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Abstract—Auto-Generated Test Paper (AGTP) has been 

deeply studied for many years, however, it is still a difficult 

problem and the certainty to access the best test paper (TP) is 

not guaranteed yet. In this paper, we put forward a method for 

AGTP based on knowledge embedding, which makes AGTP 

easier and faster. The knowledge to be embedded is studied and 

the mechanism behind it is analyzed. The embedded knowledge 

in this paper is from both the constraints of TP and the 

information of question repository (QR). The experiments 

validated the proposed method and found it is not only faster but 

also costs less computational resources to access the best TP than 

other method, such as evolutionary algorithm. What impressed 

is that the cost time to access the optimum does not rapidly 

increase with the size of QR. The knowledge plays the important 

role in AGTP, especially to efficiently improve the performance 

of the algorithms. 

 
Index Terms—Auto-generated test paper, evolutionary 

algorithm, knowledge, population initiation. 

 

I. INTRODUCTION 

Test Paper (TP) has been the most widely used in the 

evaluation of learners for hundreds of years. With the 

development of information technology, the electric version 

TP becomes popular. And except for the electric TP created 

by experts, those auto generated are also widely adopted. 

With the Auto-Generated Test Paper (AGTP), not only the 

cost decreases for the time-saving of experts, but also the 

cheat behaviors decrease for the avoiding emission of the 

questions in TP. To avoid cheating, the system can even 

generate different TP for different students. 

However, AGTP belongs to composition optimization 

problem and it is not an easy task. Therefore, many methods 

for AGTP were deeply studied. The first kind of methods are 

based on random selection. WANG made use of random 

algorithm for AGTP [1], in which, the candidate questions are 

divide into different group according to their properties. 
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Those questions in the same group are considered 

homogeneous, therefore, for the optimization and satisfaction 

of the constraints of AGTP, they are equally considered and 

can be randomly selected. However this method needs to 

change the selected possibility for questions during the 

generation of TP and the knowledge is not used. The second 

kind of methods are based on Evolutionary Algorithms (EAs), 

such as the utility of Genetic Algorithm (GA) [2], [3], particle 

swarm optimization [4] and so on. Generally speaking, in GA 

based AGTP, a TP is coded into a chromosome, in which each 

gene is corresponding to a candidate question. Allele 1 means 

that the question is selected in the candidate TP, and vice 

versa for allele 0. In order to improve the quality of AGTP, 

Ding [5] designed a GA with odd crossover and even bit 

mutation operation. Zhang combined ant colony optimization 

[6] and GA together [7] to improve the quality of AGTP [8]. 

However, the knowledge is seldom used during the 

optimization.  

Incorporation of the prior knowledge in algorithms has 

received increasing interest in recent years [9]-[12]. The 

embedded knowledge includes expert knowledge [13], 

meta-heuristics [14], [15] and human preferences [16], as well 

as domain knowledge [17], [18] acquired during the search 

process. It has been shown from various motivations that 

knowledge incorporation into search process could 

significantly improve the performance. One of the reasons for 

us to study the knowledge embedded AGTP is that we 

observed an impressed phenomenon, which is given in section 

II. Then the knowledge embedded in AGTP is studied in 

section III, and also the probability distribution and 

probability to access the best TP in initial population are 

analyzed. In section IV, two methods to embed knowledge are 

proposed: a coarse one and a fine one. Then the validated 

experiments are given in section V. At last, this paper is 

concluded in section VI. 

 

II. AN IMPRESSED PHENOMENA IN AUTO-GENERATED TEST 

PAPER 

A. Randomness in AGTP 

Generally speaking, in EAs, the initial population of 

candidate TPs is randomly generated and by which it is 

expected that each class of TP can be coved with equal 

probability. This is generally implemented by allocating equal 

probability to each candidate question for TP. Therefore, the 

uniform distribution is adopted with the value of 

mathematical expectation as 0.5. It is expected that the fitness 

of optimum in initial population does not varies with target 

score. 

However, during our application, an impressed 
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phenomenon happened and it run out of our expectation. Our 

task is to generate TPs with both EAs and experts, i.e., the 

experts will specify some questions, denoted as Q1, and the 

algorithm will generate the other questions, denoted as Q2. 

During the process, we found that the time cost for EA to 

generate TP varies with the specified target score of Q2. This 

is intuitively out of our expectation that the fitness of best TP 

in initial population should not vary with target score. Then 

we formally model a simplified AGTP as following. 

B. A Simplified Model of AGTP 

If we can clearly get the rule behind the phenomenon, then 

we can use it to make AGTP quickly and easily. In order to 

study the rule and explain it clearly, here we formally studied 

a simplified AGTP, labeled as SAGTP, which excludes some 

constraints of TP and only try to generate TP to satisfy the 

constraints of the target score. In fact, for another constraint 

of coverage rate of knowledge, because of the randomness of 

initiation of population of questions in EA, it can be naturally 

satisfied.  

Label the candidate questions repository as 

QR={q1,q2,…,q|QR|}, then the TP generated by EA is a subset 

of QR, i.e. TP⊆QR. For any question in QR, we can define a 

function as follows: 
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i

i
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 
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                                    (1) 

 

This function means that if the candidate question qi is 

selected in TP, then b(qi)=1, vice versa for b(qi)=0.  

The model of AGTP can be represented as: 

 

0
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f X st S X

s t H H
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                               (2) 

 

where X represents the candidate TP, and st is the target score 

specified for purpose, and S(X) is the sum score of questions 

in the candidate TP. H(X)  H0 is the constraints. X∈[0,1]
|QR|

 

is the composition of b(qi): 

 

X={b(q1), b(q2),… , b(q|QR|)}                    (3) 

 

Label the score of qi as s(qi), then the optimization of 

SAGTP can be formulated as: 

 

min ( ) | ( ) |,i if X s q st q TP                   (4) 

 

And it also can be formulated as: 

 

min ( ) | ( ) ( ) |,i i if X s q b q st q QR                 (5) 

C. The Impressed Phenomenon 

The algorithm for the optimization of SAGTP in 

experiment was canonic GA. The evolutionary operators 

include roulette wheel selection, single point crossover and 

single point mutation. Also the elite retention strategy was 

adopted. The parameters for GA is as follows: crossover 

probability with 0.9 and mutation probability with 0.1. The 

initial population of TP is randomly generated with 

probability value 0.5.  

In order to study the phenomenon, in the experiments, we 

varied st from 0 to 195 with step 5. We first collect the best TP 

in initial population P(0) and calculate the best TP 

(0) arg min ( ), P(0)o XX f X X  . Then we depict the 

relationship between the fitness of Xo(0) and the different 

problems, which is characterized with different value of st, in 

Fig. 1, which is the result of 100 runs of EAs for each st. The 

lower the fitness, the better the generated TP is, and when 

fitness is 0 means that the generated TP is the optimum.  
 

 
Fig. 1. Relationship between the fitness of Xo(0) in initial population and the 

target scores representing different optimization problems. 

 

Fig. 1 shows that the fitness of the best TP in initial 

population set of AGTPs is related with the target score. For 

the extreme case st=0, the average fitness of the optimum 

f0(Xo(0))=75.077 and when the target score st=5, 

f1(Xo(0))=71.23. However, when st∈{90,95,100}, all the 

fitness of the best solution in initial population is 0, which 

means that the global optimum is accessed in initial 

population without exception! The average fitness of fi(Xo(0) 

is a monotonous increasing function of the distance defined as 

below: 

 

0 0( ) min | |, {90,95,100}d st st s s    

 

What does the above phenomena shown in Fig. 1 means? (1) 

The method to initiate the population is very suitable for the 

optimization problems with target score of {90, 95, 100} and 

not suitable for those far from {90, 95, 100}. Why does it 

happen? (2) There could be other methods that are suitable for 

other target score of AGTP. Then what are the methods? (3) 

Knowledge about the specified TP can be used to guide the 

method to initiate the population. What is the knowledge and 

how can we make use of it in EAs based on AGTP? We will 

answer these questions in the following sections. 

 

III. ANALYSIS OF THE PHENOMENON BASED ON 

PROBABILITY THEORY 

A. Knowledge in AGTP 

In order to study the phenomenon with probability theory, 

we introduce random variable here.  

Let Ss denote the random variable of the sum score of 

candidate TP X. Different questions may be specified with 

different score in QR. Suppose the set of the type of score is 
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Then for the initial population P(0) with size of |P|, it will 

be an n-Bernoulli test with probability of 

Pr{SS=st} 1 | |max Pr( )i W iW 
. Label N as the number of 

solution that belongs to the best TP, then the probability to 

access them in initial population is: 

 

Pr(N>0) 

=1-Pr(N=0) 

=1- 0

|P|C Pr(Ss(Xi)=st)
0
(1-Pr(Ss (Xi)=st))

|P| 

=1-(1-Pr(Ss(Xi)=st))
|P| 

≥ 1- (1 maxPr( ))iW  

=1-(1-maxPr(Wi))
|P|

 

 

From another view, there is: 

 

Pr(N>0) 

=1-Pr(Ss(X1)≠st,Ss(X2)≠st,⋯,Ss(X|P|)≠st) 

=1- Pr( ( ) )s iS X st  

=1- (1 Pr( ( ) )s iS X st   

≥ 1- (1 max Pr( ))iW  

=1-(1-maxPr(Wi))
|P|

 

 

Therefore we get the conclusion: 

 

Pr(N>0)≥ 1-(1-maxPr(Wi ))
|P|

            (16) 

 

The higher Pr(N>0) is, the more best-TPs were generated in 

initial population. In order to make Pr(N>0) higher, we can 

make maxPr(Wi) higher. 

 

IV. KNOWLEDGE EMBEDDED AGTP BASED ON EAS 

Based on the above analysis, this section will present two 

theorems for the knowledge embedding for AGTP in the 

population initialization. 

A. A Coarse Knowledge Embedded Method 

Label Sa as the sum score of candidate questions in QR. It is 

easy to know that Sa= (| | )i iS s . 

Theorem 1: When the probability for any question to be 

selected is set as p=st/sa, the best TP will be accessed in initial 

population.  

Proof: According to Bernoulli distribution, there is 

E(wi)=p|Si|. With Ss= (w )i is , we can get: 

 

E(|Ss-st|) 

=| E(w )i is -st| 

=|
i ip S s -st| 

=|p iiS s -st| 

=|pSa-st| 

 

Because E(|Ss-st|)=|pSa-st|, in order to generate the best TP 

in initial population, what we can adjust is the sample 

distribution. 

Let E(|Ss-st|)=0, i.e., the best TP is accessed, we can get 

|pSa-st|=0, therefore, there is: 

 

p=st/Sa                                 (17) 

 

Then the coarse knowledge embedded method for best TP 

generation is to specify p value in (17), which is related with st, 

and it is the knowledge of the problem to be optimized. 

B. A Fine Knowledge Embedded Method 

In the coarse method, we assign the same value of p for 

different type score of questions. Furtherly, we can assign 

different p value for them to get a best TP in initial population.  

Label the feasible number for the questions with score si in 

best TP as wi, then we can get the theorem as below. 

Theorem 2: When the probability for the question with 

score si to be selected is set as pi=(wisi)/sai, the best TP will be 

accessed in initial population.  

Proof: Taking the sampling from different group of 

questions with the same score as the Bernoulli distribution 

with different probability, then there is E(wi)=p|Si|. Therefore, 

the equation can be written in a more fine as following:  

 

E(|Ss-st|)=|  i iE w s -st|=|
i i ip S s -st| 

=|
i aip S -st|. 

 

Let E(|Ss-st|)=0, i.e., the best TP is accessed, we can get: 

 

|
i aip S -st|=0                              (18) 

 

Because the feasible number for the question with score si 

in best TP is wi, therefore, there is: 

 

|
i iw s -st|=0                               (19) 

 

Combined with (18), we can get: piSai=wisi. Label sti=wisi, 

Then there is: 

 

pi=sti/Sai, i=1, 2, ⋯, |Sp|                            (20) 

 

According to this theorem, all the feasible value of wi can 

be used as knowledge to be embedded.  

It is easy to see that Theorem 1 is just a case of Theorem 2. 

Here pi is the fine embedded knowledge, it is not only related 

with st, but also related with Sai which is the knowledge of 

QR. 

Eq. (19) is an indeterminate equation, it provides the 

interface for user to control/optimize the TP flexibly. For 

example, providing there are 5 type of scores for all the 

questions in QR and the set of the scores is {2, 3, 5, 10, 15}. 

Then when st is set to 100. A set of number as {20, 10, 0, 0, 2} 

is one of the feasible candidate for the best TP, i.e., 

100=2·20+3·10+5·0+10·0+15·2. Then according to 

Theorem 2, we can get the corresponding probability as 

(p1,p2,p3 p4,p5)=((20∙2)/sa2,(10∙3)/sa3,0,0,(2∙15)/sa15). 

For utility of Theorem 2, two steps are necessary for the 

optimization. The first step is the optimization of 

Wi={w1,w2,⋯,w|Sp|} and the second step is the optimization 



  

Then for the initial population P(0) with size of |P|, it will 

be an n-Bernoulli test with probability of 
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solution that belongs to the best TP, then the probability to 

access them in initial population is: 

 

Pr(N>0) 

=1-Pr(N=0) 

=1- 0

|P|C Pr(Ss(Xi)=st)
0
(1-Pr(Ss (Xi)=st))

|P| 

=1-(1-Pr(Ss(Xi)=st))
|P| 

≥ 1- (1 maxPr( ))iW  

=1-(1-maxPr(Wi))
|P|

 

 

From another view, there is: 

 

Pr(N>0) 

=1-Pr(Ss(X1)≠st,Ss(X2)≠st,⋯,Ss(X|P|)≠st) 

=1- Pr( ( ) )s iS X st  

=1- (1 Pr( ( ) )s iS X st   

≥ 1- (1 max Pr( ))iW  

=1-(1-maxPr(Wi))
|P|

 

 

Therefore we get the conclusion: 

 

Pr(N>0)≥ 1-(1-maxPr(Wi ))
|P|

            (16) 

 

The higher Pr(N>0) is, the more best-TPs were generated 

in initial population. In order to make Pr(N>0) higher, we can 

make maxPr(Wi) higher. 
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Based on the above analysis, this section will present two 

theorems for the knowledge embedding for AGTP in the 

population initialization. 
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easy to know that Sa= (| | )i iS s . 

Theorem 1: When the probability for any question to be 
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distribution. 

Let E(|Ss-st|)=0, i.e., the best TP is accessed, we can get 

|pSa-st|=0, therefore, there is: 

 

p=st/Sa                                 (17) 

 

Then the coarse knowledge embedded method for best TP 

generation is to specify p value in (17), which is related with st, 

and it is the knowledge of the problem to be optimized. 

B. A Fine Knowledge Embedded Method 

In the coarse method, we assign the same value of p for 

different type score of questions. Furtherly, we can assign 

different p value for them to get a best TP in initial population.  

Label the feasible number for the questions with score si in 

best TP as wi, then we can get the theorem as below. 

Theorem 2: When the probability for the question with 

score si to be selected is set as pi=(wisi)/sai, the best TP will be 

accessed in initial population.  

Proof: Taking the sampling from different group of 

questions with the same score as the Bernoulli distribution 

with different probability, then there is E(wi)=p|Si|. Therefore, 

the equation can be written in a more fine as following:  

 

E(|Ss-st|)=|  i iE w s -st|=|
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=|
i aip S -st|. 

 

Let E(|Ss-st|)=0, i.e., the best TP is accessed, we can get: 
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i aip S -st|=0                              (18) 

 

Because the feasible number for the question with score si 

in best TP is wi, therefore, there is: 
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Combined with (18), we can get: piSai=wisi. Label sti=wisi, 

Then there is: 

 

pi=sti/Sai, i=1, 2, ⋯, |Sp|                            (20) 

□ 

According to this theorem, all the feasible value of wi can 

be used as knowledge to be embedded.  

It is easy to see that Theorem 1 is just a case of Theorem 2. 

Here pi is the fine embedded knowledge, it is not only related 

with st, but also related with Sai which is the knowledge of 

QR. 

Eq. (19) is an indeterminate equation, it provides the 

interface for user to control/optimize the TP flexibly. For 

example, providing there are 5 type of scores for all the 

questions in QR and the set of the scores is {2, 3, 5, 10, 15}. 

Then when st is set to 100. A set of number as {20, 10, 0, 0, 2} 

is one of the feasible candidate for the best TP, i.e., 

100=2·20+3·10+5·0+10·0+15·2. Then according to 

Theorem 2, we can get the corresponding probability as 

(p1,p2,p3 p4,p5)=((20∙2)/sa2,(10∙3)/sa3,0,0,(2∙15)/sa15). 

For utility of Theorem 2, two steps are necessary for the 

optimization. The first step is the optimization of 

Wi={w1,w2,⋯,w|Sp|} and the second step is the optimization 
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with the initial population which is generated according to 

(20).  

 

V. EXPERIMENTS 

After the observation of the mentioned impressed 

phenomenon, we carried out experiments to compare the 

knowledge embedded EAs (kmEAs) with canonical EAs 

(cEAs) and found that kmEAs always perform faster than 

cEAs. Therefore, it is unnecessary to continue the comparison 

between kmEAs and cEAs. But for the Coarse and Fine 

Knowledge Embedded Methods (CKEMs and FKEMs), we 

don’t know which one performs better and how better it is. 

This is the focus of the experiments.  

A. Experiments Setup 

The setup of the experiments mainly includes the objects to 

be compared, the conditions of the experiments, and the 

indexes to be compared.  

The objects to be compared include two methods, CKEM 

and FKEM.  

The conditions of the experiments include: (1) population 

size, which ranges from 10 to 50 with step 10; (2) the size of 

QR, which ranges in the following set {198, 352, 606, 819, 

1373}, which are the numbers of questions of certain subjects 

in our QR. We expect that the bigger the population size, the 

more effective the method is and the bigger the size of QR, the 

more difficult the problem is. 

The indexes to be compared include: 1) the cost time to 

access the best TP. The less time cost, the more efficient the 

method is. 2) The number of the best TP accessed. The bigger 

the number of the best TP accessed, the more efficient the 

method is.   

The experiments were carried out on personal computer. 

The CPU is Intel Core i7-6700HQ 2.6GHz and the memory 

size is 24G, and the disk is solid state disk 512G.  

B. Algorithms 

The experiments include three basic algorithms. The first 

algorithm is named as AGTP, which outputs a TP represented 

by a binary string. And its inputs include a probability value 

p=st/Sa and a candidate question repository QR. The pseudo 

code of the algorithm AGTP is shown in Table I. 
 

TABLE I: PSEUDO CODE OF ALGORITHM AGTP 

Name  

Input 

Output  

AGTP 

p, QR 

A TP represented by binary strings 

1 

2 

3 

4 

5 

6 

7 

8 

9 

 String X=""               

   for q in QR        

       if random()<p 

           X +="1" 

       else 

          X +="0" 

        endif 

endfor 

return X 

//X represents the i-th TP 

//For each question in QR 

//Compare the random and p value 

//This question is selected in TP 

 

//This question is not selected in TP 

 

 

//Return the binary string 

 

The second algorithm is named as “CKEM”, which outputs 

a list of TP based on that from Algorithm I. And its inputs 

include QR and the target score st. Both QR and st are the 

source of knowledge to be embedded in the algorithm. The 

pseudo code of the algorithm CKEM is shown in TABLE II. 

TABLE II: PSEUDO CODE OF THE ALGORITHM CKEM 

Name  

Input 

Output  

CKEM 

st, QR 

TPs represented by binary strings 

1 

2 

3 

4 

5 

6 

7 

8 

int sa=0  

for q in QR       

  sa+=s(q)           

endfor 

List<String> result 

for i=1 to |P| 

result.add(AGTP(st/sa, QR)) 

return result 

//Define sum score sa 

 

//Add all score to sa 

 

 

 

//Call algorithm AGTP 

 

The third algorithm is named as “FKEM”, which also 

outputs a list of TP based on that from Algorithm AGTP. It 

has the same inputs as Algorithm CKEM. But it include two 

main steps to produce the knowledge. The first step is to 

generate pi=sti/Sai and then the second step is to call 

Algorithm AGTP similar to Algorithm CKEM. In FKEM, the 

solutions for |
i iw s -st|=0 are attained by another GA, which 

also cost time in the experiments. The pseudo code of the 

algorithm FKEM is shown in TABLE III. 
 

TABLE III: PSEUDO CODE OF THE ALGORITHM FKEM 

Name  

Input 

Output  

FKEM 

st, QR 

TPs represented by binary strings 

1 

2 

3 

 

4 

5 

 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

Map<int, List<question>> map1 //Define a map for each Si 

for q in QR 

   map1.get(s(q)).put(s(q), q) 

//Classify questions according to s(q) 

endfor 

store solutions for |
i iws -st|=0 into W 

//Solving this equation with EAs or traversal method 

List<String> result 

for i=1 to |P| 

X="" 

for w in W 

QRi= map1.get(s(q)) 

X+= AGTP(sti,QRi)         //Call algorithm AGTP  

endfor 

result.add(X)                       //Add the TP into result 

endfor 

return result 

 

C. Results of the Experiments 

 

 
Fig. 2. Comparison of the time cost to access the best TP between CKEM 

and FKEM with the different population size. 

 

First, with different population size, the time cost to access 

the best TP is compared between CKEM and FKEM and the 

result is shown in Fig. 2. It shows that the time cost to access 

the best TP does not increases or decrease with the population 

size. This means that the time cost is almost unrelated with 

population size. Then we studied the number of the order of 

individual that the first hit of the best TP in the population and 
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found that the average value is 1.246, which means that if only 

the population size is greater than 2, the best TP can be 

accessed. 

Secondly, with the different size of QR, the time cost to 

access the best TP is compared between CKEM and FKEM 

and the result is shown in Fig. 3. It shows that under both of 

the two cases, the time cost to access the best TP increases 

with the size of QR. But the time cost is acceptable in real 

application and the time most cost is 982ms. 
 

 
Fig. 3. Comparison of the time cost to access the best TP between CKEM 

and FKEM with the different size of QR. 

 

Although from above two comparison, FKEM does not 

dominate CKEM. But when we compare the number of best 

TP hit by the algorithms, we found that FKEM is better than 

CKEM. This is carried out with different population size, 

ranging from 5 to 50 with step 5, then the number of best TP 

that the algorithms access are compared. The results is show 

in Fig. 4, in which the real number of best TP is 15. We found 

that FKEM can access all the 15 best TP when population size 

is greater than 30, while for CKEM, the number increases 

with the population size slowly. 
 

 
Fig. 4. Comparison of the number of the best TP hit by CKEM and FKEM 

with the different population size. 

 

From the experiments, we found that in the index of time 

cost to access the best TP, CKEM is better than FKEM, but 

for the index of the number of best TP hit, FKEM is better 

than CKEM. What’s more, both CKEM and FKEM are faster 

than canonical EAs and the increasing of the time cost to 

access the best TP with the size of QR can almost be omitted. 

 

VI. CONCLUSION 

In order to accelerate AGTP, an impressed phenomenon is 

presented and the rule behind it is studied. At the same time, 

we study the knowledge in AGTP and propose two methods, 

named as the coarse one and the fine one, to make use of the 

knowledge. The experiments show that CKEM is faster than 

FKEM, but FKEM can find more best TP than CKEM. The 

study of knowledge embedded methods provide a way for the 

acceleration of AGTP.  
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