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Abstract—Locational data are extremely useful resource to 

study customer behavior and mobility patterns. In this paper, 

beyond directly measuring how their location, velocity and 

acceleration change over time, we extend our discussion to 

construct a data driven model to quantitatively evaluate the 

moving objects’ interests and intentions, which are represented 

by their waypoints distributions. Waypoints are defined with 

the Random Waypoint (RWP) mobility model, which is one of 

the most commonly used models in mobility management. To 

effectively deploy RWP model, the detection of accurate 

waypoint distribution is crucial and, however, challenging in 

most practical situations. Moreover, to understand the how and 

why an object moves in a its specific pattern, the knowledge of 

waypoint distribution could be valuable in many use cases. In 

this work, we analytically derive the relationship between 

waypoint distribution and the locational data that could be 

obtained directly from sensors, such as the number of objects’ 

arrivals to a particular area. An estimation scheme using 

supervised learning algorithm is proposed to simplify the 

evaluation of our model. Simulations are carried out to verify 

the correctness and accuracy of our proposed scheme. 

 

Index Terms—Locational data, mobility management, 

waypoint distribution, supervised learning. 

 

I. INTRODUCTION 

With the advances in sensor technologies and positioning 

systems (such as GPS and aGPS etc.), locational data are 

becoming pervasive in our daily lives and scientific 

researches. Either indoor or outdoor, it is not difficult to 

obtain the trace, the velocity, and even the acceleration of any 

moving entity (referred to as an object in this paper) of our 

interest, providing proper equipment and infrastructure. 

Massive data have been collected in various research projects 

since early 90’s [1]. As part of the ―big data regime‖, interests 

in locational data have recently grown even more rapidly 

thanks to the new database technology and data mining 

techniques. With the ability to store and analyze data with 

tremendous size, researchers and stake holders are no longer 

satisfied with obtaining and retaining the data that are 

directly measurable from movement of the object itself (e.g. 

position, velocity, direction etc.), and the focus has been 

shifted to finding out the information hidden underneath the 

numbers (a.k.a. locational data mining [2] or trajectory 
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pattern mining [3]), such as distribution and spatial-temporal 

trending of the moving entities so that proper services could 

be offered, and more effective strategies could be executed 

accordingly [4]. In this paper, we study the locational data 

and derive a quantitative representation of the objects’ 

interests and intentions — namely the waypoint distribution 

— with a supervised learning model [5]. 

Waypoint is defined in the Random Waypoint (RWP) 

mobility model, which is first used by Johnson and Maltz in 

their study of Dynamic Source Routing (DSR) [6] and then 

becomes a benchmark model to evaluate the routing 

protocols and other wireless mobile communication 

applications. Briefly, an object with the RWP mobility moves 

along a zigzag line from one point to another inside a given 

area. These points are referred to as waypoints and the path 

between two consecutive waypoints is defined as a leg. For 

passive moving entities, waypoints can be used to control 

their movement [7]; for pro-active moving entities, their 

decisions of moving around would be reflected by how the 

waypoints are distributed in the area. 

Obviously, many real life scenarios other than wireless 

communications can be modeled by RWP. For example, in a 

conference, people do not walk randomly — they move from 

one discussion group to another, or move to the buffet 

counter to get some food. The locations of discussion groups 

and buffet counters can be considered as waypoints. Military 

vehicles on an open battle field usually move on certain 

direction for a period of time before changing direction again. 

Similarly, in a soccer match, players either chase the ball or 

move to flanks to explore opportunities. The movement of 

the player could be broken into legs that reflect his/her 

decision of moving from one place to another. Because of its 

simplicity, wide adaptability and good flexibility, RWP has 

soon been extended to other fields of research, such as 

robotics [8] and customer behavior studies [9]. 

In the conventional RWP, the waypoints are uniformly 

distributed over the entire area. However, the ―uniform‖ 

assumption can hardly be satisfied in most real life cases. 

Certain regions could be more attractive and worth moving to 

comparing to others. Such regions are referred to as the 

hot-spots. For example, in a conference, participants maybe 

attracted by different discussion groups, buffet tables, or 

poster areas, instead of other random locations. The waypoint 

distributions are therefore not uniformly distributed over the 

entire meeting venue. Or consider the battlefield example, the 

headquarters and warehouses attract more vehicles to move 

to. In the soccer match, the locations of ―hot-spots‖ are 

related to the strategy of the team and the role of the player. 

Different players will have different hot-spots to move 

towards to and thus different waypoint distributions. To 
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address these phenomena, the Non-Uniform Random 

Waypoint (NU-RWP) model has been proposed by Hyytia et. 

al. in [10]. Distributions other than the uniform distribution 

can be used to generate the waypoints. 

Given the waypoint distribution as known, useful insights 

can be revealed by many existing analytical models, as 

discussed in [11]-[13]. However, waypoint distribution may 

not be directly measured or told. Using sensors or detectors, 

we could measure the frequency of hosts arriving/leaving 

certain area, the time the hosts spent in certain area, but these 

are not equivalent to the distribution of waypoints. 

Waypoints distribution is abstract and difficult to obtain, 

because even the objects themselves (e.g. people in the 

conference and soccer players etc.) may not be aware of how 

exactly their waypoints are distributed. They — on their own 

— may not be able to define their interests and intentions 

with some values. But they can be examined and evaluated 

with the waypoint distribution. In some other cases, such as 

the battle field example, waypoint distribution may be 

deliberately hidden from others so that important military 

information would not be leaked. In order to model and study 

the behavior of the mobile objects, waypoint distributions 

need to be studied. In addition, if we are able to detect 

waypoint distribution, we will be able to find out which 

discussion groups (or buffet tables) are more attractive in the 

conference; where the warehouses or headquarters locate in 

the battle field; and whether a certain soccer player is being 

more attacking or defensive in his/her mind, in the previous 

examples. In other words, it becomes possible that we 

represent people’s minds (interest, intentions, or even 

sub-conscious) using a distribution function that could be 

quantitatively evaluated. This information could be of great 

strategic value, and thus a model to derive waypoint 

distribution would be needed. 

In this paper, we take the challenge to find out the 

waypoint distribution from other properties that are directly 

detectable by sensors. In particular, we use a variable namely 

arrival rate  , which can be easily derived from locational 

data, to train a supervised learning system to obtain an 

estimation of the waypoint distribution. We introduce the 

background of our discussion in Section II. The theoretical 

analysis of the relationship between waypoints distribution 

and arrival rate is discussed in Section III, together with an 

estimation scheme. The correctness of this scheme is verified 

through simulations in Section IV. Section V demonstrates 

how our model can be deployed with some examples. Finally, 

Section VI concludes this paper. 

 

II. PRELIMINARIES 

In this section, we will introduce the preliminary 

definitions and assumptions before we present our waypoints 

distribution detection scheme. 

A. Non-Uniform Random Waypoint Mobility Model 

In NU-RWP, the waypoints are generated according to a 

certain probability density function (pdf)  ,  f x y , which 

may not be uniform. We note that  ,  f x y  can be either 

continuous or discrete, as shown in Fig. 1. Moreover, it can 
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also be in a polar coordinate system,  ,f r , e.g. in Fig. 1

(b),  
2

3

3

2
, r

a
f r


  . We use  ,  f x y to denote the pdf of the 

distribution of a host by default in this work. In fact all the 

analysis applies to polar coordinates as well.

The probability of a waypoint being generated in a given 

area A is

   ,  F f x y dxdy


             (1)

Those areas with higher values of F(A) are the hotspots,

shown by the darker shaded areas in Fig. 1, meaning such 

places are more favorable than the others. In contrast, those 

with extreme low F(A) values could be referred to as 

cold-spots, which are the regions with pale color in Fig. 1. 

The ―hotness‖ and ―coldness‖ reflect the objects’ willingness 

of moving to such places. Moreover, the value of F(A) would 

be a quantitative definition of the objects’ interests and 

intentions for area A.

Fig. 1. Different types of waypoints distributions.

We assume that the movement of all the objects is 

restricted inside a convex area denoted as 0 , thus we 

have  
0

, 1f x y dxdy 
. To estimate  ,  f x y , we can 

evaluate the probabilities of the waypoints being generated in 

different parts of 0 . 

It is well known with RWP model that the arrivals of 

multiple independently moving objects form a Poisson 

process [14], and it can thus be decomposed to arrivals of 

each single host according to the superposition property and 

vice versa. For the convenience of discussion, we consider a 



  

single object first. The discussion could easily be extended to 

a scenario with multiple objects.  

 

 
Fig. 2. Overview of supervised learning system. 

 

B. Supervised Learning System 

The block diagram of supervised learning system [5] is 

described through Fig. 2. Training patterns consist a number 

of input-output pairs are used to teach the learning system, 

which takes the training input and produces system output. 

The teaching algorithm processes the errors constructed from 

the difference between the desired output (from training 

patterns) and system output to update the learning system. 

Through repeated interactive training procedures, the 

parameters in the learning system are adjusted by the error in 

a way that the system output tries to follow the desired output 

as close as possible.  

In our work, during a certain period of time, we measure 

the number of times that the object enters (arrives) a given 

concave area (referred to as destination area d ) inside 0 . 

We use n  to denote the number of arrivals of the object to a 

particular d .  

To find the waypoint distribution of the object, we need to 

consider multiple destination areas  d

k and corresponding 

number of arrivals kn . The data pairs   ,d

k kn will be our 

training patterns.  

 
Fig. 3. Corresponding area definition. 

 

 

 

III. DISTRIBUTION DETECTION SCHEME 

To derive the waypoints distribution, we define and 

evaluate the following attributes:  

1) Probability of Arrival: the probability of the object 

arriving in d via a particular leg i , denoted as Pri
; 

2) Arrival Rate: the expected probability that the object 

arriving in d in a randomly given leg, denoted as . 

Using the mathematical property of the geometric model, 

we design the following algorithms to evaluate 

We denote the 
thi  waypoint of the object as iP . 

A. Evaluation of Pri
 

When the object moves on the 
thi leg (denoted as i ), it 

arrives in d only if the directional line segment 

1i iPP intersects with d . This is a necessary but not 

sufficient condition, because when iP  is inside d , the 

object will either stay inside the destination area d or move 

out of d . We define another new term, namely the 

corresponding area of a given point P  and a destination 

area d , denoted by  ,  c dP  as follows: 


 

if iP is at P and 1iP is located in the corresponding area 

of P , the object will arrive in d in leg i  (i.e.
 1i iPP  

intersects with d and P is not inside d );  


 

Otherwise, if 1iP is located outside the corresponding area, 

the object will not arrive in d in i . 

Understanding that  ,  c dP  can be calculated from the 

coordinates of P and d vertices, we abbreviate the notation 

to c . 

In Fig. 3 we show that if 1iP  is within the corresponding 

area c , leg i would pass through the destination area; while 

as 1'iP  is located outside the corresponding area, i would 

not pass through
d , meaning that object k will not arrive in 

the destination area in leg i . We can see that the 

corresponding area c is bounded by the two tangent lines 

of d from P and the edges of d and 0 , as shown in Fig. 3. 

Therefore, the probability of the object arriving in d via 

leg i is equivalent to the probability that 1iP is located 

within c which — according to Eqn. 1 — can be evaluated 

as: 

   Pr ,
c

c

i F f x y dxdy


              (2) 

  

The value of  can be estimated empirically as n
N

 
 
, 

where N is the total number of legs that the object has 

traveled in an adequately long period of time, and n is the 

number of the object’s arrivals to the area d during this 

period. Since with RWP, each waypoint is independently 
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From input, the vertex coordinates of  d

k and the total 

number of legs N, the learning system will use the model we 

derive in Section III to calculate the estimated number of 

arrivals, denoted as kn . The error between kn and kn

(consists of the absolute error k and the relative error k ) 

will then be processed by our teaching algorithm discussed in 

Section III-D in order to update the parameters in the learning 

system ijw . The values of  ijw will be used to determines 

the distribution of waypoints represented by  jg . The 

meaning and usage of these variables will be introduced in 

the following sections.

B. Evaluation of 



  

 

 

1 2 1
Pr Pr Pr Pr

N

N ii
n


      

 

Under the assumption that the object has traveled in an 

adequately long period of time, N should be adequately 

large. The arrival rate can be represented as 

 

 1

1
Pr

N

ii

n

N N



   . 

 

It indicates that  is in fact the expected value of Pri
, 

denoted as Pri
. Therefore, 

 

 

   

Pr , Pr

, ,

i i i i
c

i

n c

i P P i P P

P

P P P P

P

n
f x y dx dy

N

f x y f x y dxdy dx dy




 

  

 
   

 



 

    (3) 

 

Thus we have 

 

   , ,
n c

P P P P

P

n N f x y f x y dxdy dx dy
 

 
   

 
    (4) 

 

Theoretically, the above equation could be used as the 

supervised learning system, because from the vertices 

coordinates of d , we are able to locate  ,  c dP  and thus 

evaluate n . However, solving these integrations could be 

tedious; we propose the following estimation scheme to 

simplify the process. 

C. Grid-Based Distribution Estimation 

 

 
Fig. 4. Corresponding area with grids. 

 

We put the network area into a grid graph. iG denotes the 

center of grid i as shown in Fig. 4. We assume that there 

are
gN grids of which the centers are inside d . We assign a 

real positive number ig to each iG so that 

 

 

Pr a waypoint is generated inside grid 

,
i

i

G

g i

f x y dxdy



 
 

 

and 

 

1
1

g

n
i

N

i iG i
g g

 
    

 

We can thus estimate  ,f x y  by evaluating ig . 

Consider a number of dN destination areas of our interest, 

they can be dN sensors deployed inside 0 with their sensing 

range as d ’s; or simply areas we select to study the trace of 

the objects. A corresponding area  ,c d

i kG   (denoted as 

c

ik for short in the next equation) can be defined with 

respect to iG and
d

k . We use kn to denote the number of 

times the object arrives at
d

k . Based on Eqn. 4: 

 

1 1

g g

c c
j ik j ik

N N

k i j i j

i iG G

n N g g N g g
  

 
  

 
 

    . 

 

We note that since a point cannot be in its own 

corresponding area no matter where is the destination area, in 

the above equation we have i j . We define a variable 

if 

0 if 

i j

ij

g g i j
w

i j


 


 , 

and a binary relationship k : 

   , ,c d

k j i ki j G G    . 

The expression of kn can be simplified to 

 , k
k iji j

n N w


  
 .                     (4) 

We have 
ij jiw w  and 

'

'

i j

ij

w

i iw
g g for arbitrary 

non-equal i , j  and 'i . Thus  

' *

'

1 ' ' , ' * *

1 1,
gN

i j

i i i i

i i i i i i j ij

w
g g g g

w   

 
      

 
    (5) 

where the values of *j  can be different in different terms. 

For example, if 1i  , we can use different value of  *j  to 

evaluate
*' * 2,5 3,2 4,7

' * 1,5 1,2 1,7 1 *

gN ji j

i i ij j

ww w w w

w w w w w

      , 

where * 5,2,7,j   .  

This equation shows that the values of  ig and the 

International Journal of Information and Education Technology, Vol. 3, No. 4, August 2013

420

generated, Pri
is independent from Prj

, if i j . Considering 

that there are N legs, we can estimate the number of 

arrivals n by



  

 ijw  waypoints distribution can be derived if we can 

evaluate  ijw . Therefore, in the learning system, if the 

values of  ijw and N are estimated,  ig can be easily 

derived from them, and thus the waypoint distribution. 

D. Teaching Algorithm 

The learning system is initialized as if the waypoints are 

uniformly distributed, where 1

gi N
g  and thus 2

1

g
ij N

w  . 

N can be determined empirically. In our case it is initialized 

as  2max akN n . 

In each iteration of the supervised training, akn is 

computed from
d

k ,  ijw and N using Eqn. 5. As the 

values of  ijw and N  we are using may not be accurate, 

the following errors could be produced:    

 The Absolute Error: k k kn n    ,  

 The Relative Error: k

k

n

k n
    . 

They are used to update the values of  ijw and N . 

We first note that the learning system can be scaled by a 

factor of 

1

1

H
g g

N N

k

k




 
   
 
  . 

Therefore, the value of N can be updated as 

* HN N  . 

This step makes the value of N converges quickly, as we 

will show in Section IV. It also proves the initial value 

of N is not crucial in our algorithm, and thus can be 

determined empirically. 

It will affect the value of absolute error k , too:  

Hk k kn n    . 

Therefore when we use  k and H  to update the values 

of ijw , we have  

1

'
gN

k
ij ij

k k

w w




 


 , 

where k denotes the number of  ,i j pairs in k . 

The values of  ig can be obtained by Eqn. 6 as 

1

' *

' 1, ' , * ' *

1
gN

i j

i

i i i j i ij

w
g

w



  

 
   
 

  , 

Since we know that
1

1
gN

ii
g


 , we can 

normalize ig so that 

*

*

*

1

g

i
i N

ii

g
g

g





 . 

* * *

ij i jw g g . 

The new values ( *

ijw and
*N  ) are used in the next 

iteration to compute the system output akn . This learning 

procedure repeats until the errors are close to zero. The 

values of  ig are thus obtained, as we demonstrate in 

thenext section.  

 

 
Fig. 5. Results with fewer sensors. 

 

 
Fig. 6. Results with more sensors. 

 

IV. EXPERIMENT RESULTS 

We use the two examples in Fig. 1 to demonstrate the 

correctness of our scheme. The two scenarios are referred to 

as scenario 1 (Fig. 1 (a) ) and 2 (Fig. 1(b) ) with a =1000m. 

C++ programs are used to simulate the object movement and 

measure the number of arrivals of different randomly 

selected destination areas. The average size of the destination 

areas is approximately 750m2. The simulation duration 

length is T = 10000s. 

Fig. 5 and Fig. 6 show our estimation of the waypoints 

distribution. The gray scaled color in each grid corresponds 

to its value of ig . Comparing them with Fig. 1 where the 

exact distributions are depicted, we can see that the hot and 

cold-spots can be accurately identified in our results.  

Since our estimation is grid-based, by having more grids, 

higher resolution of the waypoints distribution can be 

obtained. This is demonstrated by comparing Fig. 5 with Fig. 

6, where different numbers of grids are used.  
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Then,  ijw can be updated again as



  

 
 

 
Fig. 7. Progress of training. 

 

The precision of estimation can be further improved if we 

train the system with more destination areas or go through 

more training iterations. This is demonstrated by Fig. 7. We 

consider a particular grid, namely grid x in scenario 2 (at the 

lower right corner of Fig. 6 (b) ). We can see that N and xg  

both eventually converge to the actual value (obtained from 

the actual distribution) with adequate number of iterations as 

depicted in Fig. 7 (a) and Fig. 7 (b), respectively. It can be 

observed that N converges quickly towards the actual value, 

while value of xg changes much slower. This is because N is 

scaled with the system in each iteration, and thus increases 

much faster than xg , which is incrementally updated. We can 

see from Fig. 7(a) that when more sensors are deployed ( sN  

increases), there will be more training patterns available to 

teach the learning system, making each iteration more 

effective than the case with fewer sensors. The value of xg  

thus evolves much faster towards the actual values. 

  

V. USE CASE EXAMPLES 

To demonstrate how our model could be deployed for 

waypoint distribution detection, we propose three different 

examples on how data could be collected and destination 

areas could be selected: 

1) Mobile sensors with detection capability are deployed. 

As the sensor move (not necessarily in RWP), they 

detect the number of arrivals of nearby objects. Thus the 

destination areas will be the regions within a sensor’s 

sensing range. Even only one single sensor is used; it 

can collect data for multiple destination areas, as shown 

in Fig. 8 (a). Stationary sensors with directional antenna 

are deployed. It can change its sensing direction so that 

different destination area could be covered. 

Alternatively, an Omni-sensor with power controlling 

mechanism could also be deployed. Destination areas 

will be the concentric circles within the sensor’s varying 

range, as depicted in Fig. 8 (b). 

2) Sensors can be attached to the mobile objects of our 

interest to record their traces. In Fig. 8 (c), we show that 

it is possible to obtain their traces of the soccer players 

from the match first. Then destination areas could be 

defined manually and the waypoint distribution could be 

studied. We note in this scenario, since the complete 

movement trace is available, we may omit N (total 

number of legs) in the learning system and simplify the 

training process. 

Due to the constraint of page limits, we could not include 

any detailed case study in this paper. More use cases and 

examples will be demonstrated in an extended version. 

 

 
 

 
 

 
Fig. 8. Case studies. 
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VI. CONCLUSION 

In this paper, we construct a data driven, supervised 

learning system to detect waypoints distribution in mobility 

management problems. When the objects move in the 

Non-Uniform Random Waypoint mobility model, our model 

estimate how the waypoints are distributed from the numbers 

of arrivals of the objects to certain area. This information is 

of great practical value and can be used in various real life 

applications, such as customer behavior study, military 

surveillance, and sports data analysis. Moreover, waypoint 

detection would be a simple and intuitive way to evaluate the 

mobile objects’ interest and preference when moving around 

the area. With the distribution function, people’s intention 

and willingness could be quantitatively defined. Further 

studies could also be carried out based on this to address the 

reason that affects people’s choice.  
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