
  

 

Abstract—The abilities to improve teaching strategies online 

is important for an intelligent tutoring system (ITS) to perform 

adaptive teaching. Reinforcement learning (RL) may help an 

ITS obtain the abilities. Conventionally, RL works in a Markov 

decision process (MDP) framework. However, to handle 

uncertainties in teaching/studying processes, we need to apply 

the partially observable Markov decision process (POMDP) 

model in building an ITS. In a POMDP framework, it is difficult 

to use the improvement algorithms of the conventional RL 

because the required state information is unavailable. In our 

research, we have developed a reinforcement learning 

technique, which enables a POMDP-based ITS to learn from its 

teaching experience and improve teaching strategies online.  

 

Index Terms—Computer supported education, intelligent 

tutoring system, reinforcement learning, partially observable 

Markov decision process.  

 

I. INTRODUCTION 

Intelligent tutoring systems (ITSs) have become helpful 

tools in education [1]. In many fields, including mathematics, 

physics, medical science, astronaut training, and web-based 

adult education, teachers and students have benefited from 

ITSs [1]-[3]. It can be anticipated that ITSs would play more 

important roles in the future's education [1].  

An ITS is characterized by adaptive teaching: It should be 

able to choose optimal teaching actions to satisfy individual 

students' studying needs. Reinforcement learning (RL) 

provides useful techniques for ITSs. RL enables an ITS to 

improves its teaching abilities online to fit its students. 

Online means that the system improves its teaching abilities 

continuously when it works, without stopping its teaching. 

Currently, RL techniques in ITSs are mainly based on 

Markov decision processes (MDPs) [4]. An MDP has 

limitations in dealing with uncertainties in observing states. 

Such uncertainties commonly exist in teaching/studying 

processes. Quite often, the teacher does not know exactly 

what the student's states are, and what the most beneficial 

tutoring actions should be [1]. A partially observable Markov 

decision process (POMDP) can be more suitable for 

modeling a teaching/studying process. A POMDP allows an 

ITS to choose optimal tutoring actions even when the 

uncertainties exist.  

Reinforcement learning on a POMDP is a challenging task 

because the state information required for policy 

improvement is unavailable. Currently few ITSs built on 

POMDP are able to perform online learning to improve 
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adaptive teaching. With POMDPs, the systems obtained 

better abilities for handling uncertainties, but became weaker 

in improving teaching online. In our research, we address the 

challenge. We have developed a learning technique for a 

POMDP-based ITS to conduct online improvement of 

teaching strategies. 

 

II. RELATED WORK 

Research for applying RL to intelligent tutoring started in 

1990s. RL has been used in developing systems. In [5], 

Iglesias and co-workers used an RL algorithm to enable a 

system to adaptively teach individual students, based on its 

teaching experience. In [6], Litman and co-workers applied 

RL in a spoken tutoring system. The system engaged the 

student in a spoken dialogue to provide feedback and correct 

misconceptions. In the work reported in [7], Sarma and 

Ravindran proposed to use RL for building a tutoring system 

to teach autistic students. In the system, a policy is 

continuously updated for choosing appropriate teaching 

actions. 

In addition to developing systems, researchers also worked 

on system evaluation and analysis. Chi and co-workers 

performed empirical evaluation on the application of RL to 

adaptive pedagogical strategies [8]. In [9], the researchers 

evaluated the learning performance of the educational system 

through three issues: The learning convergence, 

exploration/exploitation strategies, and reduction of training 

phase.  

The work of applying POMDP to adaptive/intelligent 

tutoring also started in1990s. The more recent work included 

[10]-[14]. The work had the common feature of using 

POMDP to handle uncertainties in teaching processes. 

In the work reported in [12], the researchers built a system 

for tutoring concepts. They developed a technique of 

teaching by POMDP planning. A core component in the 

technique was a set of approximate POMDP policies, for 

dealing with uncertainties. The work described in [14] was 

aimed at making POMDP solvers feasible for real-world 

problems. In the work, a POMDP was used to cope with 

uncertainties in learners’ mental processes and plans, which 

were difficult to discern. A data structure was created to 

describe student status. The status was made up of knowledge 

states and cognitive states. The knowledge states were 

defined in terms of so called gaps. The POMDP enabled the 

intelligent tutor to take actions to discover and remove gaps, 

even when uncertainties existed.  

In the existing work of applying RL to ITSs, learning was 

performed in the MDP framework. Such ITSs could improve 

their teaching through system-student interactions, but had 

difficulties to handle uncertainties. In the existing work for 

developing POMDP-based ITSs, progress has been achieved 
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in dealing with uncertainties. However, little has been done in 

online improvement of teaching abilities. In those systems, 

teaching strategies were fixed and would not be updated 

during teaching processes.  

 

III. TECHNICAL BACKGROUND 

A. Reinforcement Learning 

Reinforcement learning (RL) is an interactive machine 

learning technique [4]. It learns knowledge through 

interactions with the environment, and may update the 

knowledge it has learned while applying the knowledge to 

solve problems. RL is especially suitable for developing 

systems in which online learning is required or desirable. 

Conventionally, RL is based on a Markov decision process 

(MDP). The components of an MDP include S, A, T, and 𝜌, 

where S is a set of states, A is a set of actions, T is a state 

transition probability function, and 𝜌 is a reward function. 

At any point in the decision process, the agent is in a state, 

where it applies policy 𝜋(𝑠) to choose the optimal action that 

maximizes the long term benefit. Policy 𝜋 can be defined as 

 

                     𝜋(𝑠) = �̂� = 𝑎𝑟𝑔max
𝑎

𝑄𝜋(𝑠, 𝑎)                 (1) 

        

where 𝑄𝜋(𝑠, 𝑎) is the action-value function evaluating the 

expected return after 𝑎 ∈ 𝐴 is taken in 𝑠 ∈ 𝑆 given 𝜋, defined 

as 

 

                    𝑄𝜋(𝑠, 𝑎) = ∑ 𝑃(𝑠′|𝑠, 𝑎)𝑉𝜋(𝑠′)𝑠′               (2) 

 

where 𝑃(𝑠′|𝑠, 𝑎) is the transition probability from 𝑠 to 𝑠′ ∈ 𝑆 

after 𝑎 is taken, 𝑉𝜋(𝑠) is the state-value function evaluating 

the expected return of s given policy 𝜋, defined as: 

 

𝑉𝜋(𝑠) = ∑ 𝜋(𝑠, 𝑎) ∑ 𝑃(𝑠′|𝑠, 𝑎)[ℛ(𝑠, 𝑎, 𝑠′) + 𝛾𝑉𝜋(𝑠′)]
𝑠′𝑎

 

                                                                                            (3)  

  

where 𝜋(𝑠, 𝑎) returns the probability that 𝑎 may maximize 

the long term benefit when it is taken in 𝑠, 𝛾 is a discounting 

factor, and ℛ(𝑠, 𝑎, 𝑠′) is the expected reward after the agent 

takes 𝑎 in 𝑠 and enters 𝑠′ . 
When 𝜋  is optimal, 𝜋(𝑠) returns the optimal action. To 

ensure optimality of the policy, we need to periodically 

improve the policy based on the information obtained from 

interactions. 

Let 𝜋  be the current policy, and 𝜋(𝑠)  be the action 

maximizing 𝑉𝜋(𝑠). In state 𝑠 if there is an action 𝑎 ≠ 𝜋(𝑠), 

we may expect that there exists a policy 𝜋′  such that 

𝑎 = 𝜋′(𝑠). If ∀𝑠 ∈ 𝑆, 

 

                         𝑄𝜋(𝑠, 𝜋′(𝑠)) ≥ 𝑉𝜋(𝑠)                         (4) 

 

then based on the policy improvement theorem [4], 𝜋′ must 

be as good as, or better than, 𝜋. That is, ∀𝑠 ∈ 𝑆  

 

                              𝑉𝜋′
(𝑠) ≥ 𝑉𝜋(𝑠)                              (5) 

    

The task of policy improvement is to find such a 𝜋′ if it 
exists. Learning from interactions to improve the policy 

continuously is a central part of RL. 

B. Partially Observable Markov Decision Process 

In an MDP, choosing an optimal action requires that the 

agent knows exactly which state it is in (see Eqn (1)). 

However, in many applications, states are not completely 

observable. To enable the agent to make decisions with 

uncertainties in observing states, we can model the decision 

process as a partially observable Markov decision process 

(POMDP). 

A POMDP is an extension of an MDP. The components in 

a POMDP include S, A, T, 𝜌, O, and Z. Of them, S, A, T, and 

𝜌  are the same as in the underlying MDP, O is a set of 

observations, and Z is the observation probability function. 

When states are not completely observable, the agent 

infers the information of the current state from its immediate 

action and observation, and represents the information as a 

belief:  

 

                       𝑏 = [𝑏(𝑠1), 𝑏(𝑠2), … , 𝑏(𝑠𝑌)]                  (6) 

 

where 𝑠𝑖 ∈ 𝑆 (1 ≤ 𝑖 ≤ 𝑌)is the ith state in S, Y is the number 

of states in S, 𝑏(𝑠𝑖) is the probability that the agent is in 𝑠𝑖, 

and ∑ 𝑏(𝑠𝑖) = 1𝑌
𝑖=1 . 

A policy in POMDP is a function of belief: 𝜋(𝑏). In a 

decision step in a POMDP, the agent is in 𝑠𝑡 (which is not 

completely observable), chooses and takes 𝑎𝑡  based on its 

belief 𝑏𝑡 , observes 𝑜𝑡 , enters state 𝑠𝑡+1  (which is not 

completely observable either), and infers 𝑏𝑡+1from 𝑏𝑡 , 𝑎𝑡 , 

and 𝑜𝑡.  

In a POMDP, policies can be represented as policy trees. In 

a policy tree, a node is labeled with an action, and an edge is 

labeled with an observation. At a node, there is an edge for 

each of the possible observations, connecting to a node at the 

next level. Based on a policy tree, after an action is taken, the 

next action is determined by the agent’s observation. 

With the policy tree technique, a policy can be defined as: 

  

                      𝜋(𝑏) = �̂� = 𝑎𝑟𝑔max
𝜏∈𝒯

𝑉𝜏(𝑏)                    (7) 

       

where 𝜏 is a policy tree, �̂� is the optimal policy tree at b, 𝒯 is 

the set of policy trees to evaluate in making the decision, and 

𝑉𝜏(𝑏) is the value function at b given policy tree 𝜏: 

  

                        𝑉𝜏(𝑏) = ∑ 𝑏(𝑠)𝑉𝜏(𝑠)𝑠∈𝑆                       (8) 

 

where 𝑉𝜏(𝑠) is the value function of 𝑠 ∈ 𝑆 given tree 𝜏:  

 

𝑉𝜏(𝑠) =

ℛ(𝑠, 𝑎) +  𝛾 ∑ 𝑃(𝑠′|𝑠, 𝑎) ∑ 𝑃(𝑜|𝑎, 𝑠′)𝑉𝜏𝑜
(𝑠′)𝑜∈𝑂𝑠′∈𝑆         (9) 

 

where 𝑎 is the root action of 𝜏, 𝑜 is the observation after the 

agent takes 𝑎, 𝜏𝑜 is the subtree in 𝜏 which is connected to the 

node of 𝑎  by the edge of 𝑜 , ℛ(𝑠, 𝑎)  is the expected 

immediate reward after 𝑎 is taken in 𝑠, and 𝑃(𝑜|𝑎, 𝑠′) is the 

observation probability for the agent to observe 𝑜  after it 

takes 𝑎 and enters 𝑠′.  
 

IV. AN ITS BUILT ON POMDP 
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For example,  in Fig. 1,  we consider the student  rejects  the 

originally asked. For example,  in Fig.  1, m3 is  an  optimal 

at a time, in a way of question - and - answer. Fig.  1 

  

A. An Overview 

We built an ITS for experimenting our techniques for 

developing POMDP-based ITSs, including the technique for 

online learning to improve tutoring strategies reported in this 

paper. The system is for teaching concepts. It tutors a student 

illustrates some sample questions and answers in using the 

ITS. 

 
m1:  What would you like to learn? 
h1:   What is a database? 
m2:  To understand "database", you may need to learn 
             file first. May I teach file? 
h2:   Yes, please. 
m3:  A file is a set of data on some durable storage. 
h3:   OK. 
m4:  You may also need to know query language. 
         May I teach query language? 
h4:   Yes. 
m5:  A query language is a high-level language for 
             querying. 
h5:   But what is a high-level language? 
m6:  A high-level language is a programming language 
             independent of any particular type of computer, 
             and is closer to human languages than assembly 
             languages. 
         May I return to database? 
h6:   Yes. 
m7:  A database is a collection of interrelated files 
             manipulated by application programs written in 
             a query language. 
h7:   I see. 
m8:  Other questions? 
     ... 

Fig. 1. System and student actions in tutoring. “m” – machine (system), 

“h” – human (student). 

 

The ITS consists of a student model, a tutoring model, and 

a domain model. The student model tracks information of the 

student’s knowledge states. The tutoring model represents 

tutoring strategies. The domain model stores knowledge of 

the instructional subject. In each tutoring step, the agent 

accesses the student model, and takes a tutoring action based 

on information of the student's current knowledge state. 

In many science and mathematics subjects, concepts have 

prerequisite relationships. To well understand a concept, a 

student should first study all the prerequisites of the concept. 

For example, in calculus, function and limit are prerequisites 

of derivative. A student should study function and limit 

before derivative. When answering a question about a 

concept, a teacher must determine whether to teach a 

prerequisite for the student to make up some knowledge, and 

if so, which one. 

A goal of our ITS is to choose an optimal action in each 

tutoring step. An optimal action is to teach a concept that the 

student needs to study, and can study without making up 

other concepts. The concept to teach may be a prerequisite 

the student needs to study to understand the concept 

action if the student did not know file before.   

B. States, Actions, and Observations 

We cast the ITS structure onto a POMDP: The POMDP 

states represents the student model; the policy represents the 

tutoring model. The agent takes actions to teach, and treats 

student actions as observations.  

We define POMDP states in terms of the concepts in the 

instructional subject. When there are D concepts in the 

subject, we create D Boolean variables, with variable ℂ𝑖 

representing concept 𝐶𝑖  (1 ≤ 𝑖 ≤ 𝐷). Variable ℂ𝑖  may take 

two values: √𝐶𝑖  and ¬𝐶𝑖 . √𝐶𝑖  represents that the student 

already understands 𝐶𝑖, while ¬𝐶𝑖 represents that the student 

does not understand 𝐶𝑖 . We associate each 𝑠 ∈ 𝑆  with a 

conjunctive formula of the 𝐷 variables to represent a 

knowledge state of the student. For example, formula 

(√𝐶1 ∧ √𝐶2 ∧ ¬𝐶3 ∧ … )  represents a state in which the 

student understands 𝐶1  and 𝐶2 , does not understand 𝐶3 , ... 

We call it a state formula. The states defined in this way have 

the Markov property. To deal with the exponential state space, 

we have developed techniques to make the computing 

efficient [15].  

As mentioned, the system teaches in a question-and- 

answer manner. The student's actions are mainly asking 

questions about concepts, and the system's actions are mainly 

answering questions. In a tutoring step, the agent takes action 

𝑎, and then observes 𝑜, which is the next question from the 

student. 

  

V. ONLINE POLICY IMPROVEMENT 

A. Policy Initialization 

In this section, we will first describe how we initialize a 

policy in the POMDP, and then how we improve the policy 

online while the system teaches. 

As discussed, policy 𝜋(𝑏) is defined in term of belief value 

function 𝑉𝜋(𝑏) (see Eqn (7)), 𝑉𝜋(𝑏) is defined in terms of 

state  value function 𝑉𝜋(𝑠)  (see Eqn (8)), and 𝑉𝜋(𝑠)  is 

defined as a function of ℛ(𝑠, 𝑎), 𝑃(𝑠′|𝑠, 𝑎), and 𝑃(𝑜|𝑎, 𝑠′) 

(see Eqn (9)). In policy initialization, we initialize the 

parameters ℛ(𝑠, 𝑎) , 𝑃(𝑠′|𝑠, 𝑎) , and 𝑃(𝑜|𝑎, 𝑠′) . As will be 

discussed later, in policy improvement, we update them.  

We create a set of training data for initializing the 

parameters.  The training data set is a sequence of tuples 

 

                        (𝑠1, 𝑎1, 𝑜1, 𝑟1, 𝑠2) 

                        … 

                        (𝑠𝑖 , 𝑎𝑖 , 𝑜𝑖 , 𝑟𝑖 , 𝑠𝑖+1) 

                        (𝑠𝑖+1, 𝑎𝑖+1, 𝑜𝑖+1, 𝑟𝑖+1, 𝑠𝑖+2) 

                        … 

 

where 𝑠 denotes a state, 𝑎 an action, 𝑜 an observation, and 𝑟 

a reward. The sequence simulates teacher-student 

interactions, with a tuple being a tutoring step: The agent is in 

a state, takes an action, perceives a student action 

(observation), receives a reward, and then enters a new state. 

After the agent takes an action (teaching a concept), if the 

student rejects the action, the agent receives a low reward; 

otherwise it receives a high reward. In a tutoring step, after 

the agent teaches 𝐶 , if the student says something like “I 

already know 𝐶”, we consider that the student rejects the 

agent’s action. If the student asks about a prerequisite of 𝐶, 

we also consider the student rejects the agent’s action 

(answer) because the student is not satisfied with the answer. 

system action for teaching query language when asking “But 

International Journal of Information and Education Technology, Vol. 8, No. 8, August 2018

555



  

what is a high-level language?” because the student still does 

not understand what a query language is.  

Formally, the reward function 𝜌(𝑜, 𝑎) is defined as 

 

                  𝜌(𝑜, 𝑎) = { 
𝑟′ 𝑖𝑓 𝑜 𝑟𝑒𝑗𝑒𝑐𝑡𝑠 𝑎
𝑟" 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                  (10) 

 

where 𝑟"  is the high reward, 𝑟′  is the low reward, and  

𝑟" > 𝑟′ > 0. The rewards in the training data are assigned by 

using the reward function.  

A tuple in the training data contains instances of the 

relationships 𝑆 × 𝐴 ⟶ 𝑆  and 𝐴 × 𝑆 ⟶ 𝑂 . Let “*” be any 

value and “| |” be the operator of counting tuples. 𝑃(𝑠′|𝑠, 𝑎) 

and 𝑃(𝑜|𝑎, 𝑠′) can be initialized as  

 

𝑃(𝑠′|𝑠, 𝑎) =
|(𝑠, 𝑎,∗,∗, 𝑠′)|

|(𝑠, 𝑎,∗,∗,∗)|
, 

                                                                                     (11) 

𝑃(𝑜|𝑎, 𝑠′) =
|(∗, 𝑎, 𝑜,∗, 𝑠′)|

|(∗, 𝑎,∗,∗, 𝑠′)|
. 

                                                                                     (12) 

 

To initialize ℛ(𝑠, 𝑎), we calculate ℛ(𝑠, 𝑎, 𝑠′), which is the 

expected immediate reward after the agent takes 𝑎 in 𝑠 and 

enters 𝑠′ : 
 

ℛ(𝑠, 𝑎, 𝑠′) =
∑(𝑟∈(𝑠,𝑎,∗,𝑟,𝑠′))

|(𝑠,𝑎,∗,𝑟,𝑠′)|
                     (13) 

                                                                                   

Based on ℛ(𝑠, 𝑎, 𝑠′)  and 𝑃(𝑠′|𝑠, 𝑎) , we can initialize 

ℛ(𝑠, 𝑎): 

 

                 ℛ(𝑠, 𝑎) = ∑ 𝑃(𝑠′|𝑠, 𝑎)ℛ(𝑠, 𝑎, 𝑠′)𝑠′∈𝑆 .       (14) 

  

In (11), (12), and (13), the counting and summation are     

conducted on the training data. We use the Lidstone estimate 

[16] to deal with the data sparsity problem. After calculating 

𝑃(𝑠′|𝑠, 𝑎), 𝑃(𝑜|𝑎, 𝑠′), and ℛ(𝑠, 𝑎)from the training data, we 

have initialized the policy. The agent can use it to choose 

actions, and will improve it when teaching students.  

B. Parameter Update  

In policy improvement, the agent learns from the 

system-student interactions, and continuously improves the 

policy for better teaching performance. 

We use a delayed updating method for the improvement. 

In this method, the agent applies the current policy for a 

number of sessions without changing it. During the sessions, 

the agent records system and student actions, as well as its 

beliefs, and keep them in a logfile. After a given number of 

sessions, it updates the policy using the recorded data. Then it 

applies the updated policy, and then improves the policy 

again, and so on. 

The agent improves a policy in two steps: It uses the 

recorded data to update the policy parameters, and then it 

improves the policy based on the updated parameters.  

As mentioned, in a POMDP, states are not completely 

observable, and the agent infers information of states and 

represents the information as beliefs. For this reason, the 

agent cannot record states and state transitions, and updates 

the probabilities and rewards directly from state information. 

In our technique, the agent updates the parameters using 

information in beliefs.  

The data recorded during tutoring sessions are tuples of:  

 

                        (𝑏1, 𝑎1, 𝑜1, 𝑟1, 𝑏2) 

                        … 

                        (𝑏𝑖 , 𝑎𝑖 , 𝑜𝑖 , 𝑟𝑖 , 𝑏𝑖+1) 

                        (𝑏𝑖+1, 𝑎𝑖+1, 𝑜𝑖+1, 𝑟𝑖+1, 𝑏𝑖+2) 

                        … 

 

In a tuple, 𝑏 denotes a belief. When recording the data, the 

agent determines rewards by using the reward function in 

(10).  

A state transition probability 𝑃(𝑠′|𝑠, 𝑎) is updated as:  

 

     𝑃(𝑠′|𝑠, 𝑎) = 𝑁1 (𝑁2 + 𝑁4) +⁄ 𝑁3 (𝑁2 + 𝑁4)⁄         (15) 

 

where  

 

          𝑁1 = ∑ [|(𝑏, 𝑎,∗,∗, 𝑏′)| × 𝑏(𝑠) × 𝑏′(𝑠′)]𝑏,𝑏′       (16) 

 

            𝑁2 = ∑ [|(𝑏, 𝑎,∗,∗, 𝑏′)| × 𝑏(𝑠)]𝑏,𝑏′ ,                  (17) 

 

𝑁3 is the sum of the numerator in (11) and the cumulated 

𝑁1  values in previous updates, and 𝑁4  is the sum of the 

denominator in (11) and the cumulated 𝑁2 values in previous 

updates.  

An observation probability 𝑃(𝑜|𝑎, 𝑠′) is updated as:  

 

     𝑃(𝑜|𝑎, 𝑠′) = 𝑀1 (𝑀2 + 𝑀4) + 𝑀3 (𝑀2 + 𝑀4)⁄⁄    (18) 

 

where 

 

                𝑀1 = ∑ [|(𝑏, 𝑎, 𝑜,∗, 𝑏′)| × 𝑏′(𝑠′)𝑏,𝑏′ ]           (19) 

 

                𝑀2 = ∑ [|(𝑏, 𝑎,∗,∗, 𝑏′)| × 𝑏′(𝑠′)𝑏,𝑏′ ]            (20) 

 

𝑀3 is the sum of the numerator in (12) and the cumulated 

𝑀1  values in previous updates, and 𝑀4  is the sum of the 

denominator in (12) and the cumulated 𝑀2  M2 values in 

previous updates.  

To update ℛ(𝑠, 𝑎), we first update ℛ(𝑠, 𝑎, 𝑠′):  

 

        ℛ(𝑠, 𝑎, 𝑠′) = 𝑅1 (𝐿1 + 𝐿2) + 𝑅2 (𝐿1 + 𝐿2)⁄⁄       (21) 

 

where 

 

           𝑅1 = ∑ [(𝑟 ∈ (𝑏, 𝑎,∗, 𝑟, 𝑏′)) × 𝑏(𝑠) × 𝑏′(𝑠′)]𝑏′𝑏    (22) 

 

         𝐿1 = |(𝑏, 𝑎,∗, 𝑟, 𝑏′)|  × 𝑏(𝑠) × 𝑏′(𝑠′),                  (23) 

 

𝑅2 is the sum of the numerator in (13) and the cumulated 

𝑅1  values in previous updates, and 𝐿2  is the sum of the 

denominator in (13) and the cumulated 𝐿1 values in previous 

updates. Then we can update ℛ(𝑠, 𝑎) by using (14). 

C. Policy Improvement 

After updating the parameters, for each policy tree 𝜏, the 

agent executes the following procedure, which is modified 

from the evaluation- improvement algorithm proposed in [4]. 

In the procedure, 𝑏𝑠 denotes a belief in which 𝑏(𝑠) = 1 and 

all the other elements are zeros, 𝜏𝑜 is the subtree connected 

by 𝑜, and 𝜃 is a small positive number. 
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1. Initialization 

         Initialize 𝑉𝜏 

2. Policy Evaluation 

         Repeat 

              Δ ⟵ 0 

              For each 𝑠 ∈ 𝑆  

                         𝑣 ⟵ 𝑉𝜏(𝑠), 𝑎 ⟵ root action of 𝜏 

                            𝑉𝜏(𝑠) ⟵ ℛ(𝑠, 𝑎) + 

                                   𝛾 ∑ 𝑃(𝑠′|𝑠, 𝑎) ∑ 𝑃(𝑜|𝑎, 𝑠′)𝑜𝑠′ 𝑉𝜏𝑜
(𝑠′) 

                         Δ ⟵ max(Δ, |𝑣 − 𝑉𝜏(𝑠)|) 

               Until Δ < 𝜃 

     3. Policy Improvement 

               policy_stable ⟵ true 

               For each 𝑠 ∈ 𝑆 

                     𝜏′ ⟵ 𝜋(𝑏𝑠), 𝜋(𝑏𝑠) ⟵ 𝑎𝑟𝑔 max𝜏 𝑉𝜏(𝑏𝑠) 

                    If 𝜏′ ≠ 𝜋(𝑏𝑠) then policy_stable ⟵ false 

               If policy stable, then stop; else go to 2 

 

VI. EXPERIMENTS 

We implemented our learning technique in the 

experimental ITS. We tested it through examining the 

teaching performance of the policy obtained by the machine 

learning technique.  

The system could work in two modes: with the POMDP 

and RL on or off. When the POMDP and RL were on, the 

system taught adaptively. Each time after the student asked 

about a concept that has prerequisites, the system applied the 

policy to choose an optimal action to take. Meanwhile it 

continuously improved the policy. When the POMDP and RL 

were off, the system either directly answered the question, or 

randomly taught a prerequisite.  

In testing the performance of adaptive teaching, we used a 

domain knowledge data set of software basics. 30 students 

participated in the experiment. The students knew how to use 

operating systems of Microsoft Windows and Apple OS X, 

and application programs like Web browsers, Microsoft 

Office, etc. None of them had formal training in software 

development, nor took a course on software. We randomly 

divided the participants into two groups of the same size. 

Group 1 studied with the ITS when the POMDP and RL were 

turned on, while Group 2 studied with the system when the 

POMDP and RL were off. The student and system 

interactions were recorded for performance analysis.  

We used rejection rate to evaluate the system’s 

performance in adaptive teaching: A rejected system action is 

not optimal. For a student, the rejection rate was the ratio of 

the number of system actions rejected by the student to the 

total number of system actions for teaching him/her. A 

student’s rejection rate could be used to evaluate how well 

the system chose optimal actions in teaching this student.  
 

TABLE I: NUMBER OF PARTICIPANTS, MEAN AND ESTIMATED VARIANCE OF 

EACH GROUP 

    Group 1    Group 2 

Number of participants  𝑛1 = 15 𝑛2 = 15 

Mean 𝑋1
̅̅ ̅ = 0.5966 𝑋2

̅̅ ̅ = 0.2284 

Estimated variance 𝑠1
2 = 0.0158 𝑠2

2 = 0.0113 

 

We calculated the average rejection rates and variances for 

the two groups (see Table I): The adaptive teaching reduced 

the rejection rate from about 60% to 23%. The method for 

analyzing the experimental results was the independent 

samples t-test. In the analysis, the alternative hypothesis 𝐻𝑎 

was that the POMDP based RL improved the teaching 

performance of the ITS, and the null hypothesis 𝐻0 was that 

the learning did not improve the performance. The analysis 

suggested that we could reject 𝐻0  and accept 𝐻𝑎 , which 

indicated that the difference between the two means was 

significant: The online policy improvement works. For more 

details about the analysis, see [17].  

 

VII. CONCLUDING REMARKS 

Reinforcement learning (RL) and the partially observable 

Markov decision process (POMDP) model both offer 

powerful techniques essential for building ITSs. However, 

their marriage has not generated good results. In our research, 

we have developed a learning technique, which was aimed at 

enabling a POMDP-based ITS to improve its teaching 

abilities online. Experimental results suggested that the 

technique might serve as a good starting point for building 

practical ITSs.  
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