



Abstract—Loading and displaying of the images is one of the

commonly used features of Android applications. Every time

re-download images from the server not only affect the user

experience, excessive amount of pictures but also easily lead to

OOM (out of memory). So it is necessary to cache image for

applications. Image caching scheme first to search the memory

cache, if it returns no resource then go to search the local cache,

if it still has no resource, then turn on asynchronous download

to get the images. To different types of images, this scheme use

different caching strategies. It also optimizes the memory cache

and the local cache at the same time. Experimental results show

that this scheme can effectively improve loading efficiency and

user experience, and avoid the emergence of the OOM

phenomenon of the application process.

Index Terms—Android, cache, image, OOM.

I. INTRODUCTION

With the popularity of mobile devices such as mobile

phones and tablets, users’ requirements for mobile

applications is not only functional, but also have more and

more demands in the field of custom requirements such as

user experience [1], [2]. Since 2010 Google's Android

platform is showing a momentum of rapid development and

has a share soared to more than 50% from less than 10% in

the global smart phone market. It seems to have seized the

"half" [3]. Android is a truly open mobile device platform,

which is composed of operating system, middle ware, user

interface and application software. It is known as the first

mobile software which is truly open and complete for mobile

terminal [4], [5].

Displaying an image in a mobile application is one of the

most common tasks for app developers. Nearly every

application displays some kind of graphics. As reading the

images from the network every time is not only a waste of

time but also traffic and slow, affecting the user experience.

If the images are downloaded to memory for the first time,

although it can be called quickly, the size of a single image

may be up to a few hundred K while memory of mobile

devices is limited(usually 16M). if the image is too large,

memory is often not enough and it will easily lead to OOM

exceptions [6]. Surprisingly, it can be quite challenging to

efficiently load and display an image on Android.

Based on the above contradictions, this paper presents a

general Android platform based image caching scheme. The

scheme not only uses different cache recovery strategies for

images of different characteristics of the Android application,

but also takes three caching strategies, optimizes memory and

Manuscript received April 11, 2013; revised June 19, 2013.

The authors are with the Computer Science and Technology Institute of

Donghua University, ShangHai 201620, China (e-mail:

wangyl_7017@126.com).

local cache. Images of the application display smoothly. It

improves the user experience and is to avoid OOM at the

same time.

The structure of this paper is as follows. Section I

introduces the characteristics and default approach of images

of Android. Section II focuses on the principle of the

proposed image cache scheme. Section III describes the

specific implementation of the scheme. The fourth quarter

verifies the effectiveness of the scheme by experiments and

practical applications. Finally, it concludes.

II. THE CHARACTERISTICS AND DEFAULT APPROACH OF

IMAGES OF ANDROID

As an important user experience elements in Android

applications, images have the following characteristics:

1) As the skin of the application: such images are

generally embedded within the application, released

together with the application.

2) As permanent data resources: such images can be

embedded into the application, and can also be obtained

from the network. Generally in order to reduce the size

of the published application, they will be accessed from

the network.

3) As temporary data resources: such images are

obtained from the network.

The default handling of the images of Android is shown

as below:

Fig. 1. Default handling of image.

III. PRINCIPLES OF ANDROID-BASED IMAGE CACHE SCHEME

For the above defects of supporting network images in

Android application , which makes the application waste a lot

flows and time to download the repetitive images, this paper

presents a more favorable image processing scheme.

Fig. 2 is the basic idea of the proposed scheme: When the

application tries to request a network Image, it first attempts

to access image from memory. If it is in memory cache then

as shown in steps 1, 2, 3, 10, directly returns. If the image is

not cached in memory or cached image is recovered by

Image Caching Scheme Based on Android

Xia Xiaoling and Wang Yunlin

International Journal of Information and Education Technology, Vol. 3, No. 5, October 2013

501DOI: 10.7763/IJIET.2013.V3.325

system, try to get the image from the local cache. From the

Fig. 2. we can see, the application cannot obtain the required

image from memory cache in step 2, it will turn to step 4,

trying to get the image from local cache. If the local cache has

the image then return it, storing it to the memory cache for the

next fetch. As shown, perform steps 1, 2, 4, 5, 6, 10 to return

the local cached image resources. If the local cache also has

no such image or cached image is too old for our request, then

try to access the network image. As Fig. 2 shown if the

application cannot return the image in step 4, then jump to

step 7, directly downloading the image via a network

connection. If it is successful, encrypt it’s version number by

MD5, and together with the image are stored in the local

cache, as well as in memory cache. As shown, the application

will perform step 1, 2, 4, 7, 8, 9, 6, 10 to return the latest

picture of the network resources.

Fig. 2. Principles of image cache scheme.

According to the proposed scheme, when the application

requires for image resources, it firstly tries to search the

memory cache, if the memory is not cached then goes to the

local cache, if it still has no resource, then downloads from

the network. This strategy won’t cause OOM and it ensures

optimal efficiency at the same time. It greatly improves the

the images’ loading speed and user experience.

Besides, in terms of handling exceptions, if the application

is OOM, it will trigger GC operating. System will recycle the

memory resources which are not applicable, and then re-try

to get images to ensure that the images presented to the user

rightly.

Meanwhile, in the memory cache, this article provides a

way to limit the size of memory cache. As long as the image

cache size exceeds the limit, the program will deletes the

long-unused images from memory as to minimize memory

occupation.

In addition, for the image resource for local cache,

programs of this article also provides a strategy to limit the

size of the cache. if the local cache exceeds the setted

maximum cache size, images of old version or low utilization

rate will be removed according to certain strategy so that you

can minimize the space occupied of disc.

For the previously mentioned problem of cached images

may be out of date, the solution provided by this paper is a

version management. When caching the images, application

will store the resource with the version number of the image

(generally last modified time of the image) with simple

encryption. When getting local cached images it will decrypt

first and then compare the version number with the requested,

if it is not the images that are requested, the scheme will turn

to network to obtain the latest picture. So that both the update

of images and prevention of image stolen are guaranteed.

IV. SPECIFIC IMPLEMENTATION OF THE SCHEME

When application starts, it will start the downloader

according to the stetted image type [7]. For example, if the

application is only configured skin image type downloader,

the application will only start this downloader, and then

accompanies it according to the supplied configuration. After

the downloader starts, then waiting for the users to request a

image.

When user requests a image, the application will obtain a

task from the task cache or re-generate a unique download

task ImageTask based on each URL of the image. Before

starting the task, the program will call the callback event

ImageFetchingCallback.onFetchingStarted (ImageTask) to

notice the client that task has begun, and then check memory

cache according to ImageTask. If the image has been cached

in memory, directly fetch it from memory and call the

callback event

ImageFetchingCallback.onFetchingCompleted (ImageTask,

Bitmap) to notify the client that image has been obtained, and

then ends this mission.

If it does not find the requested image in the memory cache,

the program will first retrieve the local cache directory. If the

local cache contains the requested resources, ImageTask will

be added to the local download queue ImageTaskQueue, and

then notify the local downloader CachedPoolExecutor that a

new task has been added, otherwise it will be added to the

network download task queue. For local downloader

CachedPoolExecutor, when it receives the task it will start a

worker thread ImageTaskWorker. Worker thread will first

retrieve the task queue, obtaining the highest priority task

according to ImageTaskContext, and then start to get a local

image. If it is failed to obtain local image then task will be

canceled and added to network image queue. If it causes

OOM when obtaining, the program will intercept the OOM

error, then handle OOM according to the configured

OutOfMemoryAttempt. Default handling is not going to clean

up the memory cache list, but merely calling System.gc () to

trigger system recovery. For network downloader

RemotePoolExecutor, the process is essentially the same with

CachedPoolExecutor, the only difference is just when the

network image obtaining is failed at last, callback event

ImageTaskHandler.notifyFetchingFailed is invoked to tell

the client image fetching failure. If success image resources

will be stored to the local cache and memory cache.

A. Task Queue

Task queue ImageTaskQueue is a list of ImageTask whose

main purpose is to obtain the priority task. Worker thread

ImageTaskWorker which is access to local or network image

will call task list ImageTaskQueue.dequeue () (dequeue

contains the main access algorithm) to get performed

ImageTask. Each time of obtaining ImageTask,

ImagetTaskQueue will traverse all of the tasks to be

performed currently, and then determine the priority of the

task by ImagetTaskContext of each task.

International Journal of Information and Education Technology, Vol. 3, No. 5, October 2013

502

B. OOM Handling

If it causes OOM when obtaining a image, the program

will intercept the error, then handle OOM according to the

configured OutOfMemoryAttempt. OOM will be handled in

the following ways:

1) ATTEMPT_END: only perform System.gc (), do not

clean up the images of the memory cache or re-try to get

images.

2) ATTEMPT_CLEAN: clean up the the memory cache,

call System.gc () but do not re-try to get image resources.

3) ATTEMPT_BEGIN: clean up the memory cache, call

System.gc () then re-try to obtain the image resources

every 2 seconds .

C. Image Version Management

Each image resource file in local cache is divided into two

parts, header information ImageHeader and the image

resource. Header information includes the version number

and the last modification time of the image. Each of the

header information occupy 12 bytes, 4 bytes used to keep the

version and 8 byte to save the lastModified.

When download is complete, image resources will be

stored to the local cache. If version management is needed,

the version number of the image will be stored in the header

information.

When reading for image resource in a local cache with

version management, the program first reads the header

information, the first 12 bytes of the file. If the version

number equals ImageTask.version, read the rest image

resource, and then returns the obtained resource.

D. Memory Cache Strategies

Mentioned solutions for the memory cache management,

this paper provides the following management strategies:

1) WeakMemoryCache: cache without any limitation.

2) LargestLimitedMemoryCache: limit the size of the cache,

and to recover the largest resource when the cache

reaches the maximum size limit .

3) FIFOLimitedMemoryCache: limit the size of the cache,

when the cache reaches the maximum size limit it will be

recovered by the first-in, first-out strategy.

E. Local Cache Strategies

Mentioned solutions for the local cache management, this

paper provides the following management strategies:

1) UnlimitedDiscCache: without limiting the size of the

local cache, unlimited occupation of Disc space.

2) FileCountLimitedDiscCache: limit the number of cache

files, the most-recently-used image file will be delete

when cached files are more than the set maximum

number.

3) CacheSizeLimitedDiscCache: limit the size of the cache

directory, if the number of files in the cache exceeds the

set maximum number, the most-recently-used image

files will be deleted.

V. EXPERIMENT AND ANALYSIS

The main purpose of the image caching scheme proposed

in this paper is to accelerate the speed of loading, so this

section is to illustrate the advantages of our method by

contrast the loading time of the same number of pictures.

Besides our method ImageFetcher, we also achieved a

method called BitMap which do not cache images, for every

loading go directly to the server-side to download resources,

and caching scheme proposed by [8] called

AsyncImageLoader. With the same conditions of network

and mobile devices, we use the three ways to load the same

number and size of images. By measuring the load time, we

illustrate the efficiency of the various options. The

experimental results are shown as Fig. 3:

Fig. 3. Loaded 50 pictures, the time required by the three methods.

The abscissa of the Fig. 3 above shows the size of the

images, and the vertical axis shows the average time required

by the load (experiment was repeated 20 times, an average).

As we can see in the case of small images(5K), the efficiency

of the three methods has no significant difference, especially

ImageFetcher and AsyncImageLoader, both do cache, the

loading speed is very fast, the time nearly can be ignored. As

the images grow larger, time overhead of AsyncImageLoader

slowly increases, while our ImageFetcher is essentially the

same. As BitMap re-request resources from the server and

load each time, it causes a sharp increase in time consumption.

When the size of images reach 500k, AsyncImageLoader and

BitMap both cause OOM, time consumption in the Fig. 3 is

infinite. The reason for AsyncImageLoader is that it does no

optimization for memory cache and images cached in the

memory beyond the memory capacity, while for BitMap the

reason is images downloaded to the memory are too big to

cause a memory leak. Using our ImageFetcher method do not

have to worry about this situation. Unified memory cache

management can not only maximize the reuse of images to

speed up the loading speed, but also avoid memory overflow

problems.

In actual Android application testing we also found that

using BitMap to loaded 50 images to a ListView, the

application will become very card and user experience is very

bad. While applications using ImageFetcher or

AsyncImageLoader are very smooth, particularly

applications using ImageFetcher, user experience is very

good. Application downloaded and displayed hundreds of

pictures is amazingly smooth, not even with a slightest pause.

Also the memory remains under control; there is no

occurrence of OOM.

Lot of practice has proved that the image cache scheme

proposed in this paper can not only effectively improve the

efficiency of loading, but also with reliable stability. Fig. 4

shows a sports application with this scheme , the application

has been formally launched in the Google Market, and has

good user feedback.

International Journal of Information and Education Technology, Vol. 3, No. 5, October 2013

503

Fig. 4. Android application interface for a sporting event.

VI. CONCLUSION

When Android applications loading and displaying images,

for every request if they re-download images from the server

not only affect the user experience, but also easily lead to

OOM .This paper presents an Android image caching scheme,

using asynchronous thread to download image resources and

cache them in both memory and local. When obtaining

resources, it would read the memory first then local cache

before network download. The scheme uses different caching

strategies for images of different characteristics. Verified by

experiments and real applications, the scheme effectively

improves the efficiency of image displaying and user

experience, and optimizes the caches, avoiding OOM at the

same time.

REFERENCES

[1] F. Lu, “Research of development trend of mobile intelligent terminal,”

Modern Media, 2011, vol. 11, pp. 139-140.

[2] Z. Z. Gong and Z. L. Lu, “Analysis and research of the android

development,” Value Engineering, 2013, vol. 2, pp. 185-186.

[3] X. Y. Liu, “Mobile terminal open platform-Android,” Information and

Communication Technology.2011, vol. 4, pp. 50-52.

[4] M. Yao and W. G. Liu, “Research of Android architecture and

application development,” Computer Systems & Applications, 2008,

vol. 11, pp. 110-112.

[5] Y. H. Xu and C. Y. Xiong, “Android mobile development optimization

strategy,” Computer age, 2011, vol. 12, pp. 23-24.

Xia Xiaoling is an associate professor. She received her

Ph.D. in July 1994 at the Shanghai Jiao Tong University,

image processing and pattern recognition. Her main

research directions are image processing and data

visualization. Now she is an associate professor of

Computer Software and Theory Department of Computer

Science and Technology Institute of Donghua University,

master tutor.

Prof. Xia has received Sangma Award in 2000, and was awarded the title

of Donghua University "eight" in 2008. She participated in the international

engineering Computer Professional Training Mode Reform and Shanghai

teaching achievement in 2009 second prize, and also participated in the

construction of the 2008 Shanghai courses and key course "principles of

Database Systems".

Wang Yunlin is a master. Now she is studing at

Computer Science and Technology Institute of

Donghua University. Her main research direction is

new media.

International Journal of Information and Education Technology, Vol. 3, No. 5, October 2013

504

[6] RyanHoo. (Dec. 01, 2012). Build Android cache module. [Online].

Available: http://my.oschina.net/ryanhoo/blog/93285.

[7] J. Song, L. C. Dang, Z. C Guo, and M. Zhao, “The security mechanism

analysis and applied research of Android OS mobile platform,”

Computer Technology and Development, 2010, vol. 6, pp. 31-33.

[8] H. B. Li and M. Ma, “Research and design of the multi-threaded

downloader based on Android,” Information & Communications, 2012,

vol. 28.

http://my.oschina.net/ryanhoo/blog/93285

	组合 1
	325-K3006

