidate observable 

feature for mental concentration. However, the former is 

measured by an angle whereas the latter is measured by a 

distance. For a measurement reflecting both, the distance 

from 𝒄̂𝑊(𝑡)  or 𝒉̂𝑊(𝑡)  to the line passing through 𝒇𝑊(𝑡) 

along with 𝒈𝑊(𝑡) is employed. This distance is given simply 

as 𝛿𝑐(𝑡) sin 𝜃𝑐(𝑡)  or 𝛿ℎ(𝑡) sin 𝜃ℎ(𝑡), which increases with 

𝛿𝑐(𝑡) and 𝜃𝑐(𝑡), or 𝛿ℎ(𝑡) and 𝜃ℎ(𝑡) (see Fig. 4). Since this 

value begins to decreases after it attains 𝛿𝑐(𝑡) or 𝛿ℎ(𝑡) when 

𝜃𝑐(𝑡)  or 𝜃ℎ(𝑡)  reaches π/2 , 𝛿𝑐(𝑡)(2 − sin 𝜃𝑐(𝑡))  or 

𝛿ℎ(𝑡)(2 − sin 𝜃ℎ(𝑡)) is measured instead for further increase 

of the value after that. In summary, this measurement, 

denoted here by Θ
𝑐
(𝑡) or Θ

ℎ
(𝑡), is defined as follows: 

Θ𝑐(𝑡) = {
𝛿𝑐(𝑡) sin 𝜃𝑐(𝑡)                (0 ≤ 𝜃𝑐 < π/2) 

𝛿𝑐(𝑡)(2 − sin 𝜃𝑐(𝑡))     (π/2 ≤ 𝜃𝑐 < π) 
          (5) 

Θℎ(𝑡) = {
𝛿ℎ(𝑡) sin 𝜃ℎ(𝑡)               (0 ≤ 𝜃ℎ < π/2) 

𝛿ℎ(𝑡)(2 − sin 𝜃ℎ(𝑡))    (π/2 ≤ 𝜃ℎ < π) 
         (6) 

 

 

Fig. 4. Candidate observable features for the mental concentration for the 

position of work objects represented by 𝒄̂𝑊(𝑡). 

Based on Θ𝑐(𝑡) or Θℎ(𝑡) defined above, its average during 

any period [𝑡, 𝑡 + ∆𝑡]  is considered another candidate 

observable feature for mental concentration. This 

measurement is denoted by Θ̅𝑐[𝑡, 𝑡 + ∆𝑡]  or Θ̅ℎ[𝑡, 𝑡 + ∆𝑡] , 

which is defined as follows: 

Θ̅𝑐[𝑡, 𝑡 + ∆𝑡] =
1

∆𝑡
∑ Θ𝑐(𝜏)𝑡+∆𝑡

𝜏=𝑡                       (7) 

Θ̅ℎ[𝑡, 𝑡 + ∆𝑡] =
1

∆𝑡
∑ Θℎ(𝜏)𝑡+∆𝑡

𝜏=𝑡                      (8) 

C. Evaluation of Candidate Observable Features 

 

TABLE II: CORRELATION COEFFICIENTS OF CANDIDATE OBSERVABLE 

FEATURES FOR MENTAL CONCENTRATION 

Position representing 

work objects 

Candidate 

observable features 

Correlation 

coefficients 

𝒄̂𝑊 

𝛿𝑐̅ −0.73 

𝜃𝑐̅ −0.73 

Θ
̅̅ ̅

𝑐
 −0.76 

𝒉̂𝑊 

𝛿ℎ
̅̅ ̅ −0.70 

𝜃𝑐̅ −0.72 

Θ
̅̅ ̅

ℎ
 −0.75 

 

V. CANDIDATE OBSERVABLE FEATURES FOR PHYSICAL 

ACTIVITY 

A. Temporal Change or Decrease of Dispersion for the 

Positions of Work Objects   

For the observable feature to estimate the physical activity, 

the amount or speed for operation of work objects seemed to 

be attended to as the observable feature by the experimental 

participants in the experimental result in section III. This 

observable feature can be evaluated as the temporal change in 

the dispersion for the positions of work objects. Similar to the 

discussion in section IV, the position of work objects can be 

represented by all the work objects on the work surface or 

only the objects being manipulated by hands. However, 

better correlation coefficients have already been obtained 

with the position represented by all the work objects in 

section III.C. Thus, only the position represented by all the 

work objects is considered in this section. Since the temporal 

change in the dispersion for the positions of all the work 
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To find the best observable feature that is most useful in 

estimating mental concentration categorized by humans from 

among possible candidates 𝛿𝑐̅ , 𝛿ℎ̅ , 𝜃̅𝑐 , 𝜃̅ℎ , Θ̅𝑐 , and Θ̅ℎ  

considered in sections A and B, their correlations with the 

categories answered by the experimental participants for 

mental concentration in the video clips in step (2) in section 

III are evaluated. For facial image processing necessary for 

obtaining 𝒇𝐶(𝑡) and 𝒈𝐶(𝑡), Face U [17] supplied by PUX 

Corporation was employed. The resultant correlation 

coefficients are shown in Table II. In this result, 𝛿𝑐̅, 𝜃̅𝑐, and 

Θ̅𝑐 , which employ 𝒄̂𝑊 as the position representing work 

objects, show better correlation than 𝛿ℎ̅ , 𝜃̅ℎ , and Θ̅ℎ , 

employing 𝒉̂𝑊(𝑡) for the position. Since the largest absolute 

value of the correlation coefficient is given by Θ̅𝑐, it is found 

to be the best observable feature for the mental concentration 

in this article.



  

objects has already been measured in our preceding work as 

𝐷[𝑡, 𝑡 + ∆𝑡] , which more precisely denotes the average 

temporal change in the dispersion for the positions, this 

measurement is still considered as a candidate observable 

feature for the physical activity in this article.  

Another observable feature that seemed to be attended to 

by the experimental participants in section III is work 

progress. Since work objects are in general assembled into a 

single object in assembly work, work progress can be 

characterized as the decrease of the dispersion in the position 

of work objects. Since the dispersion is obtained as 𝑑(𝑡) in 

our preceding study, as described in section II.C, the amount 

of its decrease is considered another candidate observable 

feature of the physical activity in this article. Total decrease 

of 𝑑(𝑡) for [𝑡, 𝑡 + Δ𝑡], denoted by 𝐷′[𝑡, 𝑡 + Δ𝑡], is defined as 

follows: 

𝐷′[𝑡, 𝑡 +Δ𝑡] =   ∑ {𝑑(𝜏 + 1) − 𝑑(𝜏)}
𝑡+Δ𝑡−1

𝜏=𝑡           (9) 

B. Evaluation of Candidate Observable Features   

 

 

   

 
 

TABLE III: CORRELATION COEFFICIENTS OF CANDIDATE OBSERVABLE 

FEATURES FOR THE PHYSICAL ACTIVITY 

Candidate 

observable features 

Correlation 

coefficients 

𝐷 0.89 

𝐷′ 0.58 

 

VI. ESTIMATING WORK SITUATION FROM THE BEST 

OBSERVABLE FEATURES 

A. Precision for Estimating Work Situation 

For estimating work situations with respect to the physical 

activity and mental concentration from their best observable 

features 𝐷 and Θ̅𝑐 found in sections IV and V, the relation of 

those observable features with the categories of work 

situations answered by experimental participants in step (2) 

in section III is represented by a mathematical function. Here, 

the answer of each experimental participant for the category 

of work situation with respect to each conceptual attribute is 

represented by binary values 1 or 0, meaning high or low, for 

the attribute. The correct category of work situation for each 

video clip is determined as the average of the binary values 

for the answers of all the experimental participants. Those 

average values for the physical activity and mental 

concentration in the kth video clip (𝑘 = 1, ⋯ , 50) are denoted 

by 𝑃𝑘  and 𝑀𝑘 , which take real numbers in [0,1] . The 

relations of 𝐷 and Θ̅𝑐 with 𝑃𝑘 and 𝑀𝑘 are both approximated 

by a sigmoid function 𝑠(𝛼, 𝛽; 𝑥)  with parameters 𝛼  and 𝛽 

defined as follows: 

𝑠(𝛼, 𝛽; 𝑥) =
1

1+𝑒−𝛼(𝑥+𝛽)                          (10) 

 

where 𝑠(1,0; −∞) = 0.0 , (1,0; 0) = 0.5 , and 𝑠(1,0; ∞) =

1.0. Variable 𝑥 is set as either 𝐷 or Θ̅𝑐 , depending on the 

conceptual attributes. Parameters 𝛼 and 𝛽 are determined so 

that the following error functions 𝐸𝑃(𝛼, 𝛽) and 𝐸𝑀(𝛼, 𝛽) are 

minimized: 

 

𝐸𝑃(𝛼, 𝛽) = ∑ ‖𝑠(𝛼, 𝛽; 𝐷[𝑡𝑘, 𝑡𝑘 + ∆𝑡𝑘]) − 𝑃𝑘‖250
𝑘=1          (11) 

 

 

 

 

where [𝑡𝑘, 𝑡𝑘 + ∆𝑡𝑘] denotes the period corresponding to the 

kth video clip.  

Fig. 5 illustrates sigmoid functions with the values for 𝛼 

and 𝛽  obtained by minimizing 𝐸𝑃(𝛼, 𝛽)  and 𝐸𝑀(𝛼, 𝛽) 

together with the values of 𝑃𝑘  and 𝑀𝑘 . Average errors for 

estimating 𝑃𝑘  and 𝑀𝑘  are 0.165 and 0.177. Since the 

categories of work situations answered by the experimental 

participants for each video clip are not the same but have 

fairly large variance (0.321 on average), these errors can be 

regarded as sufficiently small. 
 

 
(a) For the physical activity (𝛼 = 0.0161, 𝛽 = 120.76). 

 
(b) For the mental concentration (𝛼 = −0.1407, 𝛽 = 17.472). 

Fig. 5. Approximation of the categories of work situations from the best 

observable features obtained from the video clips by sigmoid functions. 

 

B. Possibilities of Producing Teaching Materials to 

Enhance Motivations 

Finally, it is evaluated whether the video clips with the 

work situation estimated as high activity & high 

concentration actually enhance motivations of the viewers 

towards the assembly work more than those estimated as the 
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𝐸𝑀(𝛼, 𝛽) =

∑ ‖𝑠(𝛼, 𝛽; 𝛿𝑐̅[𝑡𝑘, 𝑡𝑘 + ∆𝑡𝑘] + Θ̅𝑐[𝑡𝑘 , 𝑡𝑘 + ∆𝑡𝑘]) − 𝑀𝑘‖
250

𝑘=1     (12)

Similar to section III.C, the usefulness of 𝐷 and 𝐷′ as the 

observable feature for the physical activity is evaluated based 

on their correlations with the categories answered by the 

experimental participants for the physical activity of the 

video clips in step (2) in section III. The resultant correlation 

coefficients are shown in Table III. In the result, 𝐷 gives a 

larger value than 𝐷′ for the correlation coefficient. Thus, 𝐷 is 

introduced again as the best observable feature for the 

physical activity in this article.



  

other three categories. Video clips estimated as each of the 

four categories are picked up from among all 50 video clips 

based on their values of the best observable features for the 

physical activity and mental concentration. The number of 

video clips picked up was 10 for high activity & high 

concentration, 7 for high activity & low concentration, 8 for 

low activity & high concentration, and 10 for low activity & 

low concentration. From among the videos picked up for 

each category, a single video clip of the front camera is 

randomly selected to form a quadruplet of video clips, each of 

which is estimated as a different category, as shown in Fig. 6.  
 

 
Fig. 6. Sample image of a quadruplet of video clips presented to 

experimental participants for evaluating enhancement of their motivations 

towards the assembly work by the difference in work situation. 

 

Ten experimental participants are presented with 10 

different quadruplets of video clips to answer which of the 

four video clips in the presented quadruplet most enhances 

their motivations towards the assembly work. Table IV 

shows how many times the video clips of each category were 

chosen by the experimental participants in total. This result 

confirms that video clips with the work situations estimated 

as high for both the physical activity and mental 

concentration from their best observable features are actually 

effective for enhancing motivations of the viewers towards 

the assembly work. 
 

TABLE IV: TOTAL NUMBER OF CHOICES FOR THE VIDEO CLIP ESTIMATED 

TO BE DIFFERENT CATEGORIES AS MOST MOTIVATIONAL 

High activity & High concentration 78 

High activity & Low concentration 16 

Low activity & High concentration 6 

Low activity & Low concentration 0 

 

VII. CONCLUSIONS 

This article discussed how to estimate work situations of 

practical training with assembly tasks with respect to the 

physical activity of the work and the mental concentration of 

each trainee on the work as the conceptual attributes for 

categorizing the situations from appropriate observable 

features obtainable by image processing for videos of the 

work. Our preceding study showed the possibility of 

estimating those work situations from some observable 

features, aiming to produce video previews that enhance 

motivations of viewers towards the assembly work by 

picking the scenes estimated as high physical activity and 

high mental concentration from videos taken in actual 

practical training classes. However, there remain several 

issues to discuss. First, it has not been discussed what our 

humans actually paid attention to as the observable features 

for discriminating work situations different with regard to the 

conceptual attributes. Second, precision for estimating work 

situations from appropriate observable features has not been 

quantitatively evaluated. Third, it has not been made clear 

whether videos with work situations estimated as high for 

both the physical activity and mental concentration actually 

enhance motivations of the viewers towards the assembly 

work.  

This article has discussed the above three issues. For the 

first issue, the observable features that humans actually pay 

attention to for the two conceptual attributes are analyzed 

using morpheme analysis for the questionnaire among many 

experimental participants. Based on the result, candidate 

observable features are considered, and the best observable 

feature for each conceptual attribute is determined from the 

correlations of those candidate observable features with the 

correct categories answered by the experimental participants. 

The best observable features obtained as the result are the 

temporal change in the dispersion for the positions of all the 

work objects on the work surface as well as the sum of the 

distance from the face to the centroid of all the work objects 

and the departure of the gaze from the direction towards the 

centroid. 

For the second issue, the average error between the work 

situations estimated from the best observable features and 

answered by the experimental participants is evaluated for 

each of the two conceptual attributes, and the result is much 

smaller than the variance of the answers by the experimental 

participants.  

For the third issue, it was shown that video clips with work 

situations estimated as high for both the physical activity and 

mental concentration enhance motivations of the viewers 

much more than the others from the experiment where 

experimental participants are presented with video clips 

estimated as different work situations based on the best 

observable features to choose the most motivational ones. 
 

   

(a) Camera image from a viewing 

direction upper than the front 

camera. 

(b) Homography 

transformation of the work 

surface region in (a). 

Fig. 6. Example of images of the face and the work surface obtained by a 

single camera by homography transformation. 

 

Although the observable features proposed in this article 

are obtained from different cameras, it is also possible to use 

only a single camera to obtain those observable features by 

installing it so that it can observe both the face and the work 

surface. Fig. 6(b) is an example of the images obtained by 

transforming the image region of the work surface in a 

camera image in (a) by image processing called homography 

transformation. Images in (a) and (b) can be employed 

instead of those obtained by the front and overhead cameras 
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in this article. This extension of our method is considered as 

one of our possible future steps.

It should also be discussed as another future step whether 

the same approach can be applied for practical training of 

other kinds, because our work in this article only focuses on 

assembly work for practical training classes. Video teaching 

materials are most useful, especially for practical training, in 

which work progress can be easily recognized by simply 

observing the work from outside, and, thus, assembly work 

was focused on in this article as the most representative 

practical training where video teaching materials are 

effective. However, there should still be other kinds of 

practical work effective for introducing the approach 

discussed in this article.  
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