

Abstract—Databases play a very important role in the

modern software system, especially in the big data age. It is the

centralized repository for all kinds of data. Therefore, all

students majoring in technology and computer science related

fields should take database courses. However, learning about

databases could be challenging without hands-on exercises. It is

very important for students to be familiar with database

commands and the associated clauses so they can write better

database queries. Since the data resides in the database, it is

hard for students to imagine the results, especially if there are a

lot of records. Visualizing the intermediate results will help

students to learn how to write better queries and troubleshoot.

It is not practical to just use the command line to interact with

the database server. Students must learn the industry standard

3-tier method to retrieve, insert, update and delete thousands of

data from databases, and how to write web programs to do so.

Designing an E-commerce platform should be the core of

fundamental database curriculum - including a friendly graphic

user interface for customers to sign up for accounts, search

items, place orders and view histories. The instructors should

not focus on teaching the database topics, but also show

students how to manage the database server and user accounts

in the classes. This paper proposes an integrated curriculum for

learning about databases through developing database web

applications.

Index Terms—Apache, database web applications, PHP,

MySQL, XAMPP.

I. INTRODUCTION

Before the first commercial Database Management System

(DBMS) was introduced by Oracle in late 1970s [1], teaching

Databases was mainly based on theoretical concepts. Even in

late 1980s, most schools could not afford to buy the

expensive DBMS, preventing students from attaining

hands-on experience. After free and open source relational

DBMS, such as MySQL [2], was made available to the public

in the mid-1990s, students were able to utilize DB for

projects. Although MySQL originally did not have many

functions during its early developmental stages, performing

basic SQL queries significantly helped students gain

hands-on experience for data management.

Since the data is stored in the database, the ability to

retrieve and display data is critical. Even though the DBMS

provides both a command line interface and a Graphic User

Interface (GUI) for users to retrieve, insert, update, and

delete records, it is often difficult for non-computer science

employees to write SQL statements through these interfaces

to manually work on the DB. It is impossible for external

Manuscript received September 12, 2018; revised December 4, 2018.

Ching-Yu Huang is with School of Computer Science, Kean University,

Union, New Jersey, USA (e-mail: chuang@kean.edu).

customers to access the DB directly without any application

interface. Therefore, developing DB applications to help

users (staff and customers) access data is very important for

scaling up any business. Since web-based applications are

becoming essential for various industries, a web DB

application should one of the main focuses for projects in any

DB course.

In order for a computer language to communicate with the

DBMS, specific drivers are required for each language.

Different DBMS require users to install different DB drivers,

which are usually provided by the vendors. In addition, many

DB drivers are Operating System (OS) platform dependent,

especially for C, C++, and other compiled languages.

Scripting languages such as Perl and Python use a standard

DB library across different platforms [3], [4]. Even through

Java is a platform independent programming language, it still

requires connecting packages which are OS dependent. Now,

more and more languages are being introduced which better

accommodate the integration between web and database

servers. These languages, which are considered server-side,

must be run on web servers. For example, Hypertext

Preprocessor (PHP) [3] is one of the most popular languages

for those working on web DB applications. Apache [4], a free

open source web server, has a built-in module that allows

users to integrate PHP with MySQL [5].

It is difficult for DB instructors to set up and manage both

Web and DB servers and manage student accounts, while

teaching DB courses at the same time. An integrated software

package, XAMPP, was introduced in 2002 which helps

combat this issue [6]. The package is cross platform (X), and

it includes an Apache (A) web server and a MySQL (M)

database, as well as Perl (P) and Python (P) compatibility.

The latest XAMPP also has phpMyAdmin – a free and open

source administration tool for MySQL and MariaDB – and

Tomcat, a web server for Java Servlet. Additionally, XAMPP

already has PHP built-in. It is available for Windows, iOS,

and Linux systems and does not require powerful hardware.

This allows students to easily install XAMPP on their laptops,

and run an Apache web server and a MySQL server at the

same time. Once students are familiar with the client-server

model, it will be easier to pick up the 3-tier architecture that is

often used in the real world, where each is typically stored on

a separate machine.

This paper will utilize XAMPP as a part of the proposed

curriculum and hands-on exercises. MySQL will be used as

the database to learn SQL, phpMyAdmin [7] will be used for

creating users and managing MySQL DBMS, and MySQL

Workbench – a visual administration tool to manage MySQL

DB – will be used as the GUI for writing SQL queries and

viewing the results. PHP and Apache will be the languages

used for developing web applications.

Learning Database through Developing Database Web

Applications

Ching-Yu Huang

International Journal of Information and Education Technology, Vol. 9, No. 4, April 2019

241doi: 10.18178/ijiet.2019.9.4.1207

II. DATABASE CURRICULUM

Relational DB [8] are often adopted for teaching purposes

because it still accounts for the majority of the DB job market;

thus, they will be the focus of the curriculum. The proposed

DB curriculum is based on 40 total hours - 32 hours of total

lesson time (13 weeks and 2.5 hours per week) and 4 exams,

with 2 hours allocated for each, including reviewing the

answers. Students should have at least a basic level of

programming knowledge with a good foundation in variables,

loops, logic conditions, if statements, arrays, and functions.

The curriculum will build on this prerequisite knowledge by

focusing on basic DB knowledge and its application.

Theoretical concepts such as relational calculus, and

advanced topics such as triggers, transactions, concurrency

control, query Processing & optimization, DBA, and data

mining are not covered. The assignments include 2

homework assignments and one web DB application project,

with two phases.

Instructors should prepare several tables with records and

export the tables into SQL files for students to download.

This way, students can import the tables into their local

MySQL server and work on the same tables and dataset as

that of the instructors. Consequently, everyone should obtain

the same results when doing exercises with the same SQL

statements. If students have any difficulties, instructors can

quickly help the students. Students should do more exercises

on basic SQL operations, and should not be limited to the

examples shown in this paper, as this is not intended to be a

textbook. The following subsections detail the weekly

curriculum.

A. Introduction of DB

The first week of lessons should include the following

topics: class policy, the course schedule, an overview of the

DB curriculum, basic DB concepts, and the role of DB in

modern software systems. The fundamental knowledge of the

client-server model and 3-tier architecture should be covered.

Instructors should also help students install the XAMPP

package, and make sure the MySQL and Apache web servers

can be run successfully.

B. BASIC SQL — Select, Where, Sorting

The 2nd week should cover basic concepts of tables, rows,

columns, and data types. This week focus on the SQL

SELECT command and its syntax, with AS, LIKE,

DISTINCT, ORDER BY, AND, OR, NOT, and WHERE

clauses. Students should be able to select specific records and

columns with simple and compound conditions. In addition,

one should cover how to sort the output. Homework 1 should

be given in the 2nd week, and due at the end of the 6th week. It

should mainly focus on the SELECT queries. As a result of

this week’s curriculum, students should be able to write the

following SQL statements based on Table I, a sample table of

staff members at a company.

1) The following SQL statement shows all columns, for all

staff.

SELECT * FROM Staff;

2) The following SQL statement shows the salary and

department for any staff named Mary.

SELECT salary, dept FROM Staff WHERE name='Mary';

3) The following SQL statement shows the unique

department for any staff who has name contains the

letter “e”.

SELECT distinct dept from Staff WHERE name like

'%e%';

4) The following SQL statement shows the names of all

staff who are female and have a salary >= 40000.

SELECT name FROM Staff WHERE sex='F' and salary

>= 40000;

5) The following SQL statement shows the names and

salaries of all staff that work at IT department, with the

output sorted from high to low (in salary).

SELECT name, salary FROM Staff WHERE dept=’IT’

ORDER BY salary DESC;

TABLE I: STAFF TABLE

sid name dept sex salary ext

101 Mary IT F 45000 121

102 Smith HR M 37000 NULL

103 Tony IT M 38000 115

104 Sarah PJ F 35000 311

105 Mark IT M 45000 153

106 Alice HR F 39000 433

107 Ben IT F NULL NULL

C. Web DB Application

In the 3rd week, students should learn how to display the

data from the DB on the browser after learning the basic

SELECT statements. This should be done twofold: first, the

instructor should quickly cover basic web design and how to

take input and pass the values to PHP programs on the

Apache web server. Then, students should learn how to use

PHP to retrieve the data from the DB using the input values.

The main goal of this paper is to focus on learning the basic

DB queries and integrating the DB and Web. This means

only basic web programming is required to show how the

web and DB work together. Students should take web

programming courses for learning how to design better web

pages and more aesthetic GUI. Project 1 should be given in

the 3rd week and should be due at the end of the 7th week. The

details of the project are described in section 2.4.

1) Input on web page (browser)

Hypertext Markup Language (HTML) is a markup

language to create web pages and web applications using tags

<>. Many HTML tags have attributes that can modify

elements, specify tags’ values, or perform specific actions.

The browser will interpret the tags and attributes, with

specific syntax, that will take input and display results. The

HTML file should have the *.html extension and should

begin with an <HTML> tag and end with an </HTML> tag.

Fig. 1 shows the HTML source code of a simple web page

that allows a user to enter input. The web page is shown in

Fig. 2. Most HTML tags require end tags </> to match the

begin tag <>.

The message written between <TITLE> and </TITLE>

will be displayed as the title of the web page. The
 tag

creates a new single line break. The <input> tag specifies an

input field where the user can enter data. <input> elements

are used within a <form> element to declare input controls

which allow users to input data [9]. An input field can vary in

many ways, depending on the type attribute. The first

International Journal of Information and Education Technology, Vol. 9, No. 4, April 2019

242

<INPUT> tag allows users to enter text, and the 2nd

<INPUT> tag is a submit type which will ask the browser to

pass the values of <INPUT> tags, which are placed between

<FORM> and </FORM> tags, to the program on the web

server. More information about HTML tags can be

referenced at w3schools.com [10].

Fig. 1. The HTML source code of test.html.

Fig. 2. The display on the browser from the HTML code shown in Fig. 1.

2) Common gateway interface (CGI)

A browser uses the CGI protocol to send the information to

a web server [11]. When the input values and other

information shown on the browser are passed to the web

server using the <FORM> tag, the browser also tells the web

server to call the specific program defined in the action

attribute of the <FORM> tag. For example, the PHP program

check.php, which is defined inside the <FORM> tag in Fig. 1,

is called with the specific input. In order for this to work, the

program should be able to be executed directly by the OS

where the web server is running. Most of the CGI programs

are nowadays written in scripting languages because it is

easier to maintain. When the web server receives a message

from the browser, it will trigger the OS to call the language

interpreter to run the program.

There are two methods can be defined in the <FORM> to

pass the information from the browser to the web server –

GET and POST. The GET method will show the message

string (name/value pairs) that is sent in the URL. Many

search functions are implemented in the GET method so

people can change keyword values in the URL. This will

allow other programs to call the URL directly and obtain the

results. The POST method delivers a message in the HTTP

message body, which is not visible from the URL. If the

message contains confidential information, such as a

password or other information that should not be visible, it is

better to use the POST method.

3) Web CGI programming using PHP

The PHP program that the programmer wishes to call

should be written between the strings “<?php” and “?>”. For

more PHP reference materials, tutorials for PHP can be found

at w3schools.com [11]. Once the CGI program is called, it

will receive all the <input> tags’ names and values. In PHP,

special arrays $_POST[] and $_GET[] are used to get the

values of the corresponding name in the array (note that the $

sign is used to indicate variables in PHP). For example, the

following statement will assign the ‘keyword’ value of

<INPUT> tag in Fig. 1 to a PHP variable $value.

$value=$_GET['keyword'];

4) Access MySQL using PHP

PHP has built-in functions to work with MySQL DB [12].

The basic steps are as follow: 1. Establish a connection to the

DB on a server with a valid login and password. 2. Send the

query string. 3. Receive the results and place them in a PHP

array. 4. Check the number of rows in the array. 5. Fetch all

the records in the result array. 6. Free the result array and

close the connection. A sample program that follows this

procedure is shown in Fig. 3. The program connects to the

“test” database on the “localhost” server using the login

“tester” and password “1234”.

If the DB connection fails, the program can use

mysqli_connect_error() to show the error message returned

from the DB; the program should terminate immediately and

display the error message. It will be a waste of the web

server’s resources if the login fails but the program continues

to run the rest of the statements.

As shown in the following PHP statement, a variable $sql

stores the query string which selects the names and salaries

from the Staff table with condition dept='$value' (as assigned

in section 2.3.3).

$sql= "SELECT name, salary FROM Staff where dept='$value'";

Please note that if the attribute is not a numeric type, the

PHP variable $value should be surrounded with single quotes

for logic comparisons, and numeric values should not be

wrapped with single quotes for comparison. For example, to

compare the salary column with the PHP variable, the correct

comparison statement is salary=$value (to see if they are

equal).

The function mysqli_query() will send the query string to

the DB through the variable $conn. If the query is

successfully executed by the DB server, the returned results

are saved into the 2-D array $result. The function

mysqli_num_rows() returns the number of records stored in

the array. The function mysqli_fetch_assoc() will fetch a

record each time from the 2-D array and the record is saved to

a 1-D array $row. The while loop will read every record in

the 2-D array. The values of name and salary can be retrieved

from the 1-D array $row using the table column name

“name” and “salary” as the keys. The results are displayed on

the browser using the <TABLE> tag and its related tags:

table row tag <TR>, table header tag <TH>, and table

data/cell tag <TD>.

Fig. 4 shows the results of a search with the keyword “HR”,

displayed in a table with 2 columns (name and salary) and 3

rows. If the search does not yield any results, a warning

message should be displayed so users know what happened.

Fig. 5 shows the results if no record is found (i.e. if the search

keyword is “XY”). For the 3-tier architecture commonly used

with web DB applications, bugs and problems might arise at

front-end, middle-end, or back-end. Therefore, it is important

to keep users informed with meaningful messages about the

running status.

<HTML>

<TITLE>Test</TITLE>

Web DB application: search department

<FORM action='check.php'>

Department:

<INPUT type='text' name='keyword' method=’GET’>

<INPUT type='submit' value='Check'>

</FORM>

</HTML>

International Journal of Information and Education Technology, Vol. 9, No. 4, April 2019

243

Fig. 3. PHP source code receives the input department value from the

browser and displays all staff names and salaries if the input department is

found in the DB.

Fig. 4. The results displayed on the browser when the input department is

“HR”. The “keyword” and its associated input value “HR” are displayed in

the URL.

Fig. 5. No record is found when the input department is “XY”.

Fig. 6. The PHP program should show error messages if “keyword” is not

used, or if there are no input values passed through GET method.

If the PHP program check.php is run without using the

GET method with “keyword” and an input value, the

program should terminate immediately and display an error

message “No keyword is entered!”, as shown in Fig. 6. This

way, the web server will not waste any resources, as

aforementioned. Since the web application can be accessed

by many people, it can be costly if preventative measures are

not taken. It is very important to teach students how to protect

the servers in the client-server architecture.

The ALTER command can change the table structure; for

instance, it can add or remove a column, or change the

datatype and constraints. The DROP command will remove

the entire table or any object from the DB. The commands

CREATE, ALTER, and DROP are called Data Definition

Languages (DDL) because their effects can be seen at the

structure level.

D. QUIZ 1 and Project 1

Students should take Quiz 1 (preferably 60 minutes long)

which should cover the first 3 weeks of material, including

homework 1 and project 1. Instructor should review the

answers and discuss the homework and project assignments.

Project 1 should require the students to create their first DB,

complete with at least two components: 1) the ability to login

with a username and password, and 2) the ability to retrieve

information correctly. Note that this is a basic framework for

a project, and details and implementation should be up to the

instructor.

1) Retrieve all data from a “User” table provided by the

instructor and display the results on the browser, as

shown in Fig. 7.

Fig. 7. Display all the users and their columns from the DB.

2) A sample login page is shown in Fig. 8, and lets people

enter a login ID and password. The program will verify

the login ID and password with the information in the

Users table in the DB.

Fig. 8. Login page.

3) If the login ID and password match the records in the

database, the program should show the user’s IP and

other information, as shown in Fig. 9.

Fig. 9. User home page.

E. SQL — Constraints; Creating Tables and Temporary

Tables; Alter and DROP

Students should learn how to create simple tables in this

week as well as how to use constraints - datatype, primary

key, foreign key, auto increment, NOT NULL, default values,

and possible range. Please note that it is very important to

educate students on the impact of the data size. One extra

byte of a column could result in an additional 1GB if there are

1 billion records. Therefore, students should properly choose

the data types; i.e. picking between char and varchar types, or

picking between ints and strings.

1) The following SQL statement details how to create a

table named “Test” with 2 columns (id, name), where id

is of int type and name is of varchar type. Note that id

will be set as the primary key and the value will

auto-increment.

CREATE TABLE Test (id int primary key auto_increment,

name varchar(50));

2) The auto_increment rule will let DBMS automatically

increment the value of the “id” column. The value is

International Journal of Information and Education Technology, Vol. 9, No. 4, April 2019

244

indexed from 1 and is increased sequentially. It is good

to use auto_increment when an attribute is required to

have unique and sequential values, i.e. when identifying

the objects, such as product ID, student ID, etc. When

designing the web interface for the user to enter data for

the columns, the interface should not allow the user to

manually add the new value of the auto_increment field.

3) A temporary table can be created during the connection.

Once the user logs out or the connection is closed, the

temporary table will be released from memory. Since

SQL does not have arrays, temporary tables can be used

like 2-D arrays to store the intermediate results

generated by some queries. The following SQL

statement will create a temporary table named Tmp.

CREATE TEMPORARY TABLE Tmp(id int, name

varchar(100));

4) The following SQL statement adds a new column

“price” before the name column (and after id) in the Test

table.

ALTER TABLE Test add column price float after id;

5) The following SQL statement removes the entire table

from the DB.

DROP TABLE Test;

F. SQL — Join and Set Operations

In a properly designed DB, different information should be

kept in different tables, so tables won’t have irrelevant data.

The address, city, state, and other information of where a

staff member is working at is stored in a separate table named

“Department”, as shown in Table II. The reason why the data

should be separated into two tables will be discussed in the

normalization section later. In order to find the address that

the staff member “Tony” is working at, it should be required

to first use his name to get his “dept” code “IT” in the Staff

table. Then, one should use the “IT” code to retrieve his

address from the “address” column in the “Department” table.

The process of getting information from two or more tables is

called “join”ing.

There two kinds of “join” – inner join (also called

INTERSECT), which displays the common values between

tables, and outer join, which shows records in either table.

Often, one will use the “join” operation with a common

column to associate two tables at once. Without the common

column condition, all combinations of two tables will be

displayed. This situation is called “Cartesian product”.

TABLE II: DEPARTMENT TABLE

dept address city state

HR 12 Main Ave. Union NJ

IT 100 Broad St. New York NY

PJ 28 Union Ave. Boston MA

SL 66 Central Ave. Houston TX

1) The following statement shows all combinations of

joining the Staff and Department tables, which has 24

rows (6 rows from Staff x 4 rows from Department) and

10 columns (6 columns from Staff + 4 columns from

Department).

SELECT * FROM Staff, Department;

2) The following statement uses an inner join to display the

columns in the Staff and Department tables that contain

common values in the “dept” column, a total of 6 records

(with 10 columns).

SELECT * FROM Staff s, Department d WHERE

d.dept=s.dept;

3) Since the column name “dept” is the same in both Staff

and Department tables, the statement in 2.7.2 statement

can use a “NATURAL JOIN”, which will join the two

tables but remove the duplicated column, “dept”. This

results in only 9 columns.

SELECT * FROM Staff s NATURAL JOIN Department d;

4) The following statement shows the address, city, and

state where the staff member “Tony” is working at.

SELECT s.name, d.address, d.city, d.state FROM Staff s,

Department d WHERE d.dept=s.dept and s.name='Tony';

5) The following statement uses LEFT OUTER JOIN to list

each department, along with the staff members working

in each department. If the department has no staff, the

columns that correspond to staff members will be filled

with NULL values, as shown in Fig. 9.

SELECT * FROM Department d LEFT JOIN Staff s ON

s.dept=d.dept;

Fig. 9. The output of the LEFT JOIN query in 2.6.5.

The LEFT JOIN will force all records in the table on the

left side (e.g. for the sample, this is the Department table) to

be shown in the output. There is also RIGHT OUTER JOIN -

all records in the table on the right side will be displayed, and

FULL JOIIN – all records in both tables will be displayed.

G. SQL — View, Aggregate Functions, and Null

In this week, students should learn about view, understand

what an updatable view is, and know how to create views and

updatable views. The instructor should cover how to use the

5 basic aggregate functions – COUNT, AVG, SUM, MIN,

MAX, how to handle NULL values, and how to use the

following set operations – INTERSECT, UNION and

DIFFERENCE. If a column value is unknown, it should be

stored as NULL and should not be an empty string or ‘0’.

Instructors should explain and show that NULL values will

impact the results of aggregate functions. The following

1) The following SQL statement shows the number of

female staff. Please note that the output header will also

contain the aggregate function, COUNT, i.e.

“COUNT(sex)”, and NOT just “sex”. This is shown in

Fig. 10 below.

SELECT COUNT(sex) FROM Staff WHERE sex='F';

Fig. 10. Result of 2.7.1.

2) When the web DB application needs to retrieve values

from an aggregate function, it is required to rename the

output header. The following PHP statement will change

the output header from “COUNT(sex)” to “ct” in the

International Journal of Information and Education Technology, Vol. 9, No. 4, April 2019

245

examples are based on Table I.

SQL query. See the output in Fig. 11 below.

$sql="SELECT COUNT(sex) AS ct FROM Staff WHERE

sex='F'";

Fig. 11. Result of 2.7.2.

After the name is changed, the following PHP statement

can use the meaningful key “ct” to retreive the value returned

from the DB.

$myCt=$row['ct'];

3) The following SQL statement shows the maximum

salary of IT department.

SELECT MAX(salary) FROM Staff where dept = 'IT';

4) The following SQL statement shows the number of

people that have an extension number. An instructor

should discuss how to use IS and IS NOT to find or

exclude the NULL values.

SELECT count(ext) FROM Staff;

The statement can also be written as:

SELECT COUNT(SID) FROM Staff WHERE ext IS NOT

NULL.

5) The following SQL statement shows how to use the

MAX, COUNT, SUM and AVG functions; remember

that they are impacted by the presence of NULL values.

SELECT COUNT(salary), SUM(salary), AVG(salary),

MAX(salary) from Staff;

6) The following SQL statement shows the logic operations

AND and OR with NULL values. Please note that TRUE

is represented by 1 and FALSE is represented by 0 in

MySQL.

SELECT 1=1, 'a'='b', 1 AND 0, 1 OR 0, 1 AND NULL, 1

OR NULL, NULL AND NULL, NULL OR NULL;

7) The following SQL statement will create a view vTest

that is not updatable.

CREATE VIEW vTest AS SELECT dept, count(*) ct FROM

Staff GROUP BY dept;

H. Midterm and Assignments

The 75-minute midterm exam should cover topics from

week 1 to 7. Instructor should also review the answers

following the exam so students know and understand the

mistakes they made. Assignments Homework 1 and Project 1

should have been due in the end of the 6th and 7th week,

respectively. The instructor should provide general feedback

for the students, so they know how to improve for the future.

Homework 2 and Project 2 should be given to the students

this week, and they are should be due in the 12th and 14th

week, respectively. Homework 2 mainly covers SQL joins

and stored routines.

Project 2 focuses on the integrating the learning in a

practical environment, with the following requirements

(2.8.1 to 2.8.4). The “search product” function should be

available to anyone without login. For a user whole role is

“Staff”, they should be able to “Add” and “Update” product

pages.

1) Create a “Product” table (id, name, description,

sell_price, cost, quantity, user_id, vendor_id) where

user_id is a foreign key that references the primary key,

id, in the “User” table. Vendor_id is also a foreign key

that references the primary key id in the “Vendor” table.

Both the User and Vendor tables should be provided by

the instructor.

2) 2.8.2 Implement a function to search for products, as

shown in Fig. 12. The keyword should be pattern

matched against the product name and description. If no

product is found, a proper message should be displayed.

Fig. 12. A user can enter a keyword to pattern match products by name or

description in the Student’s “Products” table.

3) Create an add product page, as shown in Fig. 13. The

program should require that all data input fields not be

empty and for the numeric fields to not be negative (as

well as within a reasonable price range). The sell_price

must also be greater than the cost. These errors should be

caught at the front-end, by JavaScript, to reduce the web

server’s load. If the same product already exists in the

table, an error message should be displayed. If there are

any errors about the data, the record should not be

inserted into the DB. The vendor id and name should be

retrieved from the Vendor table and only the name

should be displayed in the dropdown list on the web

page.

Fig. 13. An example implementation of 2.8.3.

4) Create an update product page, as shown in Fig. 14. The

columns highlighted in yellow are not updatable. The

Add Product checking rules (outlined in 2.8.3) should be

applied to the 4 updatable columns. Staff members

should be able to update multiple records at once. This

means that the instructor should teach students how to

pass and receive <INPUT> in an array format, though

CGI. The following shows how one can use HTML to

pass the product_id in an array format with the value 3

and in hidden type.
<input type='hidden' name='product_id[]' value='3'>

The following PHP code shows how to calculate the

number of products passed from the browser, and how to

receive the product_id in an array format.
for($i=0;$i<count($_POST['product_id']);$i++) {

 $product_id[$i]=$_POST['product_id'][$i];

}

I. SQL — Group by, Having, Insert, Update, Delete,

Subquery, and in

This week should cover how to group datasets using

GROUP BY, add new records using INSERT, change data

content using UPDATE, and remove a record using DELTE.

From experience, grouping is one of the most challenging

topics in SQL. The commands – SELECT, INSERT,

UPDATE, DELETE are called Data Manipulation Language

International Journal of Information and Education Technology, Vol. 9, No. 4, April 2019

246

(DML), since their effects can be seen on the data level.

Fig. 14. An implementation of 2.8.4.

Students are often confused between DELETE and DROP,

and UPDATE and ALTER. It is very important that

instructors ask students to do more exercises in class so they

are able to grasp the differences between the two. The

following examples are based on Table 1.

1) The following SQL statement shows the number of staff

in each department.

SELECT dept, COUNT(dept) ct FROM Staff GROUP BY

dept;

2) The following SQL statement shows the number of staff

in each department with at least 1 female staff member.

SELECT dept, sex, COUNT(dept) ct FROM Staff where

sex='M' GROUP BY dept, sex having ct >=2 ;

Based on Table I, the results of the previous two queries

are shown in Fig. 15 and 16, respectively.

Fig. 15. Result of 2.9.1.

Fig. 16. Result of 2.9.2.

3) The following SQL statement shows how to increase

“Sarah”’s by $1000.

UPDATE Staff SET salary=salary+1000 where

name='Sarah';

4) The following SQL statement shows how to add a new

record with id=107, name=’Will’, dept=’PJ’, sex=’F’,

salary=37000, and ext is unknown.

INSERT INTO Staff (id,name,dept,sex,salary,ext) VAUES

(1, 'Will', 'PJ', 'F', 37000, NULL);

Since all column values are provided, the SQL can also be:

INSERT INTO Staff VALUES (1, 'Will', 'PJ', 'F', 37000,

NULL);

5) The following SQL statement shows how to delete the

record added previously.

DELETE FROM Staff WHERE name='Will';

Instructors should emphasize that all records will be

updated with the same values, or all records will be removed

from the DB, if the WHERE condition is not provided.

Since the INSERT, UPDATE, DELETE commands will

not return any results, it is very important to know if the

command was run successfully in the PHP program. The

function mysqli_affected_rows() should be used to detect the

number rows affected.

6) A subquery is a query (inner query) inside another query

(outer query). DBMS will need to execute the inner

query first to get the results for the outer query to use.

The following SQL statement uses subqueries to find the

person’s name who has the maximum salary in “IT”

department. The result is shown in Fig. 17, based on the

data in Table 1.

SELECT name, salary FROM Staff WHERE

salary=(SELECT MAX(salary) FROM Staff WHERE

dept='IT');

Fig. 17. The correct result of 2.9.6.

Please note that the following SQL query will produce the

wrong result, as shown in Fig. 18.

SELECT name, MAX(salary) FROM Staff WHERE

dept='IT';

Fig. 18. The wrong result of the incorrect SQL query in 2.9.6.

The DBMS will find the correct maximum salary in the

“IT” department. Since MAX is an aggregate function that

produces a single value from populating several records,

DBMS is not able to associate the name with the MAX

function in one step. Therefore, it will pick the first name it

finds in the table that matches the maximum salary. It is

necessary to use a subquery to find the maximum salary of

the ‘IT’ department, and then output all names that have this

maximum salary value. This is because it is possible to have

more than 1 maximum salary, as shown in Fig. 17.

J. SQL — Variables and Stored Routines

So far, students have learned SQL by using singular

statements. This is not real programming. Like learning any

computer languages, it is very important to learn how to write

procedures and functions. In SQL, they are called stored

procedures and stored functions because programs will be

stored on a DB server after DBMS compiles the statements

(if there are no syntax errors). In MySQL, stored routines is a

general term that refers to both routines and procedures.

Before students can write a stored routine, they have to

learn about 3 types of SQL variables – local, session, and

global. Students also must learn how to assign a value

(constant or variable) to a variable. There are 3 types of

arguments for a procedure – IN, OUT, and INOUT – but

functions only have an IN type. In addition, instructors

should cover the SQL functions CONCAT() and

GROUP_CONCAT(), and how to use LIKE for pattern

matching an input argument in stored routines.

K. Security, Grant and Revoke

Web DB security can be classified into 4 the following

types:

1) DB user and privilege management. This has to be

done by the following SQL commands: GRANT, which

can give particular privileges to specific objects in the

DB (i.e. also control which users can access the

International Journal of Information and Education Technology, Vol. 9, No. 4, April 2019

247

privileges from which hosts), and REVOKE, which can

remove the privileges. The following SQL statement

gives the SELECT privilege on the Staff table in the Test

database to a user named ‘tester’, who can access the DB

from any host (%).

GRANT SELECT ON Test.Staff to tester@% with grant

option;

2) Web page authentication (e.g. login). This often

requires the DB designer to store user login and

password information in a table, for example, the “User”

table in the class project. The login will use the POST

method to pass the login and password to the middle-end

program, which will verify with the data in the DB. The

password should be encrypted by SHA256, or a better

hash function. The password should not be readable

directly select from the table. For example, Fig. 7 is a

poor implementation of the password.

3) DB web page authorization through role control.

Another way to improve web DB application security is

to use roles to control who can access what web pages or

functions. The role can be a numeric level or a string, i.e.

“staff”, “student” shown in Fig. 7. The search function

shown in Fig. 12 can be accessed by anyone, but the add

product page shown in Fig. 13 and update product page

shown in Fig. 14 should be only accessed by “staff”.

4) Using cookies and sessions to control when the web

page should expire. Authentication cookies are the most

common method used by web servers to know whether

the user is logged in or not, and which account they are

logged in with [13].

L. QUIZ 2 and Project 2

The 60-minute Quiz 2 should cover materials from week 9

to 11, and the answers should be reviewed. Instructors should

use this week to check the status of project 2 and help

students improve their web DB programming skills.

M. Planing and Requiremens

It is better to discuss DB planning and requirements after

students have completed their first web DB application

assignment, which will be discussed in section 3. This way,

they already have hands-on experience and know about the

DB features, function, and GUI firsthand and understand the

importance of these requirements. In order to mimic the real

world, instructors could have a group take-home exam after

students learn all the basic SQL queries and let students play

different roles (system engineer, database designer, software

developer, and business staff) to plan a design for a

mini-online store and write the requirements. This way,

students will have the opportunity to brainstorm together and

work as a team. Teamwork is very critical in web DB

applications.

N. Logic Design and E-R Model

Traditional DB textbooks often introduce logic design and

the E-R model early in the course. However, from teaching

experiences, many students won’t be able to fully understand

the real meaning of data modeling before they have any

hands-on experience with DB. Therefore, this paper proposes

to move the logic design and E-R model to later parts of the

curriculum. In addition to learning how to model the data

from the requirements, students should also learn how to

convert E-R diagrams to schema diagrams.

O. Normalization and Physical Design

For normalization, the instructor should cover traditional

decomposition, functional dependency, loss-less join, and 1st,

2nd and 3rd normal forms. The Boyce–Codd normal form can

be optional. Students should be able to break a big table into

several smaller tables and set the primary keys and foreign

keys to link the smaller tables together.

Physical designs include creating the following objects in

the DB: project database instances, user accounts with proper

privileges, stored routines, and tables based on the schema

diagrams with the necessary columns to be indexed.

Instructors should also teach how to estimate physical disk

sizes for all the tables and recommend the partition size that

will store the database files. It is also important to show

students how to check where the database files are located on

the server. For example, the following SQL statement shows

the data folder for MySQL:

SHOW VARIABLES LIKE 'datadir';

Physical design should not only cover database design, but

should also include application design. Since project 2 is due

at the end of 14th week, the instructor should give overall

feedback about students’ projects and homework, especially

how the implementation relates to physical design – data type

and validation, data flow between the 3-tier architecture, the

relationship between tables, and date storage locations on the

DB server.

P. Final Exam

The exam should have two components – a take-home

database design and in-class individual written exam. The

take-home is a teamwork assignment that requires a team to

have 5-8 students and design a mini database application.

Each team is given two forms – one for registration and one

for a report. The samples are shown in Fig. 19 and 20,

respectively. Each team should have 4 different roles –

business staff, system engineer, database designer, and

software developer.

The business staff should write several business rules

based on the two forms. The following are examples based on

the two forms:

1) The registration should take 4 data fields.

2) The product information should not be shown in the

URL when they are passed to backend.

3) The Graphic User Interface is based on the browser.

4) The ID should be automatically assigned by the system.

The system engineer should write the detailed

requirements based on the business rules and the forms.

The database designer should draw the E-R diagram,

create table statements, and perform any tasks related the

database.

The software developer should write the detailed code for

both front-end and back-end. The code should include the

following:

1) HTML code to get user input and button to submit the

input to the webserver.

2) PHP code to validate the input data ranges before

sending them to the database server.

International Journal of Information and Education Technology, Vol. 9, No. 4, April 2019

248

3) PHP code to send the query to the database for inserting

and retrieving records.

4) PHP code to display the results returned from the

database on the browser.

The in-class exam should include all topics covered in the

semester, and be weighted 30% for topics covered before

midterm and 70% after the midterm.

Fig. 19. The form to register a product.

Fig. 20. The report to list the products with id, name and price.

III. STUDENT LEARNING OUTCOME (SLO)

Upon completion of this course, the student will be able to:

1) Explain and write basic SQL statements using the

SELECT, INSERT, UPDATE, DELETE commands.

2) Explain and write basic SQL statements to create and

drop tables, views, and stored routines.

3) Explain and write SQL statements to join multiple tables

with conditions, and group and sort the results.

4) Design and build web database applications with

authentication to retrieve, display, and update data using

the PHP language.

5) Explain and demonstrate the normalization concepts and

process.

IV. CONCLUSIONS

This paper proposes a fundamental curriculum for an

undergraduate database course. The main goal of this

proposal is to focus on hands-on experience. Students will

need to write a two-phase and 3-tier comprehensive project

that integrates the web browser, web server, and database

management system. Several software programs were

proposed to help students quickly complete the project.

REFERENCES

[1] C. Coronel and S. Morris, Database Systems: Design, Implementation,

& Management, 13th Edition, 2018.

[2] P. DuBois, MySQL, 5 Edition, Addison-Wesley Professional, April 12,

2013.
[3] L. Ullman, PHP for the Web: Visual QuickStart Guide, 5th Edition,

Peachpit Press, July 25, 2016.

[4] A. Peicevic, Apache HTTP Server Introduction, 2nd Edition,

CreateSpace Independent Publishing Platform, February 9, 2017.

[5] L. Welling and L. Thomson, PHP and MySQL Web Development, 5th

Edition, Addison-Wesley Professional, September 30, 2016.

[6] XAMPP Apache + MariaDB + PHP + Perl. (2018). Apache Friends.

[Online]. Available: https://www.apachefriends.org/

[7] M. Delisle, Mastering phpMyAdmin 3.4 for Effective MySQL

Management, Packt Publishing, February 7, 2012.

[8] J. Eckstein and B. R. Schultz, Introductory Relational Database

Design for Business, with Microsoft Access, Wiley, January 16, 2018.

[9] G. Gupta, Mastering HTML5 Forms, Packt Publishing, November 22,

2013.

[10] PHP 5 Tutorial. (2018). [Online]. Available:

https://www.w3schools.com/php/

[11] M. Wright, How To Setup A Linux Web Server, CreateSpace

Independent Publishing Platform, January 16, 2014.

[12] L. Ullman, PHP and MySQL for Dynamic Web Sites, 5th Edition,

Peachpit Press, November 13, 2017.

[13] J. LeBlanc and T. Messerschmidt, Identity and Data Security for Web

Development: Best Practices, O'Reilly Media, June 20, 2016.

Ching-Yu Huang is an assistant professor of the

School of Computer Science at Kean University,

Union, New Jersey, USA since September 2014. Dr.

Huang received a Ph.D. in computer & information

science from New Jersey Institute of Technology,

Newark, New Jersey, USA.

Prior to joining Kean University, Dr. Huang had

more than 16 years of experience in the industry and

academics in software development and R&D in bioinformatics. His research

focuses SNP genotype calling and cluster detection; image processing and

pattern recognition, especially in microarray and fingerprint; geotagged

images and location information reconstruction; database application

development; data processing automation; E-learning, educational

multimedia, methodology, and online tools for secondary schools and

colleges. Dr. Huang has more than 40 publications in journals and

conferences and more than 20 presentations in workshops and invited

lectures.

International Journal of Information and Education Technology, Vol. 9, No. 4, April 2019

249

