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Abstract—In the regime of “Big Data”, data compression 

techniques take crucial part in preparation phase of data 

analysis. It is challenging because statistical properties and 

other characteristics need to be preserved while the size of data 

need to be reduced. In particular, to compress trajectory data, 

movement status (such as position, direction, and speed etc.) 

need to be retained. Moreover, for the increasing demand of 

real-time processing capability, “online” algorithms are 

becoming more desirable in data analysis. In this paper, we 
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I. INTRODUCTION 

Over the last few decades, with the increasingly accurate 

positioning services (e.g. GPS, AIS, Mobile Phone 

Triangulation, RFID/Wi-Fi tracking etc.) and the decreasing 

price of their deployment, locational data becoming 

pervasive in our daily lives and scientific researches. Either 

indoor or outdoor, it is not difficult to obtain the trace, the 

velocity, and even the acceleration of any moving entity 

(referred to as an object in this paper) of our interest, 

providing proper equipment and infrastructure. Massive data 

have been collected in various research projects since early 

90s [1]. As part of the ―big data regime‖, interests in 

locational data have recently grown even more rapidly thanks 

to the new database technology and data mining techniques. 

When locational data coupled with time-stamps, it becomes 

spatial-temporal data — with both space (spatial) and time 

(temporal) information [2]. The timely sequence locations of 

an object define its trajectory. When multiple objects are 

concerned, an ID string or number is used in trajectory data 

for identifying the objects. 

Trajectories of objects are widely used in a variety of 

applications, such as traffic modeling and supply chain 

management [3]. These efforts are being hampered by the 

sparse nature of data collection strategies, the sheer volume 

of the data, and technical issues associated with the use of the 
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data. The enormous volume of data can easily overwhelm 

human analysis. This motivates the need for automated 

methods to compress and analyze the data. 

There are mainly two different approaches in data 

compression: 

1) Coding based: data is encoded using fewer number of 

bits than the original representation [4]. Data will be 

decoded before used in other applications or analysis; 

2) Sampling based: part of the data is taken as samples 

while others are disregarded. Sampled data could be 

directly used in applications or analysis. However, good 

sampling algorithms will be needed to preserve 

statistical properties or other characteristics of the data. 

While the coding approach is more relevant to data storage 

and presentations techniques (such as video and audio 

compression and streaming), sampling based compression is 

more commonly used with data obtained from measurements 

or signals, such as trajectory data. In this paper, we will focus 

on the sampling based approach, i.e. on how to sample 

trajectory data efficiently and effectively. 

In computer science, an online algorithm [5] is one that can 

process its input piece-by-piece in a serial fashion, i.e., in the 

order that the input is fed to the algorithm, without having the 

entire input available from the start. In contrast, an offline 

algorithm is given the whole problem data from the 

beginning and is required to output an answer which solves 

the problem at hand. In the context of trajectory data mining, 

online algorithms are extremely useful to enable real time 

configurations and optimizations. For example, to use the 

GPS data of the vehicles in traffic management, online 

algorithms should be preferred, as we could not wait till the 

end of the day to study the traffic pattern. Congestion and 

accidents would only be prevented or reduced if we were able 

to make online (real-time) adjustment to the policies (e.g. 

traffic lights, route recommendations). Data compression, as 

part of the data mining process, will also need to be online to 

deal with real-time, streaming data. Moreover, simple, fast 

yet elegant algorithms will be desirable so that more time and 

computational resources could be used on more tedious tasks 

(such as the classification and optimization problems).  

In this paper, we propose an On-Line Data Compression 

Algorithm for Trajectories (OLDCAT). It deals with the 

trajectory sampling and compression problem; identifies key 

points in a trajectory that define its characters; and 

re-constructs the trajectory with much fewer data points. A 

brief introduction to the existing works and challenges are 

discussed in Section II, followed by our discussion of the 

OLDCAT algorithm in Section III. We also show that by 

adjusting the parameters of OLDCAT, accuracy and scale of 

the compression is flexible and predictable in Section IV. A 
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introduce an On-Line Data Compression Algorithms for 

Trajectories (OLDCAT), which is an elegant, fast algorithm to 

effectively compress trajectory data to desirable volume. It is 

able to deal with real-time data, and scalable to adapt to 

different sensitivity, accuracy, and compression requirements. 

An evaluation of its parameter settings and a case study are also 

discussed in this paper.



  

case study of how OLDCAT could be used with some harbor 

data is discussed in Section V. Section VI concludes the 

paper with our findings and contributions. 

 

II. EXISTING WORKS AND CHALLENGES 

Based on dynamic programming, Bellman’s algorithm [6], 

[7] has over 50 years of history in using point samples to 

represent lines and curves. Its results have been proven 

optimal with minimal root mean square errors under given 

conditions. The original implementation of this algorithm has 

a worst-case running time of O (O3), where n is the number 

of points in the trajectory. This is a serious drawback that 

stops it being used with large data set or when real-time 

solution is required. A recent update [8] shows with 

additional storage, the running time of Bellman’s algorithm 

could be reduced to O (O2). However, it still not fit to the 

―online‖ requirement, and not able to deal with really ―big‖ 

data.  

The Douglas-Peucker algorithm [9] is the all-time classic 

line generalization heuristic. It is commonly used to represent 

a curve with a series of line segments, and thereby compress 

the storage requirement. However, as pointed out by 

Meratnia and de By in [10], Douglas-Peucker algorithm and 

its other implementations are not suitable for trajectory data 

as they could not deal with the time information, and may 

have treat the locational data in wrong sequence. Meratnian 

and de By thus proposed their own algorithm namely 

Top-Down Time Ratio (TD-TR) algorithm, which utilizes 

the temporal component in the trajectory data. Based on 

TD-TR, they extended their works to OPen Window Time 

Ratio (OPW-TR) and Open Window SPatial-temporal 

(OPW-SP) algorithms, which are similar to TD-TR but use 

different windowing criteria and error-thresholds. The major 

drawback of this group of algorithms is that they require all 

the trajectory data be available before choosing the line 

segments that represent the trajectory. Therefore they are 

―offline‖ solutions to the problem we are looking at.  

The STTrace algorithm [11] is capable of dealing with 

online trajectory data streams, but it also requires object 

heading and speed information to characterize a trace. 

Similarly, the Semantic Trajectory Compression [12] 

algorithm uses urban map together with GPS data. The 

additional information (e.g. speed, heading, or map) may not 

be always available with the trajectory data, and thus the 

suitable scopes of these algorithms are limited. In our work, 

we aim to compress the trajectory with minimum information, 

i.e. the object ID, the time stamp and the longitude/latitude 

values from any positioning service.  

Another challenge in trajectory data compression is that 

due to signal interference or technical flaw, data may not be 

accurate. For example, it’s normal to have ~10m error in GPS 

data. For mobile phone triangulation, error can go as high as 

1 mile when base stations are scarcely located. Even in a tiny 

city such as Singapore, the error is ~2m on average. Effective 

compression algorithms need to be able to deal with such 

error/noise in the raw trajectory data.  

Moreover, scalability is another desired feature in 

trajectory studies. One may want to understand the ―big 

picture‖ of the trajectory as well as details of movements in 

some particular areas. This means we should be able to view 

different levels of details when needed, by adjusting the 

parameters of the algorithm. We will show in the next section 

how we make our On-Line Data Compression Algorithm for 

Trajectories, a.k.a. OLDCAT be online, adaptive, and 

scalable. 
 

III. THE OLDCAT 

As discussed in the previous Section, we assume only 

minimum information in the raw data: the object ID, time 

stamp t, and longitude/latitude values (X, Y). For the 

convenience of discussion, we focus on a single object. The 

same algorithm and related discussion can easily be extended 

to the cases of multiple objects.  

We assume the raw data stream consists of a series 

locational data with time stamps, denoted as 

 
0 1 2
, , , , ,

nt t t tP P P P    

 
0 0

' , , ,
i jt t t

i j
P P P

 
    

We note that the raw data stream may not be continuous, as 

the signal may disappear when the positioning device is 

switched off or out of reach. Also, the object may stop 

moving from time to time. These events break the trajectory 

into segments. We define 5 different types of points that 

construct a trajectory: 

1) STAY Point: where the object stops moving and remain 

stationary for a period longer than a predefined 

constant
maxT . A STAY point itself forms a trajectory 

segment. Denoted as S . 

2) BEGIN Point: where a segment of trajectory begins. It 

marks the location where the signal of the object appears 

after disappeared for a period of length 
maxT , or the 

object moves off from a stay point for a distance longer 

than
minD . This minimum distance control parameter 

minD is needed to tolerate signal noises and errors. 

BEGIN points are denoted as B . 

3) END Point: where a segment of trajectory ends, when 

signal fades out or object stops moving. A BEGIN point 

together with the following next END point defines a 

segment of the trajectory. Denoted as E . 

4) MOVE Point: where the object moves forward without 

making significant turns for a distance longer than a 

predefined constant
maxD . Denoted as M . 

5) TURN Point: where the object turns for an angle 

sharper than a predefined value min . Denoted as T . 

We use   to denote the state of P . For example, 

PS  means P is of type STAY. The parameters 

(
maxD ,

minD , maxT , min ) can be adjust to according to the 

requirement of the trajectory data or the signal quality. This 
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where  , ,
nt nP x y t is referred to as a data point. The 

objective of OLDCAT is to find a sampled subset of 

 denoted as '  and to represent  .



  

will be discussed in detail in Section IV. 

When a new data point tP  is collected, OLDCAT tries to 

identify whether it belongs to one of the 5 types above. If yes, 

we will add tP to ' , otherwise the data point will be 

disregarded. In the following section, we describe the 

detection of begin, end and stay points, which is relatively 

more straight forward than detection of the move and turn 

points, which will be covered in Section III-B. 

A. Identifying BEGIN, END and STAY Points 

We create Algorithm 1 for the purpose of finding points of 

STAY, BEGIN and END type, namely OLDCAT_SBE. We 

use ct  to denote current time, thus
ct

P is the latest (current) 

data point, and 
1ct

P


will be the previous (second latest) data 

point. 'tP is used to denote the last data point added to 

trajectory ' , thus its time stamp 't  will be the largest in ' . 

We note that before considering adding
ct

P  to '  as a 

BEGIN, END or STAY Point, we should have 

1) 
' minct tP P D : the object has moved off for a minimum 

distance from the previous data point in the compressed 

trajectory; 

2) 1 maxc ct t T  : the time difference for the last two 

consecutive data points is larger than the maximum 

requirement. 

Otherwise, 
ct

P be stored aside in a set
temp , and handled 

by procedure OLDCAT_MT to check if it should be added 

as a MOVE or TURN point. This is shown by line 22–23 and 

26 in Algorithm 1. 

To understand the algorithm, we can see there are four 

cases where
ct

P  be added to ' as BEGIN points: 

 

 

 

 

 

 

 

1 max'c c ct t t t T     , 

the previous segment (containing 
1ct

P


) should have 

ended. Thus 
1ct

P


will also be added to '  as the END 

point of the previous segment, and
ct

P  will be the 

BEGIN point in the next segment, as in Algorithm 1 line 

17–19; 

We note that it is not possible that
1ct

P


is an END point 

when the procedure OLDCAT_SBE is called. This is 

because END point will only be created when the BEGIN 

point of the next trajectory segment is identified, i.e. in case 4 

discussed above. 

 

 
 

It is easy to see that the running time of OLDCAT_SBE 

is  1O . Since it only takes the last two data points 

(
ct

P and
1ct

P


), it is able to deal with online streaming data 

with  1O storage required. 

B. Identifying Move and Turn Points 

In short, we use ―forward looking‖ to find MOVE points 

and ―backward looking‖ to identify TURN points once a 

MOVE point is found. That is, we find a MOVE point first, 

by measuring the distance between the incoming data point 

(
ct

P ) and the last point added to the compressed trajectory 

( 'tP ). Once a MOVE point is identified, we look back at 

those data points collected in time interval ', ct t , which are 

stored in 
temp  by OLDCAT SBE to find the TURN points 

where the object makes relatively sharp turns. 

1) Geometry Theorems for Finding TURN Points: Before 

we show the algorithm, some geometric theorems need 

to be introduced. 

Theorem 1. (Inscribed Angle Theorem) An angle   

inscribed in a circle is half of the central angle 2  that 

subtends the same arc on the circle. Therefore, the angle does 
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1) Case 1: 
ct

P is the first data point of the object, as 

depicted in Algorithm 1 line 2–4;

2) Case 2: 'tP is a STAY point, and
ct

P will be the first 

data point in the next segment, as depicted in Algorithm 

1 line 10–11;

3) Case 3: 'tP is a BEGIN point. Since

1 max'c c ct t t t T    ,

'tP needs to be changed as a STAY point, and
ct

P will 

be the BEGIN point in the next segment, as depicted in 

Algorithm 1 line 13–14;

4) Case 4: 'tP is a MOVE or TURN point. Since 
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not change as its apex is moved to different positions on the 

circle. 

 

 
Fig. 1. Inscribed angle. 

 

Proof to Theorem 1 can be found in [13]. In Fig. 1, P  and 

"P are points on a circle centered at O . According to this 

Theorem, we can see " ' 'PA P PAP  . Moreover, the 

following Corollary could be derived: 

Corollary 1. (Inscribed Angle Corollary) For the same arc, 

if the apex is located inside the given circle, the angle will be 

larger than the inscribed angle; otherwise if it is located 

outside, it will be smaller than the inscribed angle. 

Proof: Let’s consider inscribed angle 'PAP in Fig. 1. 

Point B and C are on the line segment of OA and its 

extension, respectively. In PAB , its exterior angle 

 

OBP BAP APB PAB    . 

 

Similarly, in 'P AB , we have ' 'OBP P AB  . Thus 

 

' '

' '

PAP PAB BAP

PBO OBP PBP

  

  

.  

 

According to Theorem 1, this shows that 'P BP  is larger 

than any inscribed angle that subtends the same arc with 

'PAP . Using the same principle, we can show that 

 

' '

' '

PCP PCA ACP

PAB ABP PAP

  

  
. 

 

Thus for any given apex located inside (e.g. B ) or outside 

e.g. C ) the circle, we can always locate the corresponding 

inscribed angle (e.g. 'PAP ) by connecting the circle center 

with the point and extend, and find that Corollary 1 is true.  

We note it due to symmetry, on the other side of line 

segment 'PP  we can find another circle center other than O  

(denoted as 'O ). Its corresponding arc is shown in Fig. 1 

as'PA P , and Theorem 1 and Corollary 1 also hold to 

show ' ' " 'PA P PC P  . 

Thus we are able to draw the conclusion that for any point 

namely B located inside the ―olive‖ shape ' ' "PA P A A  

(which is in fact an equal-circle-intersection area), 

' 'PBP PAP  ; for point C outside this area, 

' 'PCP PAP  . Moreover, using analytical geometry 

techniques, given coordinates of P  and 'P , and the size 

of 'PAP , it is not difficult to obtain the coordinates of O  

and thus determine whether or not a given point is inside the 

olive area or outside. The calculation steps are intuitive and 

thus omitted in this paper. We define this procedure as an 

OLIVE.CHK, which could be used in the OLDCAT_MT 

algorithm to find the TURN points. 

2) OLDCAT_MT: Let’s consider P and 'P in Fig. 1 as two 

different data points in the raw trajectory data departed 

by a certain amount of time, and thus there could be a 

series of other data points taken between them. Theorem 

1 and Corollary 1 can be used to identify the points 

where the object makes significant turns (turns with 

angle sharper than min , such as at point C  or "C ), 

and add them as TURN point to the compressed 

trajectory ' . 

 

 
 

In Algorithm 2, once we find a new data point (
ct

P ) which 

is at least maxD  away from the last data point in the 

trajectory ( 'tP ), we add it to the compressed trajectory ( ' ) 

as a MOVE point, otherwise add to the temporary storage 

(
temp ) as a future candidate of TURN point. 

After adding each MOVE point, the while loop from line 6 

to line 16 looks at every data point stored in 
temp  and tries 

to identify TURN points. In every look the data point with 

earliest time stamp in 
temp  is taken out of the storage as

At
P . 

It needs three criteria to qualify as a TURN point: 

1) It is at least minD  away from 'tP ; 

2) It is at least minD  away from 
ct

P ; 

3) It is located outside the ―olive area‖ defined by 'tP ,
ct

P , 
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and min . 

Again, the use of minD  is to tolerate signal noises and 

errors. 

As discussed in the previous section, an independent 

procedure OLIVE.CHK uses analytical geometry 

techniques to confirm whether or not
At

P  in outside the olive 

area, i.e. represent a turning angle sharper than min . The 

outline of the procedure is presented in lie 21–28 of 

Algorithm 2. 

When we add 
At

P  as a TURN point in the compressed 

trajectory ' , it is possible that 0At t  and
At

P should 

replace 'tP  as the last data point in the trajectory before
ct

P , 

as done by line 12–14 in Algorithm 2. This is important 

because for next data points from
temp , the new 'tP  will be 

used on line 9 for the distance and olive check. 

We note that with every MOVE point added, data points 

storage
temp  will be removed one by one (line 8). At the end 

of the while loop, 
temp  should become empty. New data 

points will be added to
temp  with new OLDCAT_SBE and 

OLDCAT_MT procedures. Thus we could consider
temp  as 

a ―buffer‖ with selected items from the incoming data stream. 

It is cleared once a MOVE point is added, and will not store 

the entire history of the collected data points. 

The running time complexity of OLIVE.CHK is  1O . 

For OLDCAT_MT it is  O n , where n  is number of data 

points in Ptemp. It also needs  O n to store
temp . Similar to 

OLDCAT_SBE, OLDCAT_MT does not require all the 

historic data points to be stored, and is clearly an online 

algorithm. 

 

IV. PERFORMANCE ANALYSIS 

OLDCAT offers a compression for the trajectory data with 

quality that could be quantified. We show how the error 

margin could be estimated in Sect. IV-A. Moreover, 

OLDCAT is also flexible in adjusting to different application 

requirements and signal conditions, which will be 

demonstrated in Sect. IV-B. 

A. Accuracy and Error Tolerance 

The accuracy of a trajectory data compression algorithm is 

determined by the amount of information lost during the 

compression/sampling process. Blind spots are defined as the 

areas in which the location or direction change of the object 

may not be detected by the algorithm, and the outcome 

trajectory ' may be inaccurate. For OLDCAT, the ―Olive 

Area‖ between two consecutive data points is its blind spot. 

Take Fig. 2 as an example. Let’s say P and 'P are two data 

points departed by the distance of maxD . The Oliver area 

could be defined by having min' ' 'PAP PA P   . 

While data point C  — outside the blind spot — could be 

correctly identified as a TURN point by OLDCAT_MT 

procedure, point D  and 'D  will be disregarded, even 

though the object is making sharper turns at these point, due 

to the fact that they are located in the blind spot. Similarly, a 

lot of details of the curvature trace from P  to B  and then 

to 'P could be lost since they are in the blind spot. Instead, 

OLDCAT may compress the trajectory as line segments PB  

and 'BP . 

 

 
Fig. 2. Blind spot of OLDCAT. 

 

To overcome this, we can reduce maxD  or increase min . 

For example, if we increase min to " 'PA P , the arc from 

P to 'P will be lower and 'D  could be identified by 

OLDCAT_MT as a TURN point. This is a trade-off between 

the details of the trajectory and the compression ratio, which 

will be discussed in the next section. 

With analytical geometry, we could obtain the size of the 

blind spot (denoted as b ) as functions of maxD  (denoted as 

d ) and min  (denoted as  ): 

2 21 sin 2 secb d


 


 
    

 
  

The derivation is simple and thus omitted here. We can see 

from this equation that b  decreases with smaller d  or 

larger , which seals the conclusion we draw earlier. 

Another blind spot is from the minD  parameter. In both 

OLDCAT_SBE and OLDCAT_MT, we always disregard 

data points within minD  from an existing point in 'P . We do 

this to tolerate the signal noises and errors. 

For example, when the object is stationary, its GPS data 

could have slight fluctuations. Without the blind area defined 

by minD , several STAY point might be identified by 

OLDCAT_SBE instead of one. This could add necessary 

points to the 'P and thus reduce the efficiency of OLDCAT. 

The minD parameter and its drawback are adjustable. If we 

are confident that the positioning signal is 100% accurate 

without any noises or errors, we may set its value to 0 so that 

the blind spot caused by minD will be removed. On the other 

hand, if the signal and the positioning technique are poor, 

larger minD  should be used to tolerate the signal fluctuations, 

and thus more details of the trajectory will be lost during 

compression. 
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B. Scalability and Sensitivity 

In the previous section we have already shown that the 

performance of OLDCAT is closely related to its parameters 

( maxD , minD , maxT , min ). In this section with some 

example and Fig. 3, we will show in detail how each of them 

affects the outcome of OLDCAT. 

The Raw trajectory data (before compression) is shown in 

Fig. 3 (a). We add t0 to t6 to the graph to show the direction 

of the object’s movement. Fig. 3b is the reference output of 

OLDCAT with all the five types of points shown with 

different notations. A total number of three segments are 

generated, among which the second segment is of a single 

STAY point. Fig. 3c – 3f are the outcomes of changing each 

of the four parameters ( maxD , minD , maxT , min ), 

respectively. Comparing them to Fig. 3b, we can see the 

effect of each parameter. 
 

 
Fig. 3. Changing parameters in OLDCAT. 

 

In Fig. 3c we increase maxD . As a result, only points 

further away will be added by OLDCAT_MT as MOVE 

point. It works fine when the object is moving on a straight 

course, such as on from 4t  to 6t in the figure; but when the 

object moves on a curvature route, like from 0t to 3t , a lot of 

trajectory details are lost in the compression. Therefore, if we 

want to retain more details of the trajectory, in particular the 

curvature, smaller maxD should be used. 

As we have discussed in the previous section, when we 

decrease minD , we lower the noise/error tolerance of 

OLDCAT. We can see this from Fig. 3d. The STAY point is 

replaced by three additional very short segments generated 

between 3t  to 4t by OLDCAT_SBE, and an additional 

TURN point is identified at about 2t by OLDCAT_MT. 

The usefulness of these additional data points is arguable. 

They could be caused by the signal error and noises and thus 

―fake‖, but they also could be ―true‖ in the sense that a 

smaller value of minD reduces the size of the blind spots, and 

enables more data points to be added by OLDCAT. No 

conclusion could be drawn with an actual use case and 

further knowledge on the positioning signals. 

In OLDCAT_SBE, the value of maxT determines how we 

divide the trajectory to different segments. When its value 

increases, we wait longer for the next data point in the same 

segment to show up. From Fig. 3e we can see that segment 2 

and 3 in the original OLDCAT results are now connected to 

segment 1. This is because with larger value of maxT , the if 

condition on line 8 of Algorithm 1 becomes more strict, and 

less points would be considered as BEGIN point. It shows 

that if we want to study how the trajectory breaks into 

segments, smaller maxT value should be used. 

We have already shown that a smaller min value will 

cause a larger blind spot, and may miss out potential TURN 

point. This phenomenon is again shown with Fig. 3f. When 

the value of min decreases, the TURN point near 

5t disappears. This makes the compressed trajectory less 

accurate, but also reduces the number of points in the 

outcome trajectory and hence improves the compression ratio. 

Adjusting min could be effective when we want to show the 

trajectory in different scales and detail levels. In particular, if 

we want to study where and how the object makes turns, 

different values of min should be used to give us a more 

complete picture. 

 

V. CASE STUDY WITH HARBOR DATA 

Our office is located near the southern shore of Singapore. 

The Pasir Panjang Container Terminal and Jurong Port lies 

outside our window. Together, they are one of the busiest 

ports in the world [14]. We have been collecting the 

Automatic Identification System (AIS) signals [15] since 

June 2012. In this study, we are using positioning data of 

3000 different ships (randomly sampled out of 3791 in total) 
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over about three weeks’ time (from 29 June 2012 to 16 July 

2012). The data set (i.e. ) has 5708927 lines of records of 

locations with ship ID and time stamp. Although it is not real 

time streaming data, we simulated the data stream with stored 

data when we apply OLDCAT. 

After compress the data using OLDCAT, we obtained 

92907 points in ' . The compression ratio is 1.63%. In Fig. 

4 we show the trajectory obtained by OLDCAT for one 

single ship and 100 ships respectively. We did not plot the 

trajectory for all the 3000 ships because the plot is simply 

overwhelming to make much sense.  

 

 

a)                                                                                                                             b) 

Fig. 4. Compressed trajectory OLDCAT. 

 

In Fig. 4 a), we can see 9 segments of the ship’s trajectory 

are identified. In particular, we can see how the ship moves 

into the port in segment 4, then move out in segment 5. 

Segment 8 is a single STAY point, and is thus less visible in 

the figure. This plot shows that with as few as 1% of the data 

points, we can still re-construct the movement of the object, 

proving the effectiveness of OLDCAT. 

Fig. 4b overlays the trajectories of 100 ships. Although 

due to the high density of the points in the plot, we may not be 

able to see the sequence of the points, interestingly, we can 

learn how the ships behave by studying how different types 

of the points in ' distribute over the entire area. For 

example, a lot of ships make turns at the southern part of the 

area, indicated by high density of the TURN points (with 

yellow color), while in the middle they simply keeps moving 

straight ahead, indicated by the purple color MOVE points. 

This could be a starting point of studying the behavior and 

identify regulation violation within the harbor area, which is 

an interesting extension to the applications of OLDCAT. 

 

VI. CONCLUSION 

In this paper we propose an OnLine Data Compression 

Algorithm for Trajectory (OLDCAT). It deals with real time 

positioning data of moving objects, and tries to identify key 

characteristic points that define the trajectory. By taking 

these points as samples to represent the trajectory, it 

compresses the trajectory data to huge extends. The key 

strengths of OLDCAT include: online computation, very low 

(  O n
) running time and storage space complexity, adjustable 

scale, and signal error/noise tolerance. We have analytically 

shown the accuracy of the algorithm, and demonstrated 

examples and use case studies where OLDCAT can 

effectively compress trajectory data and identify the 

movement pattern of the objects. 
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