



Abstract—The abilities to improve teaching strategies online

is important for an intelligent tutoring system (ITS) to perform

adaptive teaching. Reinforcement learning (RL) may help an

ITS obtain the abilities. Conventionally, RL works in a Markov

decision process (MDP) framework. However, to handle

uncertainties in teaching/studying processes, we need to apply

the partially observable Markov decision process (POMDP)

model in building an ITS. In a POMDP framework, it is difficult

to use the improvement algorithms of the conventional RL

because the required state information is unavailable. In our

research, we have developed a reinforcement learning

technique, which enables a POMDP-based ITS to learn from its

teaching experience and improve teaching strategies online.

Index Terms—Computer supported education, intelligent

tutoring system, reinforcement learning, partially observable

Markov decision process.

I. INTRODUCTION

Intelligent tutoring systems (ITSs) have become helpful

tools in education [1]. In many fields, including mathematics,

physics, medical science, astronaut training, and web-based

adult education, teachers and students have benefited from

ITSs [1]-[3]. It can be anticipated that ITSs would play more

important roles in the future's education [1].

An ITS is characterized by adaptive teaching: It should be

able to choose optimal teaching actions to satisfy individual

students' studying needs. Reinforcement learning (RL)

provides useful techniques for ITSs. RL enables an ITS to

improves its teaching abilities online to fit its students.

Online means that the system improves its teaching abilities

continuously when it works, without stopping its teaching.

Currently, RL techniques in ITSs are mainly based on

Markov decision processes (MDPs) [4]. An MDP has

limitations in dealing with uncertainties in observing states.

Such uncertainties commonly exist in teaching/studying

processes. Quite often, the teacher does not know exactly

what the student's states are, and what the most beneficial

tutoring actions should be [1]. A partially observable Markov

decision process (POMDP) can be more suitable for

modeling a teaching/studying process. A POMDP allows an

ITS to choose optimal tutoring actions even when the

uncertainties exist.

Reinforcement learning on a POMDP is a challenging task

because the state information required for policy

improvement is unavailable. Currently few ITSs built on

POMDP are able to perform online learning to improve

Manuscript received May 31, 2017; revised March 13, 2018. This work is

supported by the Natural Sciences and Engineering Research Council of

Canada (NSERC).

F. Wang is with the School of Computer Science, University of Guelph,

Ontario, Canada (e-mail: fjwang@uoguelph.ca).

adaptive teaching. With POMDPs, the systems obtained

better abilities for handling uncertainties, but became weaker

in improving teaching online. In our research, we address the

challenge. We have developed a learning technique for a

POMDP-based ITS to conduct online improvement of

teaching strategies.

II. RELATED WORK

Research for applying RL to intelligent tutoring started in

1990s. RL has been used in developing systems. In [5],

Iglesias and co-workers used an RL algorithm to enable a

system to adaptively teach individual students, based on its

teaching experience. In [6], Litman and co-workers applied

RL in a spoken tutoring system. The system engaged the

student in a spoken dialogue to provide feedback and correct

misconceptions. In the work reported in [7], Sarma and

Ravindran proposed to use RL for building a tutoring system

to teach autistic students. In the system, a policy is

continuously updated for choosing appropriate teaching

actions.

In addition to developing systems, researchers also worked

on system evaluation and analysis. Chi and co-workers

performed empirical evaluation on the application of RL to

adaptive pedagogical strategies [8]. In [9], the researchers

evaluated the learning performance of the educational system

through three issues: The learning convergence,

exploration/exploitation strategies, and reduction of training

phase.

The work of applying POMDP to adaptive/intelligent

tutoring also started in1990s. The more recent work included

[10]-[14]. The work had the common feature of using

POMDP to handle uncertainties in teaching processes.

In the work reported in [12], the researchers built a system

for tutoring concepts. They developed a technique of

teaching by POMDP planning. A core component in the

technique was a set of approximate POMDP policies, for

dealing with uncertainties. The work described in [14] was

aimed at making POMDP solvers feasible for real-world

problems. In the work, a POMDP was used to cope with

uncertainties in learners’ mental processes and plans, which

were difficult to discern. A data structure was created to

describe student status. The status was made up of knowledge

states and cognitive states. The knowledge states were

defined in terms of so called gaps. The POMDP enabled the

intelligent tutor to take actions to discover and remove gaps,

even when uncertainties existed.

In the existing work of applying RL to ITSs, learning was

performed in the MDP framework. Such ITSs could improve

their teaching through system-student interactions, but had

difficulties to handle uncertainties. In the existing work for

developing POMDP-based ITSs, progress has been achieved

Reinforcement Learning in a POMDP Based Intelligent

Tutoring System for Optimizing Teaching Strategies

Fangju Wang

International Journal of Information and Education Technology, Vol. 8, No. 8, August 2018

553doi: 10.18178/ijiet.2018.8.8.1098

in dealing with uncertainties. However, little has been done in

online improvement of teaching abilities. In those systems,

teaching strategies were fixed and would not be updated

during teaching processes.

III. TECHNICAL BACKGROUND

A. Reinforcement Learning

Reinforcement learning (RL) is an interactive machine

learning technique [4]. It learns knowledge through

interactions with the environment, and may update the

knowledge it has learned while applying the knowledge to

solve problems. RL is especially suitable for developing

systems in which online learning is required or desirable.

Conventionally, RL is based on a Markov decision process

(MDP). The components of an MDP include S, A, T, and 𝜌,

where S is a set of states, A is a set of actions, T is a state

transition probability function, and 𝜌 is a reward function.

At any point in the decision process, the agent is in a state,

where it applies policy 𝜋(𝑠) to choose the optimal action that

maximizes the long term benefit. Policy 𝜋 can be defined as

 𝜋(𝑠) = 𝑎̂ = 𝑎𝑟𝑔max
𝑎

𝑄𝜋(𝑠, 𝑎) (1)

where 𝑄𝜋(𝑠, 𝑎) is the action-value function evaluating the

expected return after 𝑎 ∈ 𝐴 is taken in 𝑠 ∈ 𝑆 given 𝜋, defined

as

 𝑄𝜋(𝑠, 𝑎) = ∑ 𝑃(𝑠′|𝑠, 𝑎)𝑉𝜋(𝑠′)𝑠′ (2)

where 𝑃(𝑠′|𝑠, 𝑎) is the transition probability from 𝑠 to 𝑠′ ∈ 𝑆

after 𝑎 is taken, 𝑉𝜋(𝑠) is the state-value function evaluating

the expected return of s given policy 𝜋, defined as:

𝑉𝜋(𝑠) = ∑ 𝜋(𝑠, 𝑎) ∑ 𝑃(𝑠′|𝑠, 𝑎)[ℛ(𝑠, 𝑎, 𝑠′) + 𝛾𝑉𝜋(𝑠′)]
𝑠′𝑎

 (3)

where 𝜋(𝑠, 𝑎) returns the probability that 𝑎 may maximize

the long term benefit when it is taken in 𝑠, 𝛾 is a discounting

factor, and ℛ(𝑠, 𝑎, 𝑠′) is the expected reward after the agent

takes 𝑎 in 𝑠 and enters 𝑠′ .
When 𝜋 is optimal, 𝜋(𝑠) returns the optimal action. To

ensure optimality of the policy, we need to periodically

improve the policy based on the information obtained from

interactions.

Let 𝜋 be the current policy, and 𝜋(𝑠) be the action

maximizing 𝑉𝜋(𝑠). In state 𝑠 if there is an action 𝑎 ≠ 𝜋(𝑠),

we may expect that there exists a policy 𝜋′ such that

𝑎 = 𝜋′(𝑠). If ∀𝑠 ∈ 𝑆,

 𝑄𝜋(𝑠, 𝜋′(𝑠)) ≥ 𝑉𝜋(𝑠) (4)

then based on the policy improvement theorem [4], 𝜋′ must

be as good as, or better than, 𝜋. That is, ∀𝑠 ∈ 𝑆

 𝑉𝜋′
(𝑠) ≥ 𝑉𝜋(𝑠) (5)

The task of policy improvement is to find such a 𝜋′ if it
exists. Learning from interactions to improve the policy

continuously is a central part of RL.

B. Partially Observable Markov Decision Process

In an MDP, choosing an optimal action requires that the

agent knows exactly which state it is in (see Eqn (1)).

However, in many applications, states are not completely

observable. To enable the agent to make decisions with

uncertainties in observing states, we can model the decision

process as a partially observable Markov decision process

(POMDP).

A POMDP is an extension of an MDP. The components in

a POMDP include S, A, T, 𝜌, O, and Z. Of them, S, A, T, and

𝜌 are the same as in the underlying MDP, O is a set of

observations, and Z is the observation probability function.

When states are not completely observable, the agent

infers the information of the current state from its immediate

action and observation, and represents the information as a

belief:

 𝑏 = [𝑏(𝑠1), 𝑏(𝑠2), … , 𝑏(𝑠𝑌)] (6)

where 𝑠𝑖 ∈ 𝑆 (1 ≤ 𝑖 ≤ 𝑌)is the ith state in S, Y is the number

of states in S, 𝑏(𝑠𝑖) is the probability that the agent is in 𝑠𝑖,

and ∑ 𝑏(𝑠𝑖) = 1𝑌
𝑖=1 .

A policy in POMDP is a function of belief: 𝜋(𝑏). In a

decision step in a POMDP, the agent is in 𝑠𝑡 (which is not

completely observable), chooses and takes 𝑎𝑡 based on its

belief 𝑏𝑡 , observes 𝑜𝑡 , enters state 𝑠𝑡+1 (which is not

completely observable either), and infers 𝑏𝑡+1from 𝑏𝑡 , 𝑎𝑡 ,

and 𝑜𝑡.

In a POMDP, policies can be represented as policy trees. In

a policy tree, a node is labeled with an action, and an edge is

labeled with an observation. At a node, there is an edge for

each of the possible observations, connecting to a node at the

next level. Based on a policy tree, after an action is taken, the

next action is determined by the agent’s observation.

With the policy tree technique, a policy can be defined as:

 𝜋(𝑏) = 𝜏̂ = 𝑎𝑟𝑔max
𝜏∈𝒯

𝑉𝜏(𝑏) (7)

where 𝜏 is a policy tree, 𝜏̂ is the optimal policy tree at b, 𝒯 is

the set of policy trees to evaluate in making the decision, and

𝑉𝜏(𝑏) is the value function at b given policy tree 𝜏:

 𝑉𝜏(𝑏) = ∑ 𝑏(𝑠)𝑉𝜏(𝑠)𝑠∈𝑆 (8)

where 𝑉𝜏(𝑠) is the value function of 𝑠 ∈ 𝑆 given tree 𝜏:

𝑉𝜏(𝑠) =

ℛ(𝑠, 𝑎) + 𝛾 ∑ 𝑃(𝑠′|𝑠, 𝑎) ∑ 𝑃(𝑜|𝑎, 𝑠′)𝑉𝜏𝑜
(𝑠′)𝑜∈𝑂𝑠′∈𝑆 (9)

where 𝑎 is the root action of 𝜏, 𝑜 is the observation after the

agent takes 𝑎, 𝜏𝑜 is the subtree in 𝜏 which is connected to the

node of 𝑎 by the edge of 𝑜 , ℛ(𝑠, 𝑎) is the expected

immediate reward after 𝑎 is taken in 𝑠, and 𝑃(𝑜|𝑎, 𝑠′) is the

observation probability for the agent to observe 𝑜 after it

takes 𝑎 and enters 𝑠′.

IV. AN ITS BUILT ON POMDP

International Journal of Information and Education Technology, Vol. 8, No. 8, August 2018

554

For example, in Fig. 1, we consider the student rejects the

originally asked. For example, in Fig. 1, m3 is an optimal

at a time, in a way of question - and - answer. Fig. 1

A. An Overview

We built an ITS for experimenting our techniques for

developing POMDP-based ITSs, including the technique for

online learning to improve tutoring strategies reported in this

paper. The system is for teaching concepts. It tutors a student

illustrates some sample questions and answers in using the

ITS.

m1: What would you like to learn?
h1: What is a database?
m2: To understand "database", you may need to learn
 file first. May I teach file?
h2: Yes, please.
m3: A file is a set of data on some durable storage.
h3: OK.
m4: You may also need to know query language.
 May I teach query language?
h4: Yes.
m5: A query language is a high-level language for
 querying.
h5: But what is a high-level language?
m6: A high-level language is a programming language
 independent of any particular type of computer,
 and is closer to human languages than assembly
 languages.
 May I return to database?
h6: Yes.
m7: A database is a collection of interrelated files
 manipulated by application programs written in
 a query language.
h7: I see.
m8: Other questions?
 ...

Fig. 1. System and student actions in tutoring. “m” – machine (system),

“h” – human (student).

The ITS consists of a student model, a tutoring model, and

a domain model. The student model tracks information of the

student’s knowledge states. The tutoring model represents

tutoring strategies. The domain model stores knowledge of

the instructional subject. In each tutoring step, the agent

accesses the student model, and takes a tutoring action based

on information of the student's current knowledge state.

In many science and mathematics subjects, concepts have

prerequisite relationships. To well understand a concept, a

student should first study all the prerequisites of the concept.

For example, in calculus, function and limit are prerequisites

of derivative. A student should study function and limit

before derivative. When answering a question about a

concept, a teacher must determine whether to teach a

prerequisite for the student to make up some knowledge, and

if so, which one.

A goal of our ITS is to choose an optimal action in each

tutoring step. An optimal action is to teach a concept that the

student needs to study, and can study without making up

other concepts. The concept to teach may be a prerequisite

the student needs to study to understand the concept

action if the student did not know file before.

B. States, Actions, and Observations

We cast the ITS structure onto a POMDP: The POMDP

states represents the student model; the policy represents the

tutoring model. The agent takes actions to teach, and treats

student actions as observations.

We define POMDP states in terms of the concepts in the

instructional subject. When there are D concepts in the

subject, we create D Boolean variables, with variable ℂ𝑖

representing concept 𝐶𝑖 (1 ≤ 𝑖 ≤ 𝐷). Variable ℂ𝑖 may take

two values: √𝐶𝑖 and ¬𝐶𝑖 . √𝐶𝑖 represents that the student

already understands 𝐶𝑖, while ¬𝐶𝑖 represents that the student

does not understand 𝐶𝑖 . We associate each 𝑠 ∈ 𝑆 with a

conjunctive formula of the 𝐷 variables to represent a

knowledge state of the student. For example, formula

(√𝐶1 ∧ √𝐶2 ∧ ¬𝐶3 ∧ …) represents a state in which the

student understands 𝐶1 and 𝐶2 , does not understand 𝐶3 , ...

We call it a state formula. The states defined in this way have

the Markov property. To deal with the exponential state space,

we have developed techniques to make the computing

efficient [15].

As mentioned, the system teaches in a question-and-

answer manner. The student's actions are mainly asking

questions about concepts, and the system's actions are mainly

answering questions. In a tutoring step, the agent takes action

𝑎, and then observes 𝑜, which is the next question from the

student.

V. ONLINE POLICY IMPROVEMENT

A. Policy Initialization

In this section, we will first describe how we initialize a

policy in the POMDP, and then how we improve the policy

online while the system teaches.

As discussed, policy 𝜋(𝑏) is defined in term of belief value

function 𝑉𝜋(𝑏) (see Eqn (7)), 𝑉𝜋(𝑏) is defined in terms of

state value function 𝑉𝜋(𝑠) (see Eqn (8)), and 𝑉𝜋(𝑠) is

defined as a function of ℛ(𝑠, 𝑎), 𝑃(𝑠′|𝑠, 𝑎), and 𝑃(𝑜|𝑎, 𝑠′)

(see Eqn (9)). In policy initialization, we initialize the

parameters ℛ(𝑠, 𝑎) , 𝑃(𝑠′|𝑠, 𝑎) , and 𝑃(𝑜|𝑎, 𝑠′) . As will be

discussed later, in policy improvement, we update them.

We create a set of training data for initializing the

parameters. The training data set is a sequence of tuples

 (𝑠1, 𝑎1, 𝑜1, 𝑟1, 𝑠2)

 …

 (𝑠𝑖 , 𝑎𝑖 , 𝑜𝑖 , 𝑟𝑖 , 𝑠𝑖+1)

 (𝑠𝑖+1, 𝑎𝑖+1, 𝑜𝑖+1, 𝑟𝑖+1, 𝑠𝑖+2)

 …

where 𝑠 denotes a state, 𝑎 an action, 𝑜 an observation, and 𝑟

a reward. The sequence simulates teacher-student

interactions, with a tuple being a tutoring step: The agent is in

a state, takes an action, perceives a student action

(observation), receives a reward, and then enters a new state.

After the agent takes an action (teaching a concept), if the

student rejects the action, the agent receives a low reward;

otherwise it receives a high reward. In a tutoring step, after

the agent teaches 𝐶 , if the student says something like “I

already know 𝐶”, we consider that the student rejects the

agent’s action. If the student asks about a prerequisite of 𝐶,

we also consider the student rejects the agent’s action

(answer) because the student is not satisfied with the answer.

system action for teaching query language when asking “But

International Journal of Information and Education Technology, Vol. 8, No. 8, August 2018

555

what is a high-level language?” because the student still does

not understand what a query language is.

Formally, the reward function 𝜌(𝑜, 𝑎) is defined as

 𝜌(𝑜, 𝑎) = {
𝑟′ 𝑖𝑓 𝑜 𝑟𝑒𝑗𝑒𝑐𝑡𝑠 𝑎
𝑟" 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (10)

where 𝑟" is the high reward, 𝑟′ is the low reward, and

𝑟" > 𝑟′ > 0. The rewards in the training data are assigned by

using the reward function.

A tuple in the training data contains instances of the

relationships 𝑆 × 𝐴 ⟶ 𝑆 and 𝐴 × 𝑆 ⟶ 𝑂 . Let “*” be any

value and “| |” be the operator of counting tuples. 𝑃(𝑠′|𝑠, 𝑎)

and 𝑃(𝑜|𝑎, 𝑠′) can be initialized as

𝑃(𝑠′|𝑠, 𝑎) =
|(𝑠, 𝑎,∗,∗, 𝑠′)|

|(𝑠, 𝑎,∗,∗,∗)|
,

 (11)

𝑃(𝑜|𝑎, 𝑠′) =
|(∗, 𝑎, 𝑜,∗, 𝑠′)|

|(∗, 𝑎,∗,∗, 𝑠′)|
.

 (12)

To initialize ℛ(𝑠, 𝑎), we calculate ℛ(𝑠, 𝑎, 𝑠′), which is the

expected immediate reward after the agent takes 𝑎 in 𝑠 and

enters 𝑠′ :

ℛ(𝑠, 𝑎, 𝑠′) =
∑(𝑟∈(𝑠,𝑎,∗,𝑟,𝑠′))

|(𝑠,𝑎,∗,𝑟,𝑠′)|
 (13)

Based on ℛ(𝑠, 𝑎, 𝑠′) and 𝑃(𝑠′|𝑠, 𝑎) , we can initialize

ℛ(𝑠, 𝑎):

 ℛ(𝑠, 𝑎) = ∑ 𝑃(𝑠′|𝑠, 𝑎)ℛ(𝑠, 𝑎, 𝑠′)𝑠′∈𝑆 . (14)

In (11), (12), and (13), the counting and summation are

conducted on the training data. We use the Lidstone estimate

[16] to deal with the data sparsity problem. After calculating

𝑃(𝑠′|𝑠, 𝑎), 𝑃(𝑜|𝑎, 𝑠′), and ℛ(𝑠, 𝑎)from the training data, we

have initialized the policy. The agent can use it to choose

actions, and will improve it when teaching students.

B. Parameter Update

In policy improvement, the agent learns from the

system-student interactions, and continuously improves the

policy for better teaching performance.

We use a delayed updating method for the improvement.

In this method, the agent applies the current policy for a

number of sessions without changing it. During the sessions,

the agent records system and student actions, as well as its

beliefs, and keep them in a logfile. After a given number of

sessions, it updates the policy using the recorded data. Then it

applies the updated policy, and then improves the policy

again, and so on.

The agent improves a policy in two steps: It uses the

recorded data to update the policy parameters, and then it

improves the policy based on the updated parameters.

As mentioned, in a POMDP, states are not completely

observable, and the agent infers information of states and

represents the information as beliefs. For this reason, the

agent cannot record states and state transitions, and updates

the probabilities and rewards directly from state information.

In our technique, the agent updates the parameters using

information in beliefs.

The data recorded during tutoring sessions are tuples of:

 (𝑏1, 𝑎1, 𝑜1, 𝑟1, 𝑏2)

 …

 (𝑏𝑖 , 𝑎𝑖 , 𝑜𝑖 , 𝑟𝑖 , 𝑏𝑖+1)

 (𝑏𝑖+1, 𝑎𝑖+1, 𝑜𝑖+1, 𝑟𝑖+1, 𝑏𝑖+2)

 …

In a tuple, 𝑏 denotes a belief. When recording the data, the

agent determines rewards by using the reward function in

(10).

A state transition probability 𝑃(𝑠′|𝑠, 𝑎) is updated as:

 𝑃(𝑠′|𝑠, 𝑎) = 𝑁1 (𝑁2 + 𝑁4) +⁄ 𝑁3 (𝑁2 + 𝑁4)⁄ (15)

where

 𝑁1 = ∑ [|(𝑏, 𝑎,∗,∗, 𝑏′)| × 𝑏(𝑠) × 𝑏′(𝑠′)]𝑏,𝑏′ (16)

 𝑁2 = ∑ [|(𝑏, 𝑎,∗,∗, 𝑏′)| × 𝑏(𝑠)]𝑏,𝑏′ , (17)

𝑁3 is the sum of the numerator in (11) and the cumulated

𝑁1 values in previous updates, and 𝑁4 is the sum of the

denominator in (11) and the cumulated 𝑁2 values in previous

updates.

An observation probability 𝑃(𝑜|𝑎, 𝑠′) is updated as:

 𝑃(𝑜|𝑎, 𝑠′) = 𝑀1 (𝑀2 + 𝑀4) + 𝑀3 (𝑀2 + 𝑀4)⁄⁄ (18)

where

 𝑀1 = ∑ [|(𝑏, 𝑎, 𝑜,∗, 𝑏′)| × 𝑏′(𝑠′)𝑏,𝑏′] (19)

 𝑀2 = ∑ [|(𝑏, 𝑎,∗,∗, 𝑏′)| × 𝑏′(𝑠′)𝑏,𝑏′] (20)

𝑀3 is the sum of the numerator in (12) and the cumulated

𝑀1 values in previous updates, and 𝑀4 is the sum of the

denominator in (12) and the cumulated 𝑀2 M2 values in

previous updates.

To update ℛ(𝑠, 𝑎), we first update ℛ(𝑠, 𝑎, 𝑠′):

 ℛ(𝑠, 𝑎, 𝑠′) = 𝑅1 (𝐿1 + 𝐿2) + 𝑅2 (𝐿1 + 𝐿2)⁄⁄ (21)

where

 𝑅1 = ∑ [(𝑟 ∈ (𝑏, 𝑎,∗, 𝑟, 𝑏′)) × 𝑏(𝑠) × 𝑏′(𝑠′)]𝑏′𝑏 (22)

 𝐿1 = |(𝑏, 𝑎,∗, 𝑟, 𝑏′)| × 𝑏(𝑠) × 𝑏′(𝑠′), (23)

𝑅2 is the sum of the numerator in (13) and the cumulated

𝑅1 values in previous updates, and 𝐿2 is the sum of the

denominator in (13) and the cumulated 𝐿1 values in previous

updates. Then we can update ℛ(𝑠, 𝑎) by using (14).

C. Policy Improvement

After updating the parameters, for each policy tree 𝜏, the

agent executes the following procedure, which is modified

from the evaluation- improvement algorithm proposed in [4].

In the procedure, 𝑏𝑠 denotes a belief in which 𝑏(𝑠) = 1 and

all the other elements are zeros, 𝜏𝑜 is the subtree connected

by 𝑜, and 𝜃 is a small positive number.

International Journal of Information and Education Technology, Vol. 8, No. 8, August 2018

556

1. Initialization

 Initialize 𝑉𝜏

2. Policy Evaluation

 Repeat

 Δ ⟵ 0

 For each 𝑠 ∈ 𝑆

 𝑣 ⟵ 𝑉𝜏(𝑠), 𝑎 ⟵ root action of 𝜏

 𝑉𝜏(𝑠) ⟵ ℛ(𝑠, 𝑎) +

 𝛾 ∑ 𝑃(𝑠′|𝑠, 𝑎) ∑ 𝑃(𝑜|𝑎, 𝑠′)𝑜𝑠′ 𝑉𝜏𝑜
(𝑠′)

 Δ ⟵ max(Δ, |𝑣 − 𝑉𝜏(𝑠)|)

 Until Δ < 𝜃

 3. Policy Improvement

 policy_stable ⟵ true

 For each 𝑠 ∈ 𝑆

 𝜏′ ⟵ 𝜋(𝑏𝑠), 𝜋(𝑏𝑠) ⟵ 𝑎𝑟𝑔 max𝜏 𝑉𝜏(𝑏𝑠)

 If 𝜏′ ≠ 𝜋(𝑏𝑠) then policy_stable ⟵ false

 If policy stable, then stop; else go to 2

VI. EXPERIMENTS

We implemented our learning technique in the

experimental ITS. We tested it through examining the

teaching performance of the policy obtained by the machine

learning technique.

The system could work in two modes: with the POMDP

and RL on or off. When the POMDP and RL were on, the

system taught adaptively. Each time after the student asked

about a concept that has prerequisites, the system applied the

policy to choose an optimal action to take. Meanwhile it

continuously improved the policy. When the POMDP and RL

were off, the system either directly answered the question, or

randomly taught a prerequisite.

In testing the performance of adaptive teaching, we used a

domain knowledge data set of software basics. 30 students

participated in the experiment. The students knew how to use

operating systems of Microsoft Windows and Apple OS X,

and application programs like Web browsers, Microsoft

Office, etc. None of them had formal training in software

development, nor took a course on software. We randomly

divided the participants into two groups of the same size.

Group 1 studied with the ITS when the POMDP and RL were

turned on, while Group 2 studied with the system when the

POMDP and RL were off. The student and system

interactions were recorded for performance analysis.

We used rejection rate to evaluate the system’s

performance in adaptive teaching: A rejected system action is

not optimal. For a student, the rejection rate was the ratio of

the number of system actions rejected by the student to the

total number of system actions for teaching him/her. A

student’s rejection rate could be used to evaluate how well

the system chose optimal actions in teaching this student.

TABLE I: NUMBER OF PARTICIPANTS, MEAN AND ESTIMATED VARIANCE OF

EACH GROUP

 Group 1 Group 2

Number of participants 𝑛1 = 15 𝑛2 = 15

Mean 𝑋1
̅̅ ̅ = 0.5966 𝑋2

̅̅ ̅ = 0.2284

Estimated variance 𝑠1
2 = 0.0158 𝑠2

2 = 0.0113

We calculated the average rejection rates and variances for

the two groups (see Table I): The adaptive teaching reduced

the rejection rate from about 60% to 23%. The method for

analyzing the experimental results was the independent

samples t-test. In the analysis, the alternative hypothesis 𝐻𝑎

was that the POMDP based RL improved the teaching

performance of the ITS, and the null hypothesis 𝐻0 was that

the learning did not improve the performance. The analysis

suggested that we could reject 𝐻0 and accept 𝐻𝑎 , which

indicated that the difference between the two means was

significant: The online policy improvement works. For more

details about the analysis, see [17].

VII. CONCLUDING REMARKS

Reinforcement learning (RL) and the partially observable

Markov decision process (POMDP) model both offer

powerful techniques essential for building ITSs. However,

their marriage has not generated good results. In our research,

we have developed a learning technique, which was aimed at

enabling a POMDP-based ITS to improve its teaching

abilities online. Experimental results suggested that the

technique might serve as a good starting point for building

practical ITSs.

REFERENCES

[1] B. P. Woolf, Building Intelligent Interactive Tutors, Burlington, MA,

USA: Morgan Kaufmann Publishers, 2009.

[2] B. Cheung, L. Hui, J. Zhang, and S. M. Yiu, “SmartTutor: An

intelligent tutoring system in web-based adult education,” Elsevier the

Journal of Systems and Software, vol. 68, pp. 11-25, 2003.

[3] K. Lehn, B. Sande, R. Shelby, and S. Gershman, “The Andes physics

tutoring system: An experiment in Freedom,” Advances in Intelligent

Tutoring Systems, Berlin Heidelberg: Springer-Verlag, pp. 421-443,

2010.

[4] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,

Cambridge, Massachusetts: The MIT Press, 2005.

[5] A. Iglesias, P. Martinez, and F. Fernandez, “An experience applying

reinforcement learning in a web-based adaptive and intelligent

educational system,” Informatics in Education, vol. 2, no. 2, pp.

223-240, 2003.

[6] A. J. Litman and S. Silliman, “Itspoke: An intelligent tutoringspoken

dialogue system,” in Proc. Human Language Technology Conference

2004, 2004.

[7] B. Sarma and B. Ravindran, “Intelligent tutoring systems using

reinforcement learning to teach autistic students,” Home Informatics

and Telematics: ICT for The Next Billion, Springer, vol. 241, pp. 65-78,

2007.

[8] M. Chi, K. Lehn, D. Litman, and P. Jordan, “Empirically evaluating the

application of reinforcement learning to the induction of effective and

adaptive pedagogical strategies,” User Model User-Adap, Kluwer

Academic, pp. 137-180, 2011.

[9] A. Iglesias, P. Martnez, R. Aler, and F. Fernndez, “Learning teaching

strategies in an adaptive and intelligent educational system through

reinforcement learning,” Applied Intelligence, vol. 31, no. 1, pp.

89-106, 2009.

[10] J. D. Williams and S. Young, “Partially observable Markov decision

processes for spoken dialog systems,” Elsevier Computer Speech and

Language, vol. 21, pp. 393-422, 2007.

[11] G. Theocharous, R. Beckwith, N. Butko, and M. Philipose, “Tractable

POMDP planning algorithms for optimal teaching inSPAIS,” in Proc.

IJCAI PAIR Workshop 2009, 2009.

[13] H. R. Chinaei, B. Chaib-draa, and L. Lamontagne, “Learning

observation models for dialogue POMDPs,” Canadian AI’12

Proceedings of the 25th Canadian Conference on Advances in

Artificial Intelligence, Springer-Verlag Berlin, Heidelberg, pp.

280-286, 2012.

[14] J. T. Folsom-Kovarik, G. Sukthankar, and S. Schatz, “Tractable

POMDP representations for intelligent tutoring systems,” ACM

Transactions on Intelligent Systems and Technology (TIST) -Special

Section on Agent Communication, Trust in Multiagent Systems,

Intelligent Tutoring and Coaching Systems Archive, vol. 4, no. 2, p. 29,

2013.

International Journal of Information and Education Technology, Vol. 8, No. 8, August 2018

557

Artificial Intelligence in Education (AIED) 2011

[12] A. N. Rafferty et al., “Faster teaching by POMDP planning,” in Proc.

, pp. 280-287, 2011.

[15] F. Wang, “Handling exponential state space in a POMDP-based

intelligent tutoring system,” in Proc. 6th International Conference on

E-Service and Knowledge Management (IIAI ESKM 2015), pp. 67-72,

2015.

[16] G. J. Lidstone, “Note on the general case of the Bayes-Laplace formula

for inductive or a posteriori probabilities,” Transactions of the Faculty

of Actuaries, vol. 8, pp. 182-192, 1920.

[17] P. Zhang, “Using POMDP-based reinforcement learning for online

optimization of teaching strategies in an intelligent tutoring system,”

MSc thesis, University of Guelph, Canada, 2013.

Fangju Wang obtained his BEng from the Central-South University,

Changsha, China, the MSc from Peking University, Beijing, China, the PhD

from the University of Waterloo, Waterloo, Canada. He is presently a

professor in the School of Computer Science, University of Guelph, Canada.

Fangju Wang’s research fields include artificial intelligence, machine

learning, intelligent systems, and computer supported education. He has had

more than one hundred papers published in major journals and conference

proceedings. Currently he is working in the development of intelligent

tutoring systems (ITSs), focusing on issues in uncertainty handling, system

performance, and online improvement.

International Journal of Information and Education Technology, Vol. 8, No. 8, August 2018

558

