



Abstract—In the regime of “Big Data”, data compression

techniques take crucial part in preparation phase of data

analysis. It is challenging because statistical properties and

other characteristics need to be preserved while the size of data

need to be reduced. In particular, to compress trajectory data,

movement status (such as position, direction, and speed etc.)

need to be retained. Moreover, for the increasing demand of

real-time processing capability, “online” algorithms are

becoming more desirable in data analysis. In this paper, we

Index Terms—Data compression, trajectory data, online

algorithm.

I. INTRODUCTION

Over the last few decades, with the increasingly accurate

positioning services (e.g. GPS, AIS, Mobile Phone

Triangulation, RFID/Wi-Fi tracking etc.) and the decreasing

price of their deployment, locational data becoming

pervasive in our daily lives and scientific researches. Either

indoor or outdoor, it is not difficult to obtain the trace, the

velocity, and even the acceleration of any moving entity

(referred to as an object in this paper) of our interest,

providing proper equipment and infrastructure. Massive data

have been collected in various research projects since early

90s [1]. As part of the ―big data regime‖, interests in

locational data have recently grown even more rapidly thanks

to the new database technology and data mining techniques.

When locational data coupled with time-stamps, it becomes

spatial-temporal data — with both space (spatial) and time

(temporal) information [2]. The timely sequence locations of

an object define its trajectory. When multiple objects are

concerned, an ID string or number is used in trajectory data

for identifying the objects.

Trajectories of objects are widely used in a variety of

applications, such as traffic modeling and supply chain

management [3]. These efforts are being hampered by the

sparse nature of data collection strategies, the sheer volume

of the data, and technical issues associated with the use of the

Manuscript received April 12, 2013; revised June 25, 2013. This work

was supported in part by the Singapore Economic Development Board

(EDB).

Wang Ting is with SAP Asia Pte Ltd, Singapore (e-mail:

dean.wang@sap.com).

data. The enormous volume of data can easily overwhelm

human analysis. This motivates the need for automated

methods to compress and analyze the data.

There are mainly two different approaches in data

compression:

1) Coding based: data is encoded using fewer number of

bits than the original representation [4]. Data will be

decoded before used in other applications or analysis;

2) Sampling based: part of the data is taken as samples

while others are disregarded. Sampled data could be

directly used in applications or analysis. However, good

sampling algorithms will be needed to preserve

statistical properties or other characteristics of the data.

While the coding approach is more relevant to data storage

and presentations techniques (such as video and audio

compression and streaming), sampling based compression is

more commonly used with data obtained from measurements

or signals, such as trajectory data. In this paper, we will focus

on the sampling based approach, i.e. on how to sample

trajectory data efficiently and effectively.

In computer science, an online algorithm [5] is one that can

process its input piece-by-piece in a serial fashion, i.e., in the

order that the input is fed to the algorithm, without having the

entire input available from the start. In contrast, an offline

algorithm is given the whole problem data from the

beginning and is required to output an answer which solves

the problem at hand. In the context of trajectory data mining,

online algorithms are extremely useful to enable real time

configurations and optimizations. For example, to use the

GPS data of the vehicles in traffic management, online

algorithms should be preferred, as we could not wait till the

end of the day to study the traffic pattern. Congestion and

accidents would only be prevented or reduced if we were able

to make online (real-time) adjustment to the policies (e.g.

traffic lights, route recommendations). Data compression, as

part of the data mining process, will also need to be online to

deal with real-time, streaming data. Moreover, simple, fast

yet elegant algorithms will be desirable so that more time and

computational resources could be used on more tedious tasks

(such as the classification and optimization problems).

In this paper, we propose an On-Line Data Compression

Algorithm for Trajectories (OLDCAT). It deals with the

trajectory sampling and compression problem; identifies key

points in a trajectory that define its characters; and

re-constructs the trajectory with much fewer data points. A

brief introduction to the existing works and challenges are

discussed in Section II, followed by our discussion of the

OLDCAT algorithm in Section III. We also show that by

adjusting the parameters of OLDCAT, accuracy and scale of

the compression is flexible and predictable in Section IV. A

An Online Data Compression Algorithm for Trajectories

(An OLDCAT)

Ting Wang, Senior Member, IACSIT

International Journal of Information and Education Technology, Vol. 3, No. 4, August 2013

480DOI: 10.7763/IJIET.2013.V3.322

introduce an On-Line Data Compression Algorithms for

Trajectories (OLDCAT), which is an elegant, fast algorithm to

effectively compress trajectory data to desirable volume. It is

able to deal with real-time data, and scalable to adapt to

different sensitivity, accuracy, and compression requirements.

An evaluation of its parameter settings and a case study are also

discussed in this paper.

case study of how OLDCAT could be used with some harbor

data is discussed in Section V. Section VI concludes the

paper with our findings and contributions.

II. EXISTING WORKS AND CHALLENGES

Based on dynamic programming, Bellman’s algorithm [6],

[7] has over 50 years of history in using point samples to

represent lines and curves. Its results have been proven

optimal with minimal root mean square errors under given

conditions. The original implementation of this algorithm has

a worst-case running time of O (O3), where n is the number

of points in the trajectory. This is a serious drawback that

stops it being used with large data set or when real-time

solution is required. A recent update [8] shows with

additional storage, the running time of Bellman’s algorithm

could be reduced to O (O2). However, it still not fit to the

―online‖ requirement, and not able to deal with really ―big‖

data.

The Douglas-Peucker algorithm [9] is the all-time classic

line generalization heuristic. It is commonly used to represent

a curve with a series of line segments, and thereby compress

the storage requirement. However, as pointed out by

Meratnia and de By in [10], Douglas-Peucker algorithm and

its other implementations are not suitable for trajectory data

as they could not deal with the time information, and may

have treat the locational data in wrong sequence. Meratnian

and de By thus proposed their own algorithm namely

Top-Down Time Ratio (TD-TR) algorithm, which utilizes

the temporal component in the trajectory data. Based on

TD-TR, they extended their works to OPen Window Time

Ratio (OPW-TR) and Open Window SPatial-temporal

(OPW-SP) algorithms, which are similar to TD-TR but use

different windowing criteria and error-thresholds. The major

drawback of this group of algorithms is that they require all

the trajectory data be available before choosing the line

segments that represent the trajectory. Therefore they are

―offline‖ solutions to the problem we are looking at.

The STTrace algorithm [11] is capable of dealing with

online trajectory data streams, but it also requires object

heading and speed information to characterize a trace.

Similarly, the Semantic Trajectory Compression [12]

algorithm uses urban map together with GPS data. The

additional information (e.g. speed, heading, or map) may not

be always available with the trajectory data, and thus the

suitable scopes of these algorithms are limited. In our work,

we aim to compress the trajectory with minimum information,

i.e. the object ID, the time stamp and the longitude/latitude

values from any positioning service.

Another challenge in trajectory data compression is that

due to signal interference or technical flaw, data may not be

accurate. For example, it’s normal to have ~10m error in GPS

data. For mobile phone triangulation, error can go as high as

1 mile when base stations are scarcely located. Even in a tiny

city such as Singapore, the error is ~2m on average. Effective

compression algorithms need to be able to deal with such

error/noise in the raw trajectory data.

Moreover, scalability is another desired feature in

trajectory studies. One may want to understand the ―big

picture‖ of the trajectory as well as details of movements in

some particular areas. This means we should be able to view

different levels of details when needed, by adjusting the

parameters of the algorithm. We will show in the next section

how we make our On-Line Data Compression Algorithm for

Trajectories, a.k.a. OLDCAT be online, adaptive, and

scalable.

III. THE OLDCAT

As discussed in the previous Section, we assume only

minimum information in the raw data: the object ID, time

stamp t, and longitude/latitude values (X, Y). For the

convenience of discussion, we focus on a single object. The

same algorithm and related discussion can easily be extended

to the cases of multiple objects.

We assume the raw data stream consists of a series

locational data with time stamps, denoted as

 
0 1 2
, , , , ,

nt t t tP P P P  

 
0 0

' , , ,
i jt t t

i j
P P P

 
 

We note that the raw data stream may not be continuous, as

the signal may disappear when the positioning device is

switched off or out of reach. Also, the object may stop

moving from time to time. These events break the trajectory

into segments. We define 5 different types of points that

construct a trajectory:

1) STAY Point: where the object stops moving and remain

stationary for a period longer than a predefined

constant
maxT . A STAY point itself forms a trajectory

segment. Denoted as S .

2) BEGIN Point: where a segment of trajectory begins. It

marks the location where the signal of the object appears

after disappeared for a period of length
maxT , or the

object moves off from a stay point for a distance longer

than
minD . This minimum distance control parameter

minD is needed to tolerate signal noises and errors.

BEGIN points are denoted as B .

3) END Point: where a segment of trajectory ends, when

signal fades out or object stops moving. A BEGIN point

together with the following next END point defines a

segment of the trajectory. Denoted as E .

4) MOVE Point: where the object moves forward without

making significant turns for a distance longer than a

predefined constant
maxD . Denoted as M .

5) TURN Point: where the object turns for an angle

sharper than a predefined value min . Denoted as T .

We use  to denote the state of P . For example,

PS means P is of type STAY. The parameters

(
maxD ,

minD , maxT , min) can be adjust to according to the

requirement of the trajectory data or the signal quality. This

International Journal of Information and Education Technology, Vol. 3, No. 4, August 2013

481

where  , ,
nt nP x y t is referred to as a data point. The

objective of OLDCAT is to find a sampled subset of

 denoted as '  and to represent  .

will be discussed in detail in Section IV.

When a new data point tP is collected, OLDCAT tries to

identify whether it belongs to one of the 5 types above. If yes,

we will add tP to ' , otherwise the data point will be

disregarded. In the following section, we describe the

detection of begin, end and stay points, which is relatively

more straight forward than detection of the move and turn

points, which will be covered in Section III-B.

A. Identifying BEGIN, END and STAY Points

We create Algorithm 1 for the purpose of finding points of

STAY, BEGIN and END type, namely OLDCAT_SBE. We

use ct to denote current time, thus
ct

P is the latest (current)

data point, and
1ct

P


will be the previous (second latest) data

point. 'tP is used to denote the last data point added to

trajectory ' , thus its time stamp 't will be the largest in ' .

We note that before considering adding
ct

P to ' as a

BEGIN, END or STAY Point, we should have

1)
' minct tP P D : the object has moved off for a minimum

distance from the previous data point in the compressed

trajectory;

2) 1 maxc ct t T  : the time difference for the last two

consecutive data points is larger than the maximum

requirement.

Otherwise,
ct

P be stored aside in a set
temp , and handled

by procedure OLDCAT_MT to check if it should be added

as a MOVE or TURN point. This is shown by line 22–23 and

26 in Algorithm 1.

To understand the algorithm, we can see there are four

cases where
ct

P be added to ' as BEGIN points:

1 max'c c ct t t t T    ,

the previous segment (containing
1ct

P


) should have

ended. Thus
1ct

P


will also be added to ' as the END

point of the previous segment, and
ct

P will be the

BEGIN point in the next segment, as in Algorithm 1 line

17–19;

We note that it is not possible that
1ct

P


is an END point

when the procedure OLDCAT_SBE is called. This is

because END point will only be created when the BEGIN

point of the next trajectory segment is identified, i.e. in case 4

discussed above.

It is easy to see that the running time of OLDCAT_SBE

is  1O . Since it only takes the last two data points

(
ct

P and
1ct

P


), it is able to deal with online streaming data

with  1O storage required.

B. Identifying Move and Turn Points

In short, we use ―forward looking‖ to find MOVE points

and ―backward looking‖ to identify TURN points once a

MOVE point is found. That is, we find a MOVE point first,

by measuring the distance between the incoming data point

(
ct

P) and the last point added to the compressed trajectory

('tP). Once a MOVE point is identified, we look back at

those data points collected in time interval ', ct t , which are

stored in
temp by OLDCAT SBE to find the TURN points

where the object makes relatively sharp turns.

1) Geometry Theorems for Finding TURN Points: Before

we show the algorithm, some geometric theorems need

to be introduced.

Theorem 1. (Inscribed Angle Theorem) An angle 

inscribed in a circle is half of the central angle 2 that

subtends the same arc on the circle. Therefore, the angle does

International Journal of Information and Education Technology, Vol. 3, No. 4, August 2013

482

1) Case 1:
ct

P is the first data point of the object, as

depicted in Algorithm 1 line 2–4;

2) Case 2: 'tP is a STAY point, and
ct

P will be the first

data point in the next segment, as depicted in Algorithm

1 line 10–11;

3) Case 3: 'tP is a BEGIN point. Since

1 max'c c ct t t t T    ,

'tP needs to be changed as a STAY point, and
ct

P will

be the BEGIN point in the next segment, as depicted in

Algorithm 1 line 13–14;

4) Case 4: 'tP is a MOVE or TURN point. Since

International Journal of Information and Education Technology, Vol. 3, No. 4, August 2013

483

not change as its apex is moved to different positions on the

circle.

Fig. 1. Inscribed angle.

Proof to Theorem 1 can be found in [13]. In Fig. 1, P and

"P are points on a circle centered at O . According to this

Theorem, we can see " ' 'PA P PAP  . Moreover, the

following Corollary could be derived:

Corollary 1. (Inscribed Angle Corollary) For the same arc,

if the apex is located inside the given circle, the angle will be

larger than the inscribed angle; otherwise if it is located

outside, it will be smaller than the inscribed angle.

Proof: Let’s consider inscribed angle 'PAP in Fig. 1.

Point B and C are on the line segment of OA and its

extension, respectively. In PAB , its exterior angle

OBP BAP APB PAB    .

Similarly, in 'P AB , we have ' 'OBP P AB  . Thus

' '

' '

PAP PAB BAP

PBO OBP PBP

  

  

.

According to Theorem 1, this shows that 'P BP is larger

than any inscribed angle that subtends the same arc with

'PAP . Using the same principle, we can show that

' '

' '

PCP PCA ACP

PAB ABP PAP

  

  
.

Thus for any given apex located inside (e.g. B) or outside

e.g. C) the circle, we can always locate the corresponding

inscribed angle (e.g. 'PAP) by connecting the circle center

with the point and extend, and find that Corollary 1 is true.

We note it due to symmetry, on the other side of line

segment 'PP we can find another circle center other than O

(denoted as 'O). Its corresponding arc is shown in Fig. 1

as'PA P , and Theorem 1 and Corollary 1 also hold to

show ' ' " 'PA P PC P  .

Thus we are able to draw the conclusion that for any point

namely B located inside the ―olive‖ shape ' ' "PA P A A

(which is in fact an equal-circle-intersection area),

' 'PBP PAP  ; for point C outside this area,

' 'PCP PAP  . Moreover, using analytical geometry

techniques, given coordinates of P and 'P , and the size

of 'PAP , it is not difficult to obtain the coordinates of O

and thus determine whether or not a given point is inside the

olive area or outside. The calculation steps are intuitive and

thus omitted in this paper. We define this procedure as an

OLIVE.CHK, which could be used in the OLDCAT_MT

algorithm to find the TURN points.

2) OLDCAT_MT: Let’s consider P and 'P in Fig. 1 as two

different data points in the raw trajectory data departed

by a certain amount of time, and thus there could be a

series of other data points taken between them. Theorem

1 and Corollary 1 can be used to identify the points

where the object makes significant turns (turns with

angle sharper than min , such as at point C or "C),

and add them as TURN point to the compressed

trajectory ' .

In Algorithm 2, once we find a new data point (
ct

P) which

is at least maxD away from the last data point in the

trajectory ('tP), we add it to the compressed trajectory (')

as a MOVE point, otherwise add to the temporary storage

(
temp) as a future candidate of TURN point.

After adding each MOVE point, the while loop from line 6

to line 16 looks at every data point stored in
temp and tries

to identify TURN points. In every look the data point with

earliest time stamp in
temp is taken out of the storage as

At
P .

It needs three criteria to qualify as a TURN point:

1) It is at least minD away from 'tP ;

2) It is at least minD away from
ct

P ;

3) It is located outside the ―olive area‖ defined by 'tP ,
ct

P ,

International Journal of Information and Education Technology, Vol. 3, No. 4, August 2013

484

and min .

Again, the use of minD is to tolerate signal noises and

errors.

As discussed in the previous section, an independent

procedure OLIVE.CHK uses analytical geometry

techniques to confirm whether or not
At

P in outside the olive

area, i.e. represent a turning angle sharper than min . The

outline of the procedure is presented in lie 21–28 of

Algorithm 2.

When we add
At

P as a TURN point in the compressed

trajectory ' , it is possible that 0At t and
At

P should

replace 'tP as the last data point in the trajectory before
ct

P ,

as done by line 12–14 in Algorithm 2. This is important

because for next data points from
temp , the new 'tP will be

used on line 9 for the distance and olive check.

We note that with every MOVE point added, data points

storage
temp will be removed one by one (line 8). At the end

of the while loop,
temp should become empty. New data

points will be added to
temp with new OLDCAT_SBE and

OLDCAT_MT procedures. Thus we could consider
temp as

a ―buffer‖ with selected items from the incoming data stream.

It is cleared once a MOVE point is added, and will not store

the entire history of the collected data points.

The running time complexity of OLIVE.CHK is  1O .

For OLDCAT_MT it is  O n , where n is number of data

points in Ptemp. It also needs  O n to store
temp . Similar to

OLDCAT_SBE, OLDCAT_MT does not require all the

historic data points to be stored, and is clearly an online

algorithm.

IV. PERFORMANCE ANALYSIS

OLDCAT offers a compression for the trajectory data with

quality that could be quantified. We show how the error

margin could be estimated in Sect. IV-A. Moreover,

OLDCAT is also flexible in adjusting to different application

requirements and signal conditions, which will be

demonstrated in Sect. IV-B.

A. Accuracy and Error Tolerance

The accuracy of a trajectory data compression algorithm is

determined by the amount of information lost during the

compression/sampling process. Blind spots are defined as the

areas in which the location or direction change of the object

may not be detected by the algorithm, and the outcome

trajectory ' may be inaccurate. For OLDCAT, the ―Olive

Area‖ between two consecutive data points is its blind spot.

Take Fig. 2 as an example. Let’s say P and 'P are two data

points departed by the distance of maxD . The Oliver area

could be defined by having min' ' 'PAP PA P   .

While data point C — outside the blind spot — could be

correctly identified as a TURN point by OLDCAT_MT

procedure, point D and 'D will be disregarded, even

though the object is making sharper turns at these point, due

to the fact that they are located in the blind spot. Similarly, a

lot of details of the curvature trace from P to B and then

to 'P could be lost since they are in the blind spot. Instead,

OLDCAT may compress the trajectory as line segments PB

and 'BP .

Fig. 2. Blind spot of OLDCAT.

To overcome this, we can reduce maxD or increase min .

For example, if we increase min to " 'PA P , the arc from

P to 'P will be lower and 'D could be identified by

OLDCAT_MT as a TURN point. This is a trade-off between

the details of the trajectory and the compression ratio, which

will be discussed in the next section.

With analytical geometry, we could obtain the size of the

blind spot (denoted as b) as functions of maxD (denoted as

d) and min (denoted as ):

2 21 sin 2 secb d


 


 
    

 

The derivation is simple and thus omitted here. We can see

from this equation that b decreases with smaller d or

larger , which seals the conclusion we draw earlier.

Another blind spot is from the minD parameter. In both

OLDCAT_SBE and OLDCAT_MT, we always disregard

data points within minD from an existing point in 'P . We do

this to tolerate the signal noises and errors.

For example, when the object is stationary, its GPS data

could have slight fluctuations. Without the blind area defined

by minD , several STAY point might be identified by

OLDCAT_SBE instead of one. This could add necessary

points to the 'P and thus reduce the efficiency of OLDCAT.

The minD parameter and its drawback are adjustable. If we

are confident that the positioning signal is 100% accurate

without any noises or errors, we may set its value to 0 so that

the blind spot caused by minD will be removed. On the other

hand, if the signal and the positioning technique are poor,

larger minD should be used to tolerate the signal fluctuations,

and thus more details of the trajectory will be lost during

compression.

International Journal of Information and Education Technology, Vol. 3, No. 4, August 2013

485

B. Scalability and Sensitivity

In the previous section we have already shown that the

performance of OLDCAT is closely related to its parameters

(maxD , minD , maxT , min). In this section with some

example and Fig. 3, we will show in detail how each of them

affects the outcome of OLDCAT.

The Raw trajectory data (before compression) is shown in

Fig. 3 (a). We add t0 to t6 to the graph to show the direction

of the object’s movement. Fig. 3b is the reference output of

OLDCAT with all the five types of points shown with

different notations. A total number of three segments are

generated, among which the second segment is of a single

STAY point. Fig. 3c – 3f are the outcomes of changing each

of the four parameters (maxD , minD , maxT , min),

respectively. Comparing them to Fig. 3b, we can see the

effect of each parameter.

Fig. 3. Changing parameters in OLDCAT.

In Fig. 3c we increase maxD . As a result, only points

further away will be added by OLDCAT_MT as MOVE

point. It works fine when the object is moving on a straight

course, such as on from 4t to 6t in the figure; but when the

object moves on a curvature route, like from 0t to 3t , a lot of

trajectory details are lost in the compression. Therefore, if we

want to retain more details of the trajectory, in particular the

curvature, smaller maxD should be used.

As we have discussed in the previous section, when we

decrease minD , we lower the noise/error tolerance of

OLDCAT. We can see this from Fig. 3d. The STAY point is

replaced by three additional very short segments generated

between 3t to 4t by OLDCAT_SBE, and an additional

TURN point is identified at about 2t by OLDCAT_MT.

The usefulness of these additional data points is arguable.

They could be caused by the signal error and noises and thus

―fake‖, but they also could be ―true‖ in the sense that a

smaller value of minD reduces the size of the blind spots, and

enables more data points to be added by OLDCAT. No

conclusion could be drawn with an actual use case and

further knowledge on the positioning signals.

In OLDCAT_SBE, the value of maxT determines how we

divide the trajectory to different segments. When its value

increases, we wait longer for the next data point in the same

segment to show up. From Fig. 3e we can see that segment 2

and 3 in the original OLDCAT results are now connected to

segment 1. This is because with larger value of maxT , the if

condition on line 8 of Algorithm 1 becomes more strict, and

less points would be considered as BEGIN point. It shows

that if we want to study how the trajectory breaks into

segments, smaller maxT value should be used.

We have already shown that a smaller min value will

cause a larger blind spot, and may miss out potential TURN

point. This phenomenon is again shown with Fig. 3f. When

the value of min decreases, the TURN point near

5t disappears. This makes the compressed trajectory less

accurate, but also reduces the number of points in the

outcome trajectory and hence improves the compression ratio.

Adjusting min could be effective when we want to show the

trajectory in different scales and detail levels. In particular, if

we want to study where and how the object makes turns,

different values of min should be used to give us a more

complete picture.

V. CASE STUDY WITH HARBOR DATA

Our office is located near the southern shore of Singapore.

The Pasir Panjang Container Terminal and Jurong Port lies

outside our window. Together, they are one of the busiest

ports in the world [14]. We have been collecting the

Automatic Identification System (AIS) signals [15] since

June 2012. In this study, we are using positioning data of

3000 different ships (randomly sampled out of 3791 in total)

International Journal of Information and Education Technology, Vol. 3, No. 4, August 2013

486

over about three weeks’ time (from 29 June 2012 to 16 July

2012). The data set (i.e.) has 5708927 lines of records of

locations with ship ID and time stamp. Although it is not real

time streaming data, we simulated the data stream with stored

data when we apply OLDCAT.

After compress the data using OLDCAT, we obtained

92907 points in ' . The compression ratio is 1.63%. In Fig.

4 we show the trajectory obtained by OLDCAT for one

single ship and 100 ships respectively. We did not plot the

trajectory for all the 3000 ships because the plot is simply

overwhelming to make much sense.

a) b)

Fig. 4. Compressed trajectory OLDCAT.

In Fig. 4 a), we can see 9 segments of the ship’s trajectory

are identified. In particular, we can see how the ship moves

into the port in segment 4, then move out in segment 5.

Segment 8 is a single STAY point, and is thus less visible in

the figure. This plot shows that with as few as 1% of the data

points, we can still re-construct the movement of the object,

proving the effectiveness of OLDCAT.

Fig. 4b overlays the trajectories of 100 ships. Although

due to the high density of the points in the plot, we may not be

able to see the sequence of the points, interestingly, we can

learn how the ships behave by studying how different types

of the points in ' distribute over the entire area. For

example, a lot of ships make turns at the southern part of the

area, indicated by high density of the TURN points (with

yellow color), while in the middle they simply keeps moving

straight ahead, indicated by the purple color MOVE points.

This could be a starting point of studying the behavior and

identify regulation violation within the harbor area, which is

an interesting extension to the applications of OLDCAT.

VI. CONCLUSION

In this paper we propose an OnLine Data Compression

Algorithm for Trajectory (OLDCAT). It deals with real time

positioning data of moving objects, and tries to identify key

characteristic points that define the trajectory. By taking

these points as samples to represent the trajectory, it

compresses the trajectory data to huge extends. The key

strengths of OLDCAT include: online computation, very low

( O n
) running time and storage space complexity, adjustable

scale, and signal error/noise tolerance. We have analytically

shown the accuracy of the algorithm, and demonstrated

examples and use case studies where OLDCAT can

effectively compress trajectory data and identify the

movement pattern of the objects.

REFERENCES

[1] T. L. Nyerges, ―Locational referencing and highway segmentation in a

geographic information system,‖ ITE Journal, vol. 60, no. 3, pp. 27–31,

1990.

[2] N. Andrienko and G. Andrienko, Exploratory Analysis of Spatial and

Temporal Data, Germany: Springer Berlin, 2006.

[3] I. Forum, Improving Reliability on Surface Transport Networks, OECD

Publishing, 2010.

[4] G. Wade, Signal Coding and Processing, Cambridge University Press,

1994.

[5] Y. Azar, ―On-line load balancing,‖ in Online Algorithms: The State of

the Art, A. Fiat and G. J. Woeginger, Eds., Springer, pp. 178–195,

1998.

[6] R. Bellman, ―On the approximation of curves by line segments using

dynamic programming,‖ Commun. ACM, vol. 4, no. 6, pp. 284, Jun.

1961.

[7] R. E. Bellman, Dynamic Programming, Dover Publications,

Incorporated, 2003.

[8] J. Kleinberg and E. Tardos, Algorithm Design, Pearson Education,

2006.

[9] D. H. Douglas and T. K. Peucker, ―Algorithms for the reduction of the

number of points required to represent a digitized line or its caricature,‖

Cartographica: The International Journal for Geographic Information

and Geovisualization, vol. 10, no. 2, pp. 112–122, 1973.

[10] N. Meratnia and R. By, ―Spatiotemporal compression techniques for

moving point objects,‖ Advances in Database Technology - EDBT,

Heidelberg: Springer Berlin, vol. 2992, pp. 765–782, 2004.

[11] M. Potamias, K. Patroumpas, and T. Sellis, ―Sampling trajectory

streams with spatiotemporal criteria,‖ in Proc. 18th International

Conference on Scientific and Statistical Database Management, pp.

275–284, 2006.

[12] F. Schmid, K.-F. Richter, and P. Laube, ―Semantic trajectory

compression,‖ Advances in Spatial and Temporal Databases. Springer,

pp. 411–416, 2009.

[13] C. Ogilvy, Excursions in Geometry, Dover Publications, Incorporated,

1990.

[14] World Port Rankings 2012, American Association of Port Authorities.

International Journal of Information and Education Technology, Vol. 3, No. 4, August 2013

487

[15] IEC Technical Committee 80, ―Maritime navigation and

radiocommunication equipment and systems,‖ International

Electrotechnical Commission (IEC), Tech. Rep., 1980.

Wang Ting was born in 1983 in Chengdu, Sichuan,

China. He came to Singapore for his undergraduate

studies under Singapore Government-Linked

Company SM2 scholarship in 2001. He obtained his

Bachelor’s degree with honors in 2005 and

subsequently Ph.D in 2011 both at Nanyang

Technological University (NTU), Singapore.

He worked as a demand planner at Apple South Asia

and joined SAP as a Data Scientist in 2012. His research interests include

data mining, mathematical modeling and algorithmic optimization.

Dr. Wang loves soccer. He considers family as his greatest award. He has a

son, and he is a good cook — said his wife.

