

DOI: 10.7763/IJIET.2012.V2.179

International Journal of Information and Education Technology, Vol. 2, No. 5, October 2012

461



Abstract—Traditionally device drivers specially the network

one’s are implemented and used in Linux Kernel for various

reasons. However in recent trend, many network stack vendors

are moving towards the user space based drivers. Open

Source–‘GPL’ is one of strong reason for such a move. In the

absence of generic guidelines, there are various options to

implement device drivers in user space. Each has their

advantage and disadvantage. In this paper, we will cover

multiple issues with user space device driver and will give more

insight about the Network Device Driver implementation in

User Space

Index Terms—Network drivers, user space, zero copy.

I. INTRODUCTION

However, in recent times, there has been a shift towards

running data path applications in the user space context.

Linux user space provides several advantages for

applications with respect to a more robust and flexible

process management, standardized system call interface,

simpler resource management, availability of a large number

of libraries for XML, regular expression parsing etc. It also

makes applications easier to debug by providing memory

isolation and independent restart. At the same time, while

kernel space applications need to confirm to GPL guidelines,

user space applications are not bound by such restrictions.

User space data path processing comes with its own

overheads. Since the network drivers run in kernel context

and use kernel space memory for packet storage, there is an

overhead of copying the packet data from user-space to

kernel space memory and vice-versa. Also,

user/kernel-mode transitions usually impose a considerable

performance overhead, thereby violates the low latency and

high throughput requirements of data path applications.

In the rest of this paper, we shall explore an alternative

approach to reduce these overheads for user space data path

applications.

II. MAPPING MEMORY TO USER-SPACE

As an alternative to the traditional I/O model, the Linux

kernel provides a user-space application with means to

directly map the memory available to kernel to a user space

address range. In the context of device drivers, this can

Manuscript received January 6, 2012; revised June 18, 2012. This work

was supported by the Freescale Semiconductor, India.

The authors are with the Freescale Semiconductor, Plot-18, Sector 16A,

Noida, UP-201301, INDIA (e-mail: hemant@freescale.com,

ravi.malhotra@freescale.com).

provide user space applications direct access to the device

memory which includes register configuration and I/O

descriptors. All accesses by the application to the assigned

address range ends up directly accessing the device memory.

There are several Linux system calls which allow this kind

of memory mapping, the simplest being the mmap() call. The

mmap() call allows the user application to map a physical

device address range one page at a time or a contiguous range

of physical memory in multiples of page size.

Other Linux system calls for mapping memory include

splice()/vmsplice() which allows an arbitrary kernel buffer to

be read or written to from user space, while tee() allows a

copy between 2 kernel space buffers without access from

user space[1].

The task of mapping between the physical memories to the

user space memory is typically done using Translation

Look-aside Buffers or TLB. The number of TLB entries in a

given processor is typically limited and as such they are used

as a cache by Linux kernel. The size of the memory region

mapped by each entry is typically restricted to the minimum

page size supported by the processor, which is 4k bytes.

Linux maps the kernel memory using a small set of TLB

entries which are fixed during initialization time. For user

space applications however, the number of TLB entries are

limited and each TLB miss can result in a performance hit. To

avoid such penalties, Linux provides concept of a Huge-TLB,

which allows user space applications to map pages larger

than the default minimum page size of 4k bytes. This

mapping can be used not only for application data but text

segment as well.

Several efficient mechanisms have been developed in

Linux to support zero copy mechanisms between user space

and kernel space based on memory mapping and other

techniques [2]-[4]. These can be used by the data path

applications while continuing the leverage the existing kernel

space network driver implementation. However they still

consume the precious CPU cycles and per packet processing

cost still remain moderately higher. Having a direct access

to the hardware from the user space can eliminates the need

for any mechanisms to transfer packets back and forth

between user space and kernel space, and thus it can reduce

the per packet processing cost to a minimum.

III. UIO DRIVERS

Linux provides a standard UIO framework [4] for

developing user space based device drivers. The UIO

framework defines a small kernel space component which

performs 2 key tasks:

 Indicate device memory regions to user space.

Device Drivers in User Space: A Case for Network Device

Driver

Hemant Agrawal and Ravi Malhotra, Member, IACSIT

International Journal of Information and Education Technology, Vol. 2, No. 5, October 2012

462

 Register for device interrupts and provide interrupt

indication to user space.

The kernel space UIO component then exposes the device

via a set of sysfs entries like /dev/uioXX. The user space

component searches for these entries, reads the device

address ranges and maps them to user space memory. The

user space component can perform all device management

tasks including I/O from the device. For interrupts however,

it needs to perform a blocking read() on the device entry,

which results in the kernel component putting the user space

application to sleep and wakes it up once an interrupt is

received.

IV. USER SPACE NETWORK DRIVERS

The memory required by a network device driver can be of

three types

 Configuration space: this refers to the common

configuration registers of the device.

 I/O descriptor space: this refers to the descriptors used by

the device to access data from the device.

 I/O data space: this refers to the actual I/O data accessed

from the device.

Taking the case of a typical Ethernet device, the above can

refer to the common device configuration (including MAC

configuration), buffer-descriptor rings, and packet data

buffers.

In case of kernel space network drivers, all 3 regions are

mapped to kernel space, and any access to these from the

user-space is typically abstracted out via either ioctl() calls or

read()/write() calls, from where a copy of the data is provided

to the user space application.

User space network drivers on the other hand, map all 3

regions directly to user space memory. This allows the user

space application to directly drive the buffer descriptor rings

from user space. Data buffers can be managed and accessed

directly by the application without overhead of a copy.

Taking the specific example of an implementation of a user

space network driver for eTSEC Ethernet controller on a

Freescale QorIQ P1020 platform, the configuration space is a

single region of 4k size, which is page boundary aligned.

This contains all the device specific registers including

controller settings, MAC settings, interrupts etc. Besides this,

the MDIO region also needs to be mapped to allow

configuration of the Ethernet Phy devices. The eTSEC

provides for up to 8 different individual buffer descriptor

rings, each of which are mapped onto a separate memory

region, to allow for simultaneous access by multiple

applications. The data buffers referenced by the descriptor

rings are allocated from a single contagious memory block,

which is allocated and mapped to user space during

initialization time.

V. CONSTRAINTS OF USER SPACE DRIVERS

Direct access to network devices brings its own set of

complications for user space applications, which were hidden

by several layers of kernel stack and system calls.

 Sharing a single network device across multiple

applications.

 Blocking access to network data.

 Lack of network stack services like TCP/IP.

 Memory management for packet buffers.

 Resource management across application restarts.

 Lack of a standardized driver interface for applications.

Fig. 1. Kernel space network driver

Fig. 2. User space network driver

A. Sharing Devices

Unlike the Linux socket layer which allows multiple

applications to open sockets – TCP, UDP or raw IP, the user

International Journal of Information and Education Technology, Vol. 2, No. 5, October 2012

463

space network drivers allow only a single application to

access the data from an interface. However, most network

interfaces nowadays provide multiple buffer descriptor rings

in both receive and transmit direction. Further, these

interfaces also provide some kind of hardware classification

mechanism to divert incoming traffic to these multiple rings.

Such a mechanism can be used to map individual buffer

descriptor rings to different applications. This again limits

the number of applications on a single interface to the number

of rings supported by the hardware device. An alternate to

this is to develop a dispatcher framework over the user space

driver, which will deal with multiple applications.

B. Blocking Access to Data

Unlike traditional socket based access which allows user

space applications to block until data was available on the

socket, or to do a select()/poll() to wait on multiple inputs, the

user space application has to constantly poll the buffer

descriptor ring for an indication for incoming data. This can

be addressed by the use of a blocking read() call on the UIO

device entry, which would allow the user space application to

block on receive interrupts from the Ethernet device. This

also provides the application with the freedom of when it

wants to be notified of interrupts – i.e. instead of being

interrupted for each packet, it can choose to implement a

polling mechanism to consume a certain number of buffer

descriptor entries before returning to other processing tasks.

When all buffer descriptor entries are consumed, the

application can again perform a read() to block until further

data arrives.

C. Lack of Network Stack Services

The Linux network stack and socket interface also abstract

basic networking services from applications like route

lookup, ARP etc. In the absence of such services, the

application has to either runs its own equivalent of a network

stack or maintain a local copy of the routing and neighbor

databases in the kernel.

D. Memory Management for Buffers

The user space application also needs to deal with the

buffers provided to the network device for storing &

retrieving data. Besides allocation and freeing of these

buffers, it also needs to perform the translation of the user

space virtual address to the physical address before providing

them to the device. Doing this translation for each buffer at

runtime can be very costly. Also, since the number of TLBs

in the processor may be limited, performance may be hit. The

alternative is to use Huge-TLB to allocate a single large

chunk of memory, and carve out the data buffers out of this

memory chunk.

E. Application Restart

The application is responsible for allocating and managing

device resources and current state of the device. In case the

application crashes or is restarted without being given control

to perform cleanup, the device may be left in an inconsistent

state. One way to resolve this could be to use the kernel space

UIO component to keep track of application process state and

on restart, to reset the device and reset any memory mappings

created by the application.

F. Standardized User Interface

The current generation of user space network drivers

provide a set of low level API which are often very specific to

the device implementation, rather than confirm to standard

system call API like open()/close(), read()/write() or

send()/receive(). This implies that the application needs to be

ported to use each specific network device.

VI. CONCLUSION

While the UIO framework provides user space

applications with the freedom of having direct access to

network devices, it brings its own share of limitations in

terms of sharing across applications, resource and memory

management. The current generation of user space network

drivers works well in a constrained use case environment of a

single application tightly coupled to a network device.

However, further work on such drivers must take into

account addressing some of these limitations.

REFERENCES

[1] M. Welsh et al., “Memory Management For User-Level Network

Interfaces,” IEEE Micro, pp. 77-82, Mar.-Apr. 1998.

[2] D. Stancevic, “Zero Copy I: User-Mode Perspective,” Linux Journal,

pp. 105, Jan. 2003.

[3] N. M. Thadani et al., “ An Efficient Zero-Copy I/O Framework for

UNIX,” Sun Microsystem Inc, May 1995.

[4] H. Koch, The Userspace I/O HOWTO, [Online]. Available:

http://www.kernel.org/doc/htmldocs/uio-howto.html

Hemant Agrawal is a software architect with Freescale Semiconductor,

Noida, India. He has over 14 years of industry experience in design and

development of networking & telecommunication systems and applications.

His Primary focus & expertise is in Networking acceleration software,

IPSEC, Voice Over IP, SIP, H.323, SS7, ISDN Q.931, MGCP, MEGACO

protocols. He was part of IETF ś SIP-H.323 interworking standard

development team. Hemant holds a B.Tech. in Electrical Engineering from

Institute of Technology, Banaras Hindu University (IT-BHU), Varanasi,

INDIA.

Ravi Malhotra is a software architect with Freescale Semiconductor, Noida,

India. He has over 12 years of industry experience in design and

development of networking & embedded systems and applications. His

Primary focus & expertise is in Networking acceleration software, IPSEC,

Routing protocols and QoS. Ravi holds a B.Tech. in Electrical Engineering

from Institute of Technology, Banaras Hindu University (IT-BHU), Varanasi,

INDIA.

