



Abstract—A structure is required to prevent the malicious

code from leaking onto the system. The use of sandboxes has

become more advance, allowing for investigators to access

malicious code while minimizing the risk of infecting their own

machine. This technology is also used to prevent malicious code

from compromising vulnerable machines. The use of sandbox

technology and techniques can potentially be extended to cloud

infrastructures to prevent malicious content from

compromising specialized infrastructure such as backups that

are used for disaster recovery and business continuity planning.

This paper will discuss existing algorithms related to current

sandbox technology, and extend the work into the “Meta Cloud

Discovery” model, a sandbox integrity-monitoring proposal for

disaster recovery. Finally, implementation examples will be

discussed as well as future research that would need to be

performed to improve the model.

Index Terms—Cloud infrastructure, disaster recovery,

integrity monitoring technique, sandbox.

I. INTRODUCTION

As the Internet environment has changed, there has been a

constant rise in malicious code and software, with a focus of

compromising available machines. This network is now

“inhabited by a much larger and more diverse group that

includes pranksters, crackers, and business competitors” [1].

As these attacks become more and more sophisticated, the

need for reliable technology to limit the impact of these

attacks is based on the concept that “an application can do

little harm if its access to the underlying operating system is

appropriately restricted” [1].

As a result, sandbox technology has been developed to

address these concerns. By minimizing the access that is

available for applications to operate, other applications on the

operating system are protected from potential compromise.

Examples of uses of sandboxes is web browser

improvements, isolation of exploits to the kernel and the use

of honeypots to covertly capture the activity of attackers

while allowing the attacker to not realize that their attempts at

compromising the system have been minimized. However,

the discussion of sandboxing public cloud instances used for

disaster recovery is in its development stages.

Many cloud instances use existing policies and controls

that are set depending on the implementation of the cloud

instance. Although this is a good way to prevent intrusions

into the system, it has not been discussed how this data can be

audited to ensure that data has not been leaked from these

Manuscript received May 20, 2013; revised June 26, 2013.

The authors are with the Department of Computer Science at Sam

Houston State University, Huntsville, TX 77056 USA (e-mail:

bmw005@shsu.edu, qxl005@shsu.edu).

systems, or the integrity of the cloud instance has remained.

As a result, there is a potential risk of compromise that may

not be located until much later.

To address this concern, an initial framework called “Meta

Cloud Discovery” (MCD) has been formulated. MCD is a

model framework that is aimed to provide both integrity

modeling and assurance that backup data that is sent to a

cloud has integrity and non-repudiation throughout its use.

This model combines the use of techniques similar to file

integrity monitoring and log monitoring to access the state of

a disaster recovery instance.

This paper first describes the need for this type of

technology by discussing a number of examples of existing

sandboxing algorithms and their positives and negatives in

relation to the MCD model. Next the model is described

which provides the different mechanisms that have been

formulated in order to provide both security and functionality

to the model. After that, a description of two different

implementations of this model, with a public cloud instance

and a private cloud instance, is articulated to discuss the

benefits and drawbacks this initial model may have on these

infrastructures.

II. BACKGROUND

The deployment of cloud deployments either as private

instances or through the use of public clouds (such as

Amazon Web Services) has allowed business to scale down

large physical instances to smaller systems while allowing

for the extension of their businesses. However, as the result

of the use of the cloud other types of fundamental business

requirements need to evolve to meet the needs of these new

types of infrastructure requirements. An instance of this is

the discussion of disaster recovery and what processes are

required in order to have an effective and efficient program

has been discussed in detail.

File integrity monitoring is one of the solutions that must

be implemented in order to provide security to an

environment. Monitoring changes to the state of the different

software that has been deployed within an environment by

using a data „fingerprint‟ file is absolutely necessary to

provide visibility into potential compromises that have

occurred within the environment. However, as a result of the

difficult that can emerge as a result of putting into place a file

integrity solution, many small businesses forgo this process,

and may as a result lose one way to determine when a

compromise has occurred and how the system was

compromised.

A. Client-Side: Web Browser

Some of the first technologies which sandboxing was

“Meta Cloud Discovery” Model: An Approach to Integrity

Monitoring for Cloud-Based Disaster Recovery Planning

Brittany M. Wilbert and Qingzhong Liu

International Journal of Information and Education Technology, Vol. 3, No. 5, October 2013

516DOI: 10.7763/IJIET.2013.V3.328

developed for were on the web browser itself. An example of

this is the use of sandboxing of JavaScript. Agten et al.

described an example of this in their paper [2]. JSand, their

sandboxing framework, uses wrappers, which “consults the

security policy to determine whether or not the corresponding

operation is permitted” [2]. If a policy is not matched, JSand

prevents the activity from activating. This is done while not

modifying the browser itself. These policies use a Proxy API

„membrane‟ to confine JavaScript code from executing

outside of the designated Sandbox location, therefore

preventing malicious code from activating. Also, this type of

implementation, which is independent of the web browser,

allows for better portability and backwards compatibility of

the software. Its implementation allows for it to be used in

multiple products, such as “Google Analytics, Google Maps,

and the jQuery library” [2]. This type of detection provides

portability of the technology across multiple types of web

content, however the independence of this framework may

potentially cause vulnerabilities if a web content type does

not lend to compatibility to JSand. Although three examples

were discussed a further analysis of other web technology

would be useful.

Cao et al. describe another example of limiting JavaScript

activity through the use of a Virtual Browser technology [3]

[4]. An initial implementation of this technology by the group

was created in 2008. This framework uses virtualization to

provide isolation of JavaScript for security. Unlike earlier

JavaScript isolation models that used iframes to isolate

JavaScript activity, the Virtual Browser adapted strings of

JavaScript codes to attach the activity to „flows‟ to do

evaluations. If trusted code is found, it is allowed to operate

in the browser, otherwise the browser uses a set of „lows to

isolate and analyze the activity allowing for the JavaScript

code to be avoided or redirected [3].

The later version of Virtual Browser discussed in 2012 was

expanded to include the new functions that JavaScript

allowed (the 2008 framework only worked for JavaScipt that

was currently accepted. This architecture lays on top of the

web browser, and not independent of it like JSand. This

design still allows for execution of JavaScript code within its

sandbox that is then evaluated [3]. Both the 2008 and 2012

versions also included parsing algorithms for HTML and

CSS code that is viewed in the web browser [3][4]. The 2008

and extended 20012 versions of the Virtual Browser allow for

greater connectivity between the web browser and the Virtual

Browser itself by using virtualization technology. Since the

virtual browser lies over the web browser it becomes the first

line of defense for malicious code. However, from the papers

themselves it appears to have difficult handling types of web

content, such as Web Sandbox which do not have

compatibility with current JavaScript functions [3]. As a

result each Virtual Browser version would need to be adapted

to allow for communication between unique sandbox and

browser environments.

B. Client-Side: Native Client

Another example of browser-based sandbox technology is

Native Client. This framework of this client is to isolate x86

native code, which can be run by web browser extensions

such as “ActiveX7 and Netscape Plugin Application

Programming Interface (NPAPI) allowing native code to be

loaded and run as part of a Web application” [5]. As a result,

an attacker can compromise a non-sandboxed web browser.

Native Client (NaCl) is designed with a collection of

components (trusted and untrusted), which are given their

own private address space [5]. Communication of the NaCl

modules with the browser is done with two different options

that are designed to reduce overhead for high volume and

frequency communications [5]. Each NaCl module is treated

as untrusted code that is then isolated and evaluated. This

technology does allow for the ability to detect native code

that is very important. However the performance tests that

were performed by the authors [5] suggests that additional

challenges would need to be overcome in order to continue to

decrease the overhead of untrusted native execution on the

system. This implementation also doesn‟t support languages

such as Java that are more abundance on the Internet.

C. Server-Side (Website) Protection

Besides securing from the client-side that was discussed in

the previous two sections, protection on the server can be just

as important. ForceHTTPS allows for the server to enforce

strong security policies on the client, in particular asking “the

browser to treat HTTPS errors as attacks, not as simple

configuration mistakes” [6]. This technique is done in three

ways [6]:

1) “Non-HTTPS connections to the site are redirected to

HTTPS, preventing contact to the site without TLS.”

2) All TLS errors, including self-signed certificates and

common-name mismatches, terminate the TLS session.”

3) Attempts to embed insecure (non-HTTPS) content into

the site fail with network errors.”

This methodology is used to address “passive network

attackers, active network attackers, and imperfect web

developers” by increasing the detecting of unusual activity on

the website as well as preventing client-side activity which

may result for mishandling improperly written or malicious

code. This model also prevents trusted website from leaking

data that was resulted from suspicious code from other

websites. ForceHTTPS allows for site-controlled defenses

that allow for security administrators to conform the policies

that are placed.

This framework also allows for rewrite rules to be

implemented for client-side permissions to be put in place to

prevent unsecure activity such as HTTP and SWF files from

compromising secure content [6]. This technology allows for

better protection server-side to potential attacks by requesting

for strong policies on the client. However implementation of

this stronger security model would need to rely on multiple

websites to implement ForceHTTPs or another similar

framework. Although they do have an alternate solution with

a client-side ForceHTTPS structure, implementing either the

client or server side versions require “Power” or technically

sound users, which can be a barrier for the average user.

D. Wireless

Another location which sandboxing can be used is through

wireless. Attackers can use nodes to “capture a node and

tamper the applications running, in order to perform different

types of attacks” [7]. The framework that is discussed by

Zaharis et al. uses live forensic monitoring, through

sandboxing to detect software tampering while alerting

owners of the network of a potential compromise attempt.

This sandbox framework provides a controlled set of

International Journal of Information and Education Technology, Vol. 3, No. 5, October 2013

517

International Journal of Information and Education Technology, Vol. 3, No. 5, October 2013

518

resources that guest processes can run as well as preventing

activity such as network access, inspecting host system or

reading from an input device [7]. This technique is run in a

virtual machine that uses Java objects to isolate each

application in use. Each isolated application is then verified

for malicious activity [7]. The implementation then evaluates

for different activity, such as replay attacks, forgery attacks

and other types of tampering of hardware and software [7].

This type of framework is important for locations that allow

for wireless access, such as cafes or restaurants that need

tampering detection. However, this type of technique, with

the potential number of sensors and processing threshold

required to operate, may become too cost prohibited for

businesses which may want to implement such a technology.

E. Comparisons of Previous Sandbox Methods to MCD

These examples of sandbox technologies have all be

sampled in order to construct a model that can be used for the

cloud environment. Although a cloud instance does not

inherently contain a “client” instance, the requirement for

limiting what data is authorized within a cloud backup is very

important. The use of JSand‟s Proxy API „membrane‟ as an

example on how to create a verification structure is important.

The risk of vulnerabilities such as insertions of malicious

code or other artifacts into an ecosystem that is purposed to

supply a company a secondary source of their data encase of

an failure of their primary systems is extremely high. This

also needs to be considered because a cloud instance of a

backup is inherently connected to the internet where

malicious users could compromise the system if it is not

harden.

The use of Native-Clients for cloud instances can also be

considered. For this model to work for the long-term, the

implementation must be able to be lightweight enough to be

implemented without limiting the time it takes for a cloud

backup instance to sync to the production environment.

Server-side protection for a cloud-based instance is even

more important to review. The use of inherited rules that are

created in order to minimize insecurity activity, similar to

what occurs with “ForceHTTPS” has been introduced into

the MCD structure as one of the means to protect what

activity is authorized in and out of the cloud instance.

In additional, Zaharis et al. monitoring framework

provides a base for what a cloud instance could do to provide

protection against compromise. The use of objects as a means

to verify changes within an environment is extremely useful

for cloud instances. Similarly to wireless networks, cloud

instances use multiple virtual environments which are

combined together in order to provide storage and

management capability.

III. META CLOUD DISCOVERY MODEL OVERVIEW

Meta Cloud Discovery‟s purpose is to combine the policy

and configuration necessities to create a functional cloud

instance while introducing means to create a structure to

provide verification of integrity and non-repudiation within a

cloud instance that is designed to be a part of a disaster

recovery planning system. In over to create this, what has

been created is the use of “layers”. First, an algorithm that

serves as the backend for this infrastructure has been initially

developed using a type of metadata objects that directly

provided relationship to data that is inserted into the cloud

environment. In addition, a total of four layers within the

model have been identified to serve as a means for

verification of activity that occurs within the system. These

layers are the following:

1) Metadata Security Layer/Module

2) Integrity Layer

3) Maintenance Layer

4) Reporting Layer

The architecture of this type of design can be reviewed in

Fig.1:

Fig. 1. Meta cloud discovery model design overview.

IV. MODEL METHODOLOGY

The methodology for both the metadata backend

components and each “layer” of protection for this data will

be discussed in more detail in this section.

A. Metadata Backend Overview

Data is transported from primary data center to backup

location. When data enters the backup environment the

following occurs:

Algorithm is ran which determines the approximate size of

each data cluster. As data is transmitted, cluster is defined to

closest X% ending at end of file. Calculation is then made for

exact size to thousands of cluster. Cluster is then tagged with

the following metadata:

1) Exact size of cluster (block) between selected maximum

and minimum block sizes

2) Data of data insertion

3) Name of server instance (if being used in public cloud

instance, optional otherwise)

4) Name of company (if public cloud instance, optional

otherwise)

Information is hashed using an encryption method of

choose (such as MD5 or a stronger algorithm). Although

encryption and decryption are important, it must also be

aware that this will reduce the amount of time it takes to

complete the data transportation, conversion and upload to

the sandbox because of the computational requirements for

these methods. To mitigate this problem, the results are

stored in the Metadata Security Layer, which is enclosed

within the policy-enabled sandbox and is used as a means to

enable the other layers of the implementations for

maintenance, monitoring and reporting. This is done by

created an indirect link of the created metadata that is then

International Journal of Information and Education Technology, Vol. 3, No. 5, October 2013

519

stored in Metadata Security Layer.

For larger data sets, such as databases and other instances

where data must continue to be placed logically together to

prevent failures in synchronization, the block size and

minimum and maximum sizes of the instance can be

customized to fit those needs. Alternately those instances can

be ignored if necessary and placed in the smaller sandbox

instances within the policy-enabled sandbox with the

maintenance and monitoring layer used to reduce the risk of

changes being made to those instances. More about this will

be discussed later in the paper.

The basic algorithm used to inset metadata instances into

block of works like this block of pseudo-code below:

VARIABLE SELECTMIN

VARIABLE SELECT MAX

METHOD blocksize {

blocksize.MB=RANDOM((SELECTMIN,SELECTMAX)}

METHOD metadata {

SUM(blocksize.unique+date.unixtime+serverinstance.hexva

lue+company.hexvalue) }

METHOD decrypt {

DATADECRYPTION METHOD}

blocksize.unique = CALLMETHOD blocksize+0.075%

INSERT blocksize.unique

LOCATE date.unixtime

SELECT serverinstance

CONVERT serverinstance.hexvalue

IF INSTANCE = publiccloud{

SELECT companyname

CONVERT company.hexvalue

} ELSE company.hexvalue=0

CALLMETHOD metadata

datablock.unique = APPEND(block.blocksize+metadata)

NUMBER(ID.unique) = NEW ID datablock.unique

datablock.unique = datablock.unique+ID.unique

INSERT datablock.unique INTO metalayer.security

ENCRYPT datablock.unique

IF report.initiated {

CALL METHOD decrypt(datablock.unique)}

Fig. 2. MCD transportation and blocking configuration design.

Fig. 2 above shows the basic backend design for how the

transport and storage process would work within this

framework.

B. Protection and Monitoring Layers

Fig. 3. Overall layer design in relation to sandbox.

Fig. 3 shows how the monitoring layers relate to each other

from a higher level in relation to the Metadata backend

design. The colored sections are the metadata block sections

that were created through the metadata backend after

completion of the block insertion into the sandbox clod

environment. Each of the protection layers will be described

in more detailed in the next four sections.

1) Metadata security layer

As discussed in the previous section, the Metadata Security

Layer may be considered as the most important portion of the

model. This layer is used extensively as a means to provide

integrity protection for the instance.

Within this layer, the metadata indirect links are provided a

reference point in which the remaining layers can reference

instead of referencing the sandbox directly.

This layer can also have encryption (such as MD5 or

another stronger encryption method) enabled. However,

encrypting this layer would cause an increase in the amount

of time to complete the backup. This is because each time the

sandbox is updated or monitored, the layer would need to be

decrypted, updated, and then encrypted again to prevent

tampering of the resource. As a result, more research into

how to best handle this type of additional security and to

decrease the time to compete encryption would serve as a

way to improve the model.

2) Integrity layer

This layer is used to ensure that the integrity of the

sandbox is maintained. Also, this serves as the intermediary

point between the Metadata Security Layer and the remaining

layers.

The purpose of this layer is to contain the information

about the block size set by the company, verify when backup

instances have been performed, and ensure that changes are

only performed when authorized. This will be maintained by

information being stored while serving as the point when

integrity checks will be started, stopped and completed.

Results from these checks can be referenced in other layers.

3) Maintenance layer

This layer serves as a means for authorized administrative

user accounts to update important settings for the model. This

includes the following:

1) Block Size

2) Integrity check scheduling

3) Frequency of backups

4) Authorized users to the system

5) Settings for the sandbox

6) If company name metadata value will be incorporated

7) If server name metadata value will be incorporated.

By minimizing the number of administrative user accounts,

this limits the risk of unauthorized users gaining access to the

sandbox cloud instance. Since this layer would be set to only

allow authorized users to set the permissions that are used by

the Integrity layer (and the sandbox itself) it is a point that can

be leveraged to limit the locations entry to the backup cloud

instances can be used from.

4) Reporting layer

A reporting layer is required to allow for the cloud sandbox

infrastructure to be monitored for unusual activity that could

occur. To do this, reporting could potentially be created for

the following criteria (although not limited to this selection):

1) Integrity checks

2) Monitoring results

3) Results of backups

4) Attempts to access the system with escalated privileges

5) Review of policies and configurations of the sandbox.

This layer would house reporting mechanisms that will

allow for reporting to be conducting while limiting the

number of users who are provided administrative privileges.

C. Example Implementations

To provide an example on how this model can be utilized,

different examples of cloud environments will be used,

including a private cloud environment, which is maintained

by the company requiring disaster recovery, and a public

cloud environment maintained by a third party provider.

1) Private cloud environment

In such an environment, private cloud instances are

maintained and monitored by a private company that has

established the need for a disaster recovery cloud

infrastructure. The model should include the following

considerations.

1) Should the company include the company name and/or

the server name in the metadata? Since only the

company should be storing their own data into the

instance, and depending on the size of the instance, these

settings may not be necessary in all situations (and

decrease storage size).

2) What additional storage requirements are needed?

Storage for backups would most likely need to be

increased by some amount to fit the additional

requirements for the model.

3) What block sizes should be used to create the block

sectors? Larger block sectors can increase the

computation requirements of the process, and increase

the amount of time to complete a backup.

4) What is the Service Level Agreement (SLA) agree to

with their customers? Many companies have SLA

requirements that need to be met that include the disaster

recovery process. A company must consider if this

model would significantly change how their SLA should

be worded.

Although these considerations have to be made, the

advantage of this model is that it can monitor when there are

changes to the backup and minimize the chance of the backup

being compromised when not in use. This can be leveraged

by companies in order to minimize the risk of a secondary

disaster occurring during their DR process because the

company did not realize that their cloud instance backup has

been compromised until too late.

2) Public cloud environment

In addition to the considerations discussed in the Private

Cloud Environment example, additional implementation

considerations would need to be made for Public Cloud

instances. These considerations are below:

1) Public Cloud instances have multiple customers‟ data

within the system. As a result, there is the risk that

vulnerability from one customer data set can potentially

compromise another business‟s data. For such an

important resource such as a backup instance, would the

company want to use a Public Cloud instance as a source

for their data?

2) Would the third party provider be able to add this model

to their infrastructure?

3) What other measures does the third party company to

prevent data leakages from occurring?

The positive of using the MCD model is that it can be used

as a remediation tactic to frequently monitor public cloud

instances.

V. FUTURE RESEARCH AND CONSIDERATIONS

Although some of the requirements for improved integrity

monitoring for cloud instances, there are future research

opportunities that can be done to improve this model. The

current model currently is not optimized for efficiently

convert the block sizes to include the metadata area.

Also, this type of design leans more to incremental

backups where organizations have a large data that is

infrequently changed. Is this a fixed point? Can additional,

larger data sets use this model? Further research in how this

may work for large database instances would determine if

this type of model could be implemented.

Since there are many types of cloud instances, unique

review of each cloud instance would need to be performed to

make sure that configuration and policies enabled on the

cloud instance can be converted to sandbox environment.

Potentially, the Reporting Layer of model or a mixture of

multiple methods to protect these assets can then monitor

this.

VI. CONCLUSION

Integrity monitoring of backups is extremely important to

protect potential compromises to these systems. However, as

industries transition to potentially using cloud infrastructure

to reduce the cost of creating disaster recovery backups for

their environments, the need for improved integrity

monitoring is even more relevant. Meta Cloud Discovery is

an initial model that has been created to attempt to provide a

model that may serve as a way to provide integrity

monitoring to these systems.

The use of metadata backend, with a security layer model

International Journal of Information and Education Technology, Vol. 3, No. 5, October 2013

520

International Journal of Information and Education Technology, Vol. 3, No. 5, October 2013

521

is used as a means to limit what is inserted and deleted into

the systems while monitoring when authorized (and

potentially unauthorized) changes to the sandbox are

attempted. With the example implementations, there has been

shown to be some positives that this model provides.

However, further research is required to ensure that this type

of model can be used for future instances of cloud

environments as well as to stabilize what can be done with

using this model with larger infrastructures which have larger

variance in their the data that would be needed to be backed

up to the cloud environment.

ACKNOWLEDGEMENT

We highly appreciate the support from SHSU research and

sponsored program under an Enhancement Research Grant

and the support from the Department of Computer Science.

REFERENCES

[1] I. Goldberg, D. Wagner, R. Thomas, and E. Brewer, “A Secure

Environment for Untrusted Helper Applications (Confining the Wily

Hacker),” 6th USENIX UNIX Security Symp., © 1996 USENIX

Association.

[2] P. Agten, S. V. Acker, Y. Brondsema, P. H. Phung, L. Desmet, and F.

Piessens, “JSand: complete client-side sandboxing of third-party

JavaScript without browser modifications.” in Proc. 28th Annual

Computer Security Applications Conf., doi: 10.1145/2420950.2420952,

pp. 1-10.

[3] Y. Cao, Z. Li, V. Rastogi, and Y. Chen, “Virtual browser: a web-level

sandbox to secure third-party JavaScript without sacrificing

functionality,” in Proc. 17th ACM Conf. on Computer and

Communications Security, © 2010 ACM, doi:

10.1145/1866307.1866387, pp-654-656.

[4] Y. Cao, Z. Li, V. Rastogi, Y. Chen, and X. Wen, “Virtual browser: a

virtualized browser to sandbox third-party JavaScripts with enhanced

security,” in Proc. 17th ACM Conf. on Computer and Communications

Security, © 2012 ACM, doi: 10.1145/2414456.2414460. pp. 8-9.

[5] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Ormandy, S.

Okasaka, N. Narula, and N. Fullagar, “Native Client: a Sandbox for

Portable, Untrusted x86 Native Code,” Commun. ACM, vol. 52, issue 1,

pp. 91-99, © Jan. 2010 ACM, doi: 10.1145/1629175.1629203.

[6] C. Jackson and A. Barth, “ForceHttps: protecting high-security web

sites from network attacks,” in Proc. 17th Int. Conf. on World Wide

Web, © 2008 ACM, doi: 10.1145/1367497.1367569, pp. 525-534.

[7] A. Zaharis, A. I. Martini, L. Perlepes, G. Stamoulis, and Panayotis

Kikiras, “Live Forensics Framework for Wireless Sensor Nodes Using

Sandboxing.” in Proc. 6th ACM Workshop on QoS and Security for

Wireless and Mobile Networks, © 2010 ACM, doi:

10.1145/1868630.1868643, pp. 70-77.

[8] R. Schaefer, “The epistemology of computer security,” Softw. Eng.

Notes, vol. 34, issue 6, pp. 8-10, © Dec. 2009 SIGSOFT, doi:

10.1145/1640162.1655274.

[9] J. Cappos, A. Dadger, J. Rasley, J. Samuel, I. Beschatnikh, C. Barsan,

A. Krishnamurthy, and T. Anderson, “Retaining Sandbox Containment

Despite Bugs in Privileged Memory-Safe Code,” in Proc. 17th ACM

Conf. on Computer and Communications Security, © 2010 ACM, doi:

10.1145/1866307.1866332, pp. 212-223.

Brittany M. Wilbert is a master‟s candidate for

information assurance and security studying at the

Department of Computer Science at Sam Houston

State University. She has a bachelor‟s degree in

computer science with an Emphasis in Digital

Forensics that was also obtained at Sam Houston State

University.

She currently works as an IT Audit and Compliance

Analyst at Alert Logic, Inc. in Houston, Texas. Her

job duties include working with various departments within the company to

research and document improvements to process and procedures performed

by the company to follow compliance and audit standards. Her research

interests include log management and how to more efficiently incorporate

international, federal, and state regulation and compliance standards

requirements for corporate, small and medium businesses.

Ms. Wilbert currently is a member of ISACA as well as the Houston,

Texas local chapter of ISACA. She is currently holds a GIAC Systems and

Network Auditor (GSNA) certification from the Global Information

Assurance Certification (GIAC).

Qingzhong Liu is currently an assistant professor

in computer science at Sam Houston State

University. He obtained his PhD degree in

Computer Science from New Mexico Institute of

Mining and Technology. His research interest

includes information security, digital forensics,

multimedia computing and analysis,

bioinformatics, pattern recognition, data mining,

and computational applications.

	组合 1
	328-k3005

