
  

 

Abstract—There is increasing evidence that learners’ 

affective and cognitive states play a key role in the learning 

process. This suggests that systems which are able to detect 

these states can dynamically use adapted strategies to increase 

the pace of the learners’ skill acquisition and improve their 

learning experience. In this work, we present a novel approach 

for automatically adapting the learning strategy in real-time 

according to the learner’s detected mental state. The main goal 

of the approach is to maintain the learner in a positive state 

during a lesson by adaptively selecting the best interaction 

strategy between either using problem solving or worked 

examples. Two mental indexes, namely, cognitive load and 

mental engagement were extracted from electroencephalogram 

(EEG) signals, and used to adapt the system’s interaction. The 

cognitive load index was developped by training and validating 

a prediction model on various types of memory and logical tasks. 

The engagement index was directly computed from the EEG 

signal frequency bands. An experiment with 14 learners was 

performed in order to evaluate this approach. The obtained 

results showed that using the learner’s mental state to adapt the 

system’s interaction has a positive impact on the learning 

outcomes, the learning experience and the learners’ reported 

emotional states. 

 
Index Terms—Adaptive system, mental engagement, 

cognitive load, EEG, affect, learning performance, learning 

experience. 

 

I. INTRODUCTION 

Affect sensitive computerized learning systems have 

shown considerable promising results in analyzing and 

improving the learning experience [1], [2]. Methodological, 

technical and analytical approaches are being constantly 

explored to help these systems leverage the knowledge of the 

learners’ behavior to analyze and support the learning 

process. These approaches have also largely benefited from 

numerous critical advances in the area of physiological 

computing especially in terms of accuracy, data modeling, 

portability and scalability. Significant results were obtained 

specially in 1) relating physiological processes to several 

cognitive and affective states that occur during learning and 2) 

analyzing how these states influence positively or negatively 

the learning outcomes. Several sensors tracking the learners’ 

electro-dermal activity, eye movements, heart rate, posture, 

facial expressions, or brain activity have been used in a 
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uni-modal or multimodal way to infer states such as 

engagement, attention, frustration, flow, boredom, etc. 

[3]-[10]. 

Nevertheless, despite this increased emphasis on affective 

computing, there is a paucity of research addressing the 

impact of designing learning systems that adapt in real-time 

to the users’ affective and cognitive states. In fact, most of 

these approaches so far rely on offline data analysis 

procedures to extract information about the learners’ states. 

This is due to several technical issues related to data 

acquisition, preprocessing, synchronization and classification. 

In this research, we focus on affect-aware adaptive systems, 

i.e., how to develop an interactive learning environment able 

to recognize and act on the learner’s affective state. In this 

paper we present an approach to recognize and respond to 

two specific cognitive states, namely, 1) engagement which 

characterizes the level of involvement and interest a learner 

has during a task, and 2) cognitive load which measures the 

amount of information processing demands and mental effort 

imposed on the learner while processing a task. 

These states are among the most commonly used 

indicators to dynamically assess changes in the users’ states 

in several fields such as aviation, robotics and army as they 

are closely related to the users’ performance and experience 

[11], [12]. According to the Yerkes-Dodson Law, a low 

cognitive load level (mental under-load) as well as high 

cognitive load level (mental overload) are correlated with 

poor performance [13]. The state of engagement is also 

considered as a crucial factor during the learning process 

since it is closely related to motivation, memorization and 

learning achievement [14], [15]. 

In this paper we hypothesize that maintaining learners in 

an appropriate level of cognitive load and engagement 

throughout a learning session, where they have to acquire and 

master a new way of writing programming operations, can 

foster effective knowledge acquisition and a better learning 

experience. To this end, an adaptive learning environment, 

MENTOR, was developed to detect the learners’ levels of 

mental engagement and cognitive load in real-time, as a basis 

for selecting the best approach to deliver the learning content. 

MENTOR uses two mental indexes as well as the learner’s 

progress during the lesson, to decide the type of problem 

solving task to administer: a challenging activity that could 

increase his mental engagement but could likewise highly 

increase his cognitive load, or a worked example task: a less 

engaging activity but also less demanding in terms of 

cognitive load. An experimental study was conducted to 

evaluate how the learners interacted with the system with a 

two-fold objective:  

1) First, to investigate if the integration of the engagement 

and the cognitive load brain indexes within an adaptive 
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learning environment has a positive impact on the 

learners’ results. Our assumption is that if the system 

considers the learners’ level of engagement and 

cognitive load as part of their teaching strategy, then it 

will be able to select the most appropriate approach to 

help the learners better understand the new concepts. 

2) Second, to prove that the development of such an 

adaptive strategy also positively impacts the learner’s 

experience. In other words, the system’s awareness and 

adjustment to the learners’ brain indexes will reflect 

positively on their affective state as well as on their 

perception of the whole learning process. 

The remainder of this paper is organized as follow: Section 

II reviews previous work on adaptive learning environments. 

Section III presents the MENTOR system’s design and the 

methodology used to extract the engagement and the 

cognitive load indexes from the EEG data. Section IV details 

the adaptive logic used to interact with learners. Section V 

describes the experimental design and section VI the 

empirical results. Finally, section VII draws conclusions and 

proposes future research directions. 

 

II. RELATED WORK 

The investigation of existing physiologically adaptive 

learning environments shows mainly two categories of 

intervention strategies that are being used to automatically 

respond to the learners’ states, namely: affect-based and 

problem-based intervention strategies. 

A. Affect-Based Intervention Strategy  

The objective of this category of interventions is to create a 

“relational” or “social” dimension between the learning 

environment and the learner by responding to the learners’ 

state using verbal (through direct messages) and non-verbal 

(through mimics and expressions showed by animated agents) 

communication of empathy and encouragement [16]-[20]. 

Prendinger and Ishizuka [21] proposed one of the first studies 

in this area. They developed an educational agent that uses 

skin conductance level and electromyography to extract 

information about the learners’ affective states and to 

automatically give empathic feedback that help learners 

preparing for a job interview and managing their stress level. 

Woolf et al. [22] also proposed a multimodal affect 

interaction approach to help students learn mathematics with 

an intelligent tutoring system called Wayang Outpost. The 

approach used a pressure sensitive mouse, a posture analysis 

seat, a camera and a skin conductance sensor to detect 

learners’ affective states. The system used two animated 

characters to help learners be aware of their own emotions, 

either implicitly by mirroring the detected emotional state or 

explicitly by providing an empathic or encouraging feedback 

prompt. This same affect-based intervention strategy was 

employed in Auto Tutor [23]-[25], a conversional tutoring 

system that helps students master topics in physics, computer 

science and reasoning. Auto Tutor was able to recognize 

affective states such as boredom, frustration or confusion by 

analyzing conversational cues, body movements and facial 

expressions. The system then automatically interacted with 

the learners by delivering motivational and empathic 

messages. 

B. Problem-Based Intervention Strategy 

This category of interventions aims to attract (increase or 

recapture) the learners’ attention by highlighting specific 

relevant elements, materials, contents or learning approaches 

that can help the learners achieve their goals. The idea behind 

this strategy is that when a negative affective or cognitive 

state (such as frustration, boredom or mental disengagement) 

occurs, the system’s intervention needs to directly address the 

source causing this negative state. For example, D’mello et al. 

[26] developed a gaze-reactive intelligent tutoring system 

that uses attention reorientation strategies when detecting 

boredom or disengagement from the learner’s gaze. The 

system was based upon a set of rules for delivering direct 

verbal messages in to reengage the learners into the activity 

by orienting them towards specific relevant areas of the 

screen. Szafir and Mutlu [27] also investigated how to avoid 

learners’ drops of attention while listening to lectures 

delivered by a pedagogical agent. Learners’ attention was 

detected using electroencephalography (EEG). The agent 

used immediate verbal cues (such increasing its vocal volume) 

and non-verbal cues (such as gesturing and head nodding) 

while speaking to learners to increase their attention. 

Even though the affect-based intervention strategy is 

meant to strengthen the social interaction between the 

learners and the system and to help learners handle their 

emotions, little evidence supports the effectiveness of such an 

approach. For instance, Prendinger et al. [28] showed that the 

empathic companion did not have any significant impact on 

the learners’ outcomes. Besides, the empathic strategies can 

generate the opposite of their intended effect on learners and 

rather increase their negative emotions especially if they are 

not timely and properly delivered [22], [29], [30]. In this 

work, we decided to focus on the problem-based intervention 

strategy. Our objective is to develop a system that recognizes 

the learners’ engagement and cognitive load states and adapts 

the teaching content accordingly to help them reach an 

optimal learning state. 

 

III. SYSTEM DESIGN 

MENTOR (MENtal tuTOR) is a tutoring system that uses 

two brain indicators, namely engagement and cognitive load 

extracted from the EEG physiological data to adjust the 

learning strategy according to the learner’s mental state [31], 

[32]. The overall objective of the system is to maintain the 

learners in an appropriate state. 

The system was designed to interface directly with an 

Emotiv EEG wireless headset1 to collect EEG raw signals. 

The Emotiv headset contains 16 electrodes located according 

to the 10-20 international standard [33]. It allows recording 

simultaneously 14 regions (O1, O2, P7, P8, T7, T8, FC5, FC6, 

F3, F4, F7, F8, AF3 and AF4). Two additional electrodes are 

used as references, which correspond respectively to the P3 

and P4 regions. The system’s sampling rate is 128 Hz.  

Two different approaches are used by the system to 

compute the two brain indexes. The first one, which is used to 

calculate the engagement index, is based on a direct 

extraction and processing of specific frequency bands from 

the EEG signal. The second approach, which is used to 
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compute the cognitive load index, relies on training a 

machine-learning model.  

A. Engagement Index Extraction 

The term mental engagement refers to the level of alertness 

and attention allocated during a task. The engagement index 

used in this work draws on the findings of Pope and 

colleagues [34] at the National Aeronautics and Space 

Administration (NASA). This index, which is based on 

neuroscientific research on attention and vigilance [35]-[37], 

was studied and used as a criterion for switching between 

manual and automated piloting modes and showed a positive 

impact on the pilots’ performance when it was used to 

activate the autopilot mode or to control the level of task 

automation in the cockpit [38]. 

Since its development, this engagement index has become 

a very important and popular parameter for real time or 

offline tracking and analysis of individuals’ engagement in 

several laboratory studies. Within educational settings for 

example, this index was used for monitoring learners’ 

engagement during problem solving and listening activities 

[9], [27], [39], [40]. This engagement index was also selected 

as a criterion for adapting a game’s difficulty according to the 

player’s level of engagement [41]. 

The engagement index is computed using three EEG 

frequency bands, namely: θ (4-8 Hz), α (8-13 Hz) and β 

(13-22 Hz) as follows: 

 

𝐸𝑛𝑔_𝐼𝑛𝑑𝑒𝑥 =
 β 

θ +  α
 

 

Since the EEG signal is very sensitive to all kinds of 

artifacts such as eye blinks or body movements, MENTOR 

system uses an artifact rejection heuristic before the 

computation of the EEG ratio. The procedure developed by 

Freeman et al. [42] is applied to each incoming 1-second 

EEG epoch. This procedure consists of examining whether 

the signal amplitude exceeds a fixed threshold in 25% of the 

epoch data points. In such a case, the epoch is considered as 

contaminated and rejected. The extraction of the θ, α and β 

frequency bands is performed first by filtering each 1-second 

of the non-rejected EEG signal by a Hamming window to 

reduce the signal discontinuities at the epoch edges. Then, a 

Fast Fourier Transform (FFT) is applied to each windowed 

epoch to convert it to the frequency domain and to extract the 

needed frequencies. As the Emotiv headset measures 14 

regions at the same time, we used a combined value of the θ, 

α and β frequency bands by summing their values over all the 

measured regions. The engagement index is computed each 

second from the EEG signal. In order to reduce the 

fluctuation of this index, MENTOR uses a moving average 

on a 40-second mobile window. Thus, the value of the index 

as the time t corresponds to the total average of the ratios 

calculated on a period of 40 seconds preceding t.  

B. Cognitive Load Index Extraction 

The term cognitive load (also referred to as mental 

cognitive load or simply workload) is the amount of 

information processing demands placed on an individual by a 

task [43]. Unlike the engagement index, there is no common 

established method to directly assess mental cognitive load 

from the EEG data. However, the development of EEG 

indexes for cognitive load assessment using machine learning 

algorithms is a well-developed research topic, which was 

investigated in various application domains. Linear and 

non-linear classification and regression models were used to 

measure this state in different kinds of cognitive tasks such as 

memorization, language processing, visual, or auditory tasks. 

These models rely mainly on a frequency processing 

approach using either the Power Spectral Density (PSD) or 

Event Related Potential (ERP) techniques to extract relevant 

EEG features [38], [44]-[46]. For instance, Wilson [47] used 

an Artificial Neural Network (ANN) to classify the operators’ 

workload level by taking the users’ EEG data as well as other 

physiological features as an input. The reported results 

showed up to 90% of classification accuracy. Gevins and 

Smith [48] used spectral features to feed a neural network 

classifying the user’s workload while performing various 

memorization tasks. Kohlmorgen et al. [49] used a Linear 

Discriminant Analysis (LDA) on EEG features extracted and 

optimized for each user for workload assessment. The 

authors showed that decreasing the driver’s workload 

(induced by a secondary auditory task) improves reaction 

time. Berka and colleagues developed a workload index 

using Discriminant Function Analysis (DFA) for monitoring 

alertness and cognitive load in different learning 

environments [11], [50], [51].  

In this work, we propose to build an individual predictive 

cognitive load model for each learner before the interaction 

with MENTOR. The main idea is that this model is trained 

using data collected from a first training phase, during which 

the learner performs a set of brain training exercises while his 

EEG signals are recorded. In this training phase, the learner 

performs different sets of cognitive exercises with different 

levels of difficulty. Three different types of cognitive 

exercises are used to collect the EEG data used to train the 

predictive model namely: digit span (DS), reverse digit span 

(RDS) and mental computation (MC). The objective of these 

training exercises is to induce different levels of cognitive 

load on the learner. 

In the DS and RDS exercises, the learner is asked to 

memorize and recall a series of simple digits successively 

presented on the screen. The MC consists in mentally 

performing addition and subtraction operations. The 

manipulation of the level of cognitive load imposed on the 

learner is made by varying the difficulty level of the exercises, 

i.e. by increasing the number of the digits in the sequence to 

be recalled for DS and RDS, and by increasing the numbers 

to be added or subtracted for the mental computation 

exercises [51], [52]. In total each learner performs 54 DS 

exercises, 54 RDS exercises and 36 MC exercises with 

different difficulty levels. After performing each exercise, the 

learner is asked to report his cognitive load level using the 

subjective scale of NASA Task load index (NASA_TLX) 

[53].  

Once this exercise phase is completed, the training of the 

cognitive load predictive model begins. Fig. 1 summarizes 

the model building steps. The collected EEG raw data are cut 

into 1-second segments and filtered by a Hamming window. 

The same artifact rejection procedure applied for the 

engagement index is used for the cognitive load index. A FFT 

is used to transform each EEG segment into a spectral 

frequency. A set of 40 bins of 1 Hz ranging from 4 to 43 Hz 
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(EEG pretreated vectors) is generated. These data are then 

reduced using a Principal Component Analysis (PCA) to 25 

components (the score vectors). Next, a Gaussian Process 

Regression (GPR) algorithm with an exponential squared 

kernel and a Gaussian noise [54] is run in order to train a 

mental cognitive load predictive model (the EEG workload 

index) from the normalized score vectors. Normalization is 

done by subtracting the mean and dividing by the standard 

deviation of all the vectors. In order to reduce the training 

time of the predictive model, we used the local Gaussian 

Process Regression algorithm, which is an optimized (faster) 

version of the GPR algorithm [55].  
 

 
Fig. 1. Mental cognitive load predictive model. 

 

C. Analysis of the Computed Indexes  

In order to evaluate the learner's mental state, the system 

analyzes the behavior of the engagement and cognitive load 

indexes throughout the learning session. A slope of each 

index is computed using the least squared error function of 

the indexes’ values from the beginning of the activity. For the 

engagement index, if the slope value is postive, then the 

learner is considered mentally engaged. Otherwise, the 

learner is considered as mentally disengaged. For the 

cognitive load index, if the slope value is between - 0.03 and 

+ 0.03, than the cognitive load is considered as positive. 

Otherwise, if the slope value is above 0.03, the learner is 

considered as overloaded, and if the slope is below -0.03 the 

learner is considerd as under-loaded.  

 

IV. LEARNING WITH THE ADAPTIVE LEARNING 

ENVIRONMENT  

MENTOR tutoring system is designed to help learners 

understand the Reverse Polish Notation (RPN), which is also 

known as the postfix notation. The lesson presented by the 

system includes four successive parts. The first part presents 

a set of formal definitions of the algebraic expressions as well 

as their structures and constituent elements. The second part 

explains how to determine the priorities between the 

operators and how to evaluate an algebraic expression 

without parentheses. The third part focuses on the concept of 

the RPN; the basics of the postfix notation are introduced and 

explained. The fourth part details the techniques used for the 

assessment of an RPN expression.  

After the learner finishes each part of the lesson, the 

system presents four pedagogical activities so that the learner 

puts into practice the concepts seen in this previous part of the 

lesson and enhances his or her understanding. Each activity 

uses one of the two following pedagogical resources: 

 Questions: each question presents a problem that the 

learner has to resolve. Hints are provided with each 

problem to help the learner find the solution and 

improve his or her knowledge acquisition. At the end of 

each question, the system informs the learner whether 

his or her answer was correct or not. In case of a wrong 

answer, the solution of the problem is given without 

presenting any explanation of the resolution process.  

 Worked examples: a worked example describes a 

problem statement with the detailed steps and 

explanations leading to the solution. The learner is 

simply asked to read and understand these examples. 

A. MENTOR’s Adaptive Rules 

MENTOR’s decisional process lies mainly in the selection 

of the type of the pedagogical resource (a question or a 

worked example) to be provided as a next activity. In 

summary, 16 decisions (4 parts × 4 activities) are made by the 

system according to the learner’s mental state. This choice 

between worked examples or problems has often been 

discussed in educational psychology. On one hand, worked 

examples tend to have a lower mental load impact compared 

to problems [56]. Indeed, a worked example provides all the 

required steps of the problem resolution process. The only 

effort that a learner has to produce is to understand these steps. 

On the other hand, problems are more demanding in terms of 

mental effort as the learner has to resolve the problem and in 

case of a wrong answer, he must also understand the solution.  

Providing only worked examples to the learners can have a 

negative impact. The learner may not identify the relevant 

information pertaining to the worked example, and focus 

rather on useless or secondary information. Another 

phenomenon that frequently occurs when the learning 

activities are only based on worked examples is the 

phenomenon of the illusion of understanding. This 

phenomenon arises when learners thinks they understood the 

example while they did not. This generally occurs when the 

learner browses the elements of the example superficially 

without producing a minimum effort to understand the goal 

of each step of the resolution process [57]. Besides, 

presenting a worked example does not guarantee that the 

learner will be able to generalize from the shown example. 

Indeed, some learners do not spontaneously make an effort to 

analyze, reproduce and compare the resolution steps of the 

example, as compared to the efforts that they would have 

made if they had to reslove the problem by themselves. 

The advantage of using problem solving activities in a 

learning session is therefore to avoid these risks. The 

questions are always considered as an efficient educational 

instrument to  assess the learners’  knowledge and help  them 

efficiently acquire new skills. However, using a pedagogical 

approach based on solving problems exclusively can also 

hinder the learning process. In fact, as the mental effort is 

considered stronger compared to worked examples, the 

learner can become easily tired and overloaded. Moreover, if 

the learner fails to solve the problems, he or she can be 

frustrated, demotivated and even disengaged from the task. 

The decision of presenting a worked example or a problem 

within MENTOR is based on a continuous analysis of the 

learner’s mental engagement and cognitive load. The goal is 

to select the pedagogical resource that maintains the learner 

in a positive mental state. Particularly, the system has to keep 

the learner mentally engaged and avoid both overload and 
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under-load. If the system detects a negative mental state 

caused by an engagement drop, an overload or an under-load, 

then it will try to correct this state by switching the type of the 

next pedagogical activity. 
 

 
Fig. 2. MENTOR’s adaptive logic for selecting the next pedagogical 

resource. 

 

A total of seven adaptive rules are used by MENTOR as 

shown in Fig. 2: 

(R1) If the learner's mental state is positive (mentally 

engaged and neither overloaded nor under-loaded), then 

the system selects a question for the next activity. This 

rule is applied whatever the current activity is (question, 

worked example or reading a part of the lesson).  

(R2) At the end of a question, if the learner's mental state is 

negative (disengaged, overloaded or under-loaded), then 

the system provides a worked example in the next 

activity. 

(R3) At the end of a worked example, if the system detects a 

negative mental state due to disengagement or 

under-load, then it provides a question as a next activity.  

(R4) At the end of a worked example, if the system detects a 

negative mental state due to overload, then it provides a 

worked example in the next activity. 

(R5) After reading a part of the lesson, if the system detects a 

negative mental state due to disengagement or 

under-load, then it provides a question as a next activity. 

(R6) After reading a part of the lesson, if the system detects a 

negative mental state due to overload, then it provides a 

worked example for the next activity. 

(R7) Whatever the learners’ mental state is, if he answers a 

question incorrectly, then the system provides a worked 

example in the next activity. 

The idea behind the use of these rules is given hereafter: 

Decision after reading a part of the lesson. The system 

uses the questions as a main pedagogical approach to help the 

learner understand the presented concepts. The rule (R1) 

makes that the system automatically provide a question if the 

learner's state is positive. The hypothesis behind this rule is 

that if the learner reads a lesson while maintaining a positive 

state, then he or she likely did not have difficulty 

understanding the presented concepts. So, by choosing a 

question as a subsequent activity, the system checks the 

learner’s knowledge. However if the learner’s mental state is 

negative, the system analyzes the cause of this state. If this 

negative state is due to a mental overload, then the rule (R6) 

makes the system choose a worked example in the next 

activity. The hypothesis behind this rule is that a mental 

overload signals generally a cognitive difficulty with regards 

to the presented concepts. The learner produces then a high 

level of mental effort to understand what he or she was 

reading. So the decision of presenting a worked example after 

this activity can help the learner better understand the 

presented part without producing further mental effort. In this 

case, we think that giving a problem to solve while the learner 

is overloaded can worsen his or her cognitive load level and 

disturb the learning process. However, if the learner's 

negative state is due to a disengagement or a mental 

under-load, the system selects a question using the rule (R5). 

In this case, we assume that this lack of mental investment is 

either due to the fact that the learner was perfectly mastering 

what he or she was reading, or was rather disinterested and 

neglecting the lesson. In both cases, a question can be a more 

stimulating and challenging activity for the learner and can 

probably enhance his mental investment. 

Decision after a question. At the end of a question, if the 

system does not detect a negative state, it chooses another 

question as a next activity using the rule (R1). We suppose in 

this case that the learner reacts well mentally and that the 

strategy based on the questions is currently well suited to the 

learner’s state. It is important to note that the use of the rule 

(R1) is limited by the rule (R7). So, in case of a wrong answer, 

the system automatically switches the next activity to a 

worked example even though the learner is in a positive 

mental state to prevent the occurrence of a negative state due 

to a succession of wrong answers.  

This same switch is also performed using rule (R2), if the 

system detects a negative mental state even though the 

learner’s answer is correct. The assumption is that if the 

learner shows a negative state following the resolution of a 

problem, then changing the type of the activity can be in any 

case beneficial. More precisely, if the learner is overloaded, 

switching to a worked example in the next activity can 

correct or prevent this state from getting worse (this would 

probably be the case if the system follows-up with another 

question). If the negative state is caused by a disengagement 

or an under-load, changing the type of the activity can be 

stimulating for the learner and may correct this negative state. 

Decision after a worked example. After presenting a 

worked example, the system opts for a question as a next 

activity if the learner's mental state is positive using the 

rule (R1). The reason of using this strategy is to target an 

effect known as the problem completion effect [58], which is 

generally obtained by providing a worked example followed 

immediately by a problem. This type of strategy is used to 

increase the learning performance and enhance the learner's 

motivation [59]. For this reason, we decided to choose a 

question as a subsequent activity to the worked example even 

if the learner’s state is positive, rather than pursuing with 

another worked example. 

Finally, if the system detects a negative mental state 

caused by an overload, the system continues to present a 

worked example in the next activity using rule (R4). The 

assumption behind this rule is that if learners have some 

cognitive difficulties to understand the example, or if they are 

simply tired, it would not be suitable to give them a problem 

to solve since this can worsen the overload. Therefore, 

another worked example can support their knowledge 
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without being more demanding mentally.  

 

V.  EXPERIMENTAL STUDY 

In order to highlight the impact of using the learners’ 

mental indicators as an adaptive criterion to manage the 

system’s pedagogical resources, our experimental study 

relied on two different versions of MENTOR (V1 and V2). 

The difference between these versions lies only in the 

adaptive logic of the decision module. The first version (V1) 

leaves intact the adaptive logic with the seven intervention 

rules described previously. The selection of the resource to be 

provided is done according to the assessment of the learner’s 

mental state. In particular, the system tends to privilege the 

questions in case of a positive mental state. In the opposite 

case, the selection of the type of the resource is made 

following different heuristics that aim to correct the learner’s 

mental state. 

The second version of the system (V2) does not take into 

account the brain indexes of engagement and cognitive load 

in selecting the type of the resource to be provided. Only the 

rule (R7) is preserved in the adaptive logic of MENTOR, and 

the six other rules are ignored. The principle of this version is 

quite simple: after reading each part of the lesson, the system 

chooses to ask a question to the learner. As the learner 

answers correctly, the system continues to adopt the same 

strategy: asking questions. However, if an incorrect answer is 

given, the system switches immediately to a worked example 

to fix the learner’s reasoning. Once the learner finishes 

reading the example, the system automatically follows-up 

with a question to increase motivation and elicit a problem 

completion effect. Thus, the unique parameter that can 

trigger an adaptation action in this version is an incorrect 

response of the learner. 

The two used versions share a common point in their 

operation: if the adaptation parameters are positive, both opt 

for a question as a next step. The mental state sensitive 

version of the system (the first) is then an augmented version 

of the second, insofar as in addition to considering the 

accuracy of the response (through the 7th rule), it also applies 

other adaptive actions based on the mental parameters. 

In summary, we will compare two versions of the system; 

both versions have the same pedagogical content. However, 

V1 uses in its adaptive logic, an analysis of the mental 

indexes in addition to the response of the learner to decide the 

appropriate timing of the content. V2 gives the same content 

but based solely on the response of the learner. Both versions 

use, in the same order, exactly the same pedagogical 

resources. That is the system will have to choose between the 

same pair of resources including a question and a worked 

example. The difference between them will therefore lie in 

the choice of the type of resource to be selected; the two 

versions can opt for the same resource or for two different 

resources. 

A. Experiment Protocol 

14 participants were recruited and took part to our study. 

All were students of the University of Montreal in the same 

certification program in applied computer science. Each 

participant was randomly assigned to one of the two 

following groups. 1) The experimental group (N = 7) used the 

adaptive version of MENTOR (V1): the learning activities 

are actively adapted to both the learners’ brain indexes and 

answers. 2) The control group (N=7) used the second version 

of MENTOR (V2) that considers only the learners’ answers.  

For each participant, the experiment was conducted on two 

successive days. On the first day, the participant used the 

training module of MENTOR in order to create his individual 

cognitive load model. In this phase, which lasted about an 

hour, participants performed a series of 40 brain training 

exercises including digit span, reverse digit span and mental 

computation as described earlier. The cognitive load 

predictive model was trained for each participant on 

randomly selected 80% of the dataset and tested on the 

remaining 20%. The mean value of the root mean squared 

error (RMSE) of each cognitive load model across the 14 

participants was equal to 0.144 on the testing set. Fig. 3 

details the RMSE for each individual model. The mean 

correlation coefficient between the values predicted by the 

models and the target values was equal to 0.53 with a 

minimum correlation coefficient value equal to 0.2 and a 

maximum correlation coefficient equal to 0.88. 
 

 

 
Fig. 3. Stem plot of RMSE relative to each individual cognitive model. Box 

plot of the Mean correlation coefficient between the predicted values and the 

targets for all the participants. 

 

On the second day of the experiment, participants used the 

learning module of MENTOR. The duration of this phase 

was approximately one hour, including 20 to 30 minutes to 

learn the four parts of the Reverse Polish Notation lesson. 

The session starts with a pre-test followed by the lesson, then 

a post-test, and ends with a debriefing phase. Two 5-minute 

breaks were taken between the pre-test, the lesson and the 

post-test. 

Pre-test and post-test. The objective of the pre-test is to 

determine a priori the level of knowledge of the learner on the 

subjects covered by the course. The post-test determines the 

level of knowledge acquired after the learning session. This 
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allows us to assess the learner’s progress (between the 

pre-test before the lesson and the post-test after the lesson).  

These tests use a set of 16 questions relative to the 

concepts of the lesson. Each of the four parts of the lesson is 

concerned with four different questions. The same questions 

are asked in the pre-test and in the post-test. For each 

question, the learner can answer true or false, or may choose 

not to respond. A typical example of a question is to check 

whether two postfix expressions are equivalent. The score in 

each test is calculated as follows: a correct answer is worth 1 

point, while a wrong answer (or a non-response) is worth 0. 

Debriefing. During this phase, the learner is first asked to 

give his opinion regarding his interaction with the learning 

environment by rating his satisfaction level. A scale of seven 

grades ranging from 1 (strongly disagree) to 7 (strongly agree) 

is used to rate how much he agrees with the following 

statement: “Overall, I am satisfied with of my learning 

experience with the system”. 

Then, the learner evaluates the quality of the tutoring 

provided by the system by rating his perceived level of 

relevance of the system’s proposed activities, using another 

scale of seven grades ranging from 1 (strongly disagree) to 7 

(strongly agree), on how much he agrees with the following 

statement: “Overall, I am satisfied with the learning activities 

selected by the system. The examples and questions are 

presented at the right time and helped me understand the 

lesson. The choices made between asking a question or 

presenting an example fits my level of understanding”. This 

scale is therefore an evaluation of the relevance (or the 

perspicacity) of the tutor’s decisions. 

B. Recording Emotions 

 

 
Fig. 4. The valence/arousal emotional model with the four quadrants. 

 

At the end of each activity, the learner was asked to 

describe his emotional state. The two-dimensional 

valence/arousal model shown in Figure 4 (adapted from [60]) 

was used. This model classifies emotions into four quadrants: 

Q1, Q2, Q3 and Q4 in terms of valence ranging from 

unpleasant or negative emotions to pleasant or positive, and 

arousal ranging from low intensity or activation to high. The 

learner was asked to choose the quadrant that involves the 

emotions which best match his current emotional state. 

 Q1: includes positive emotions with high intensity such as 

interest, curiosity and enthusiasm. 

 Q2: includes positive emotions with low intensity like calm, 

satisfaction and serenity. 

 Q3: includes negative emotions with high intensity like 

confusion, stress and frustration. 

 Q4: includes negative emotions with high intensity like 

boredom and disengagement. 

 

VI. RESULTS 

The experimental results are presented in the following 

subsections. First, we analyze the behavior of the 

engagement and the cognitive load indexes. Then, we assess 

the impact of using the EEG indexes as an adaptive criterion 

on learning: we compare the learners’ outcomes and 

progression in the two considered groups (experimental vs. 

control) between the pre-test and the post-test. Next, we 

present a comparative study of the emotional responses 

between the two groups of participants. Finally, we analyze 

the impact of using the two versions of the system on the 

learners’ satisfaction level.  

A. EEG Indexes 

As a first step, we are interested in analyzing the behavior 

of the learners’ brain indexes when the system detects a 

negative mental state. Specifically, we aim to validate the 

effectiveness of our strategy in analyzing the learners’ mental 

state to trigger MENTOR’s interventions. Thus, we aim to 

compare how these indexes behave before and after signaling 

a negative state caused by a considerable engagement drop or 

an important cognitive load decrease (or increase). For this 

purpose, we were specifically interested in the learners of the 

control group who interacted with the second version of the 

system (V2): with an intervention strategy based only on the 

accuracy of the response given by the learner. The question 

we were asking was: how do the learners’ mental engagement 

and cognitive load indexes behave in such cases? That is, 

how do these indexes vary when the analysis module of 

MENTOR would have detected a negative mental state, and 

that this is not taken into account by this second used version 

of the system? In other words, we want to analyze the 

behavior of these two mental indexes, if there is a divergence 

between the two intervention strategies concerning the 

selection of the type of the pedagogical resource to be 

provided for the next activity. 

First, we started with the cases where the adaptive system 

(V1) would have detected an engagement drop causing a 

negative mental state, and would have proposed a 

pedagogical resource different from that actually selected by 

the non-adaptive version of the system used in the control 

group (V2). These cases occurred 15 times on the 112 

possible decisions taken by this version of the system (7 

participants * 16 choices). A repeated measure ANOVA was 

performed, with the time variable as a within-subject variable 

(before and after the selected activity), the participants’ ID as 

a between-subject variable, and the mean value of the 

engagement index as the dependent variable, i.e. the repeated 

measure. The results showed that the mean value of the 

engagement index was significantly higher before the 

intervention points detected by MENTOR, compared to the 

mean value of the engagement index after these intervention 

points: F(1, 8) = 21.156 p < 0.05. This reveals that the 

analysis module correctly identifies the engagements drops, 

and that in the absence of an adequate adaptation, this index 

continues to fall. 

The second cases concern the divergences of decisions for 
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the learners of the control group when the system detects a 

mental overload. These cases occurred 11 times during our 

experimentations. The same repeated measure ANOVA was 

conducted, but this time with the mean value of the workload 

index as a dependent variable. The ANOVA revealed a 

statistically significant difference in the mean values of the 

index before and after the activity proposed by the system: 

F(1, 5) = 40.866, p < 0.05; with a mean value significantly 

higher after the activity selected by the system. Hence, if the 

system does not select a pedagogical strategy that takes into 

consideration this mental overload, the value of this index 

will continue to increase, and the learner’s negative state may 

worsen. 

The third case concern the situations of mental under-load. 

Similarly, we wanted to see how the workload index behaves 

if the analysis module detects a cognitive under-load, and that 

the activity proposed by the non-adaptive version of the 

system is different from that which would have been 

proposed by the mental state sensitive version of MENTOR. 

These cases occurred 8 times during the experimentations. 

Another repeated measure ANOVA revealed that there was a 

significant difference in the mean values of the workload 

index before and after the activity proposed by the system: 

F(1, 2) = 33.597, p < 0.05; with a mean value even lower after 

the proposed activity. 

This analysis confirms that: first the analysis module of 

MENTOR can correctly detect the engagement drop, the 

overload and the under-load critical mental states; and 

secondly, it is indeed necessary to undertake adaptive actions 

that correct these states. 

B. Learning Performance 

A 2 (group: experimental vs. control) × 2 (time: pre-test vs. 

post-test) mixed-model analysis of variance (ANOVA) was 

conducted to compare the learners’ outcomes of the two 

groups in terms of scores achieved in both tests. The group 

variable is a between-subject factor that compares the scores 

between the two experimental conditions, whereas the time 

variable is a within-subject factor that analyzes for each 

participant, individually, the score variation (i.e. changes) 

between the pre-test and the post-test. 

First, the analysis yielded a main effect of the time variable, 

showing a significant difference of the learners’ scores in 

both groups between the pre-test and the post-test: F(1, 12) = 

2253.353, p < 0.001. Thus, there was a significant learning 

gain regardless of the group (experimental vs. control). 

Second the analysis yielded a significant interaction effect of 

both factors (group × time) on the learners’ outcomes: F(1, 

12) = 29.824, p < 0.001. The results revealed that over time 

(i.e. between the pre-test and the post-test), the learners of the 

experimental group have got significantly better learning 

performance compared to the control group. The means of 

scores obtained in the pre-test and the post-test for both 

groups are listed in Table I. 

The comparison of the learners’ scores between the 

experimental group and the control group revealed that there 

were no statistically significant differences between the two 

groups in the pre-test: F(1, 12) = 4.190, p = n.s. The overall 

mean score in the pre-test was M = 4.21 (SD = 1.31). In 

contrast, the comparison of the learners’ scores in the 

post-test showed that the scores achieved in the experimental 

group were significantly higher than the control group: F(1, 

12) = 50.069, p < 0.001.  
 

TABLE I: LEARNERS’ OUTCOMES IN BOTH GROUPS BEFORE AND AFTER THE 

TUTORING SESSION 

 Pre-test Post-test 

Experimental group   

M 4.86a 13.86b 

SD 1.07 0.70 

Control group   

M 3.57a 10.71c 

SD 1.27 0.95 

Values with different subscripts differ significantly. 

 

These results confirm our first hypothesis, that is using the 

cognitive load and the engagement indexes as a main 

criterion to control the learner’s activities can have a positive 

impact on his learning performance. The learners’ whose 

pedagogical resources were selected according to their 

mental states were able to provide an average of 86.6 % 

correct answers after the tutoring session. An increase of 

22.7 % in terms of learning outcomes was achieved using this 

adaptive strategy. 

C. Emotional Responses 

In order to evaluate the impact of our approach on the 

learners’ emotional state during their interractions with the 

two versions of MENTOR, we have calculated the 

proportions (percentages) of occurrence of each quadrant of 

the two-dimensional valence/activation model during the 

tutoring session. A multivariate analysis of variance 

(MANOVA) was conducted to compare the learners’ 

experienced emotions between the experimental group and 

the control group. The group factor was used as an 

independent variable and the proportions of each quadrant 

(Q1, Q2, Q3 and Q4) as a dependent variable. 

The results showed that there is a significant difference 

between the two groups in terms of proportions of quadrants: 

F(3, 10) = 8.665, p < 0.05. The analysis of each specific 

quadrant, using four distinct ANOVAs with a Bonferroni 

correction, showed that the two groups were statistically 

different emotionally. The mean proportions of emotions are 

given in Table 2. The following results were found for each 

quadrant:  

 Q1 (positive valence and high arousal): F(1, 12) = 5.945, p 

< 0.05; the proportions of Q1 in the experimental group 

were significantly higher than those in the control group. 

 Q2 (positive valence and low arousal): F(1, 12) = 5.37, p < 

0.05; the proportions of Q2 in the experimental group were 

also significantly higher compared to the control group. 

 Q3 (negative valence and high arousal): no significant 

difference was found for Q3: F(1, 12) = 4.101, p = n.s. 

However, the proportions of Q3 in the experimental group 

were lower. 

 Q4 (negative valence and low arousal): F(1, 12) = 10.8, p < 

0.05; the proportions of Q4 in the experimental group were 

significantly lower than the control group.  

The analysis of the learners’ emotions experienced in the 

two experimental conditions confirms the positive impact of 
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the use of the mental state-based adaptive version of 

MENTOR on the learners’ emotional experience. With a 

large dominance of the quadrant Q1 (including emotions 

such as interest, curiosity and enthusiasm) and Q2 (calm, 

satisfaction and serenity), the learners tended to report more 

positive emotions when the system takes into account their 

mental state in the activity sequencing (experimental group). 

Similarly, the negative emotions of the quadrant Q4 

(boredom and disengagement) were significantly more 

prevalent in the control group, with the non-adaptive version 

of the system.  
 

TABLE II: DESCRIPTIVE STATISTICS OF THE PROPORTIONS OF EMOTIONS IN 

EACH EXPERIMENTAL CONDITION 

 Control group Experimental group 

Quadrant M SD M SD 

Q1 0.25 0.19 0.51 0.20 

Q2 0.20 0.05 0.33 0.13 

Q3 0.20 0.15 0.07 0.06 

Q4 0.35 0.19 0.09 0.07 

 

D. Subjective Measures 

An ANOVA was conducted in order to compare the 

learners’ satisfaction levels between the experimental group 

and the control group. This ANOVA showed an almost 

significant difference between the two groups: F(1, 12) = 

4.545, p = 0.054. The learners of the experimental group 

reported higher satisfaction (M = 5.71, SD = 1.604) compared 

to the control group (M = 4.29, SD = 0.756). 

A second ANOVA was performed to compare the learners’ 

ratings regarding the relevance of the activities proposed by 

the tutoring system in both groups. These ratings were 

significantly higher in the experimental group (M = 5, SD = 

1.414) versus (M = 2.43, SD = 0.787) in the control group: 

F(1, 12) = 17.673, p < 0.05. 

These results confirm thus that increasing the system’s 

adaptive logic with the EEG engagement and cognitive load 

indexes has a positive effect on the learners’ opinion 

regarding the relevance of the decisions taken by the system 

in the selection choice of the pedagogical resources more 

specifically. 

 

VII. CONCLUSION 

In this paper we have presented an intelligent tutoring 

system that adapts its tutoring strategy according to the 

learner’s brain activity. The goal was to show that the use of 

mental indicators of the learners’ state such as the 

engagement and the cognitive load levels can have a positive 

impact on the learning outcomes as well as on the learners’ 

interaction experience. The approach is based on recording 

EEG data and inferring the two indexes using two different 

methods respectively. (1) The system calculates the mental 

engagement index by computing a ratio of specific frequency 

bands extracted from the EEG signal. (2) The system applies 

a machine-learning algorithm to compute the learners’ 

cognitive load using brain-training exercises to record 

learners’ EEG data and infer their workload index. 

In our experimental study, a learning session was 

conceived during which a group of learners interacted with 

the system to learn a new lesson about the postfix notation. 

The learning module of the system provides a tutoring 

environment that adapts its teaching strategy actively 

according to the learner’s brain indexes. Two different 

versions of the system were tested. In the first version (the 

experimental group), the system evaluates the learner’s 

mental state, and selects between a problem solving and a 

worked example, the activity that best suits the learner’s 

mental state as well as his current performance. In the second 

version (the control group), the system passively computes 

the mental indexes, and only the learners’ performance is 

used as a criterion to switch the activity.  

First, the analysis of the EEG data showed that the 

interventions undertaken by MENTOR to correct the 

engagement drops, overloads and under-loads were indeed 

required, otherwise, the learner’s mental state gets worse. 

Second, it was found that augmenting the adaptive logic of 

the system with the cognitive load and the engagement 

indexes has a positive impact on the learners’ performance in 

terms of learning gains before and after using the tutoring 

environment as compared to the control group. Third, it was 

found that using the learners’ mental state as a criterion to 

sequence the tutoring activities also has a positive impact on 

the learners’ interaction experience in terms of positive 

emotional responses and higher ratings regarding the 

relevance of the system’s activities.  

In this paper the proposed cognitive load model is based on 

a training phase where a model was calibrated based on each 

individual learner. That is an individual machine-learning 

model was created as each learner executed various cognitive 

tasks. Even though many researchers in brain-computer 

interface embrace this idea of individualized predictive 

models of cognitive load as they provide highly accurate 

results [51], the time and the computing processing required 

to build these models is clearly an obstacle for the application 

of such an approach within non-laboratory and operational 

contexts. In our study, the training phase of the model was 

performed during the first day of the experiment whereas the 

interaction with the learning system was realized on the 

second day. This experimental setup was utilized for two 

reasons: first the Gaussian Process Regression model has a 

cubic complexity, which requires some time to train the 

models. The second reason is that this training phase, which 

used various cognitive tasks with different difficulty levels, 

was mentally demanding for the participants. Hence, the 

learning activity had to be performed on a different day. An 

alternative solution to make this EEG cognitive load 

modeling approach more practical outside the laboratory 

context is to use a generalized approach where a single 

predictive model is trained and validated using gathered EEG 

data once and for all. This unique model would be then used 

for any new participant without requiring a training phase. 

However, even though the generalized model could save the 

training time of the individualized models, the accuracy of 

the resulting model could be reduced, and the system’s 

behavior could be hindered.  

In our future work, we will focus on comparing 

individualized and generalized predictive cognitive load 

models. We will investigate and compare the use of different 
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machine-learning techniques. Moreover, we will compare the 

performance of this EEG cognitive load models with other 

cognitive load indicators extracted from different sensors 

(such as heart rate and skin conductance response). 

Regarding the learning system, we will also integrate other 

kinds of adaptive strategies such as actively selecting hints or 

automatically switching the format of the content of the 

lecture (for instance from text to video).  
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