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Abstract—A structure is required to prevent the malicious 

code from leaking onto the system. The use of sandboxes has 

become more advance, allowing for investigators to access 

malicious code while minimizing the risk of infecting their own 

machine. This technology is also used to prevent malicious code 

from compromising vulnerable machines. The use of sandbox 

technology and techniques can potentially be extended to cloud 

infrastructures to prevent malicious content from 

compromising specialized infrastructure such as backups that 

are used for disaster recovery and business continuity planning. 

This paper will discuss existing algorithms related to current 

sandbox technology, and extend the work into the “Meta Cloud 

Discovery” model, a sandbox integrity-monitoring proposal for 

disaster recovery. Finally, implementation examples will be 

discussed as well as future research that would need to be 

performed to improve the model. 

 

Index Terms—Cloud infrastructure, disaster recovery, 

integrity monitoring technique, sandbox.  

 

I. INTRODUCTION 

As the Internet environment has changed, there has been a 

constant rise in malicious code and software, with a focus of 

compromising available machines. This network is now 

“inhabited by a much larger and more diverse group that 

includes pranksters, crackers, and business competitors” [1]. 

As these attacks become more and more sophisticated, the 

need for reliable technology to limit the impact of these 

attacks is based on the concept that “an application can do 

little harm if its access to the underlying operating system is 

appropriately restricted” [1]. 

As a result, sandbox technology has been developed to 

address these concerns. By minimizing the access that is 

available for applications to operate, other applications on the 

operating system are protected from potential compromise. 

Examples of uses of sandboxes is web browser 

improvements, isolation of exploits to the kernel and the use 

of honeypots to covertly capture the activity of attackers 

while allowing the attacker to not realize that their attempts at 

compromising the system have been minimized. However, 

the discussion of sandboxing public cloud instances used for 

disaster recovery is in its development stages. 

Many cloud instances use existing policies and controls 

that are set depending on the implementation of the cloud 

instance. Although this is a good way to prevent intrusions 

into the system, it has not been discussed how this data can be 

audited to ensure that data has not been leaked from these 
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systems, or the integrity of the cloud instance has remained. 

As a result, there is a potential risk of compromise that may 

not be located until much later. 

To address this concern, an initial framework called “Meta 

Cloud Discovery” (MCD) has been formulated. MCD is a 

model framework that is aimed to provide both integrity 

modeling and assurance that backup data that is sent to a 

cloud has integrity and non-repudiation throughout its use.  

This model combines the use of techniques similar to file 

integrity monitoring and log monitoring to access the state of 

a disaster recovery instance. 

This paper first describes the need for this type of 

technology by discussing a number of examples of existing 

sandboxing algorithms and their positives and negatives in 

relation to the MCD model. Next the model is described 

which provides the different mechanisms that have been 

formulated in order to provide both security and functionality 

to the model. After that, a description of two different 

implementations of this model, with a public cloud instance 

and a private cloud instance, is articulated to discuss the 

benefits and drawbacks this initial model may have on these 

infrastructures. 

 

II. BACKGROUND 

The deployment of cloud deployments either as private 

instances or through the use of public clouds (such as 

Amazon Web Services) has allowed business to scale down 

large physical instances to smaller systems while allowing 

for the extension of their businesses. However, as the result 

of the use of the cloud other types of fundamental business 

requirements need to evolve to meet the needs of these new 

types of infrastructure requirements.  An instance of this is 

the discussion of disaster recovery and what processes are 

required in order to have an effective and efficient program 

has been discussed in detail.  

File integrity monitoring is one of the solutions that must 

be implemented in order to provide security to an 

environment. Monitoring changes to the state of the different 

software that has been deployed within an environment by 

using a data „fingerprint‟ file is absolutely necessary to 

provide visibility into potential compromises that have 

occurred within the environment. However, as a result of the 

difficult that can emerge as a result of putting into place a file 

integrity solution, many small businesses forgo this process, 

and may as a result lose one way to determine when a 

compromise has occurred and how the system was 

compromised. 

A. Client-Side: Web Browser 

Some of the first technologies which sandboxing was 
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developed for were on the web browser itself. An example of 

this is the use of sandboxing of JavaScript. Agten et al. 

described an example of this in their paper [2]. JSand, their 

sandboxing framework, uses wrappers, which “consults the 

security policy to determine whether or not the corresponding 

operation is permitted” [2]. If a policy is not matched, JSand 

prevents the activity from activating. This is done while not 

modifying the browser itself. These policies use a Proxy API 

„membrane‟ to confine JavaScript code from executing 

outside of the designated Sandbox location, therefore 

preventing malicious code from activating. Also, this type of 

implementation, which is independent of the web browser, 

allows for better portability and backwards compatibility of 

the software. Its implementation allows for it to be used in 

multiple products, such as “Google Analytics, Google Maps, 

and the jQuery library” [2]. This type of detection provides 

portability of the technology across multiple types of web 

content, however the independence of this framework may 

potentially cause vulnerabilities if a web content type does 

not lend to compatibility to JSand. Although three examples 

were discussed a further analysis of other web technology 

would be useful. 

Cao et al. describe another example of limiting JavaScript 

activity through the use of a Virtual Browser technology [3] 

[4]. An initial implementation of this technology by the group 

was created in 2008. This framework uses virtualization to 

provide isolation of JavaScript for security. Unlike earlier 

JavaScript isolation models that used iframes to isolate 

JavaScript activity, the Virtual Browser adapted strings of 

JavaScript codes to attach the activity to „flows‟ to do 

evaluations. If trusted code is found, it is allowed to operate 

in the browser, otherwise the browser uses a set of „lows to 

isolate and analyze the activity allowing for the JavaScript 

code to be avoided or redirected [3].  

The later version of Virtual Browser discussed in 2012 was 

expanded to include the new functions that JavaScript 

allowed (the 2008 framework only worked for JavaScipt that 

was currently accepted. This architecture lays on top of the 

web browser, and not independent of it like JSand. This 

design still allows for execution of JavaScript code within its 

sandbox that is then evaluated [3]. Both the 2008 and 2012 

versions also included parsing algorithms for HTML and 

CSS code that is viewed in the web browser [3][4]. The 2008 

and extended 20012 versions of the Virtual Browser allow for 

greater connectivity between the web browser and the Virtual 

Browser itself by using virtualization technology. Since the 

virtual browser lies over the web browser it becomes the first 

line of defense for malicious code. However, from the papers 

themselves it appears to have difficult handling types of web 

content, such as Web Sandbox which do not have 

compatibility with current JavaScript functions [3]. As a 

result each Virtual Browser version would need to be adapted 

to allow for communication between unique sandbox and 

browser environments. 

B. Client-Side: Native Client 

Another example of browser-based sandbox technology is 

Native Client. This framework of this client is to isolate x86 

native code, which can be run by web browser extensions 

such as “ActiveX7 and Netscape Plugin Application 

Programming Interface (NPAPI) allowing native code to be 

loaded and run as part of a Web application” [5]. As a result, 

an attacker can compromise a non-sandboxed web browser. 

Native Client (NaCl) is designed with a collection of 

components (trusted and untrusted), which are given their 

own private address space [5]. Communication of the NaCl 

modules with the browser is done with two different options 

that are designed to reduce overhead for high volume and 

frequency communications [5]. Each NaCl module is treated 

as untrusted code that is then isolated and evaluated. This 

technology does allow for the ability to detect native code 

that is very important. However the performance tests that 

were performed by the authors [5] suggests that additional 

challenges would need to be overcome in order to continue to 

decrease the overhead of untrusted native execution on the 

system. This implementation also doesn‟t support languages 

such as Java that are more abundance on the Internet.  

C. Server-Side (Website) Protection 

Besides securing from the client-side that was discussed in 

the previous two sections, protection on the server can be just 

as important. ForceHTTPS allows for the server to enforce 

strong security policies on the client, in particular asking “the 

browser to treat HTTPS errors as attacks, not as simple 

configuration mistakes” [6]. This technique is done in three 

ways [6]: 

1) “Non-HTTPS connections to the site are redirected to 

HTTPS, preventing contact to the site without TLS.”  

2) All TLS errors, including self-signed certificates and 

common-name mismatches, terminate the TLS session.”  

3) Attempts to embed insecure (non-HTTPS) content into 

the site fail with network errors.”  

This methodology is used to address “passive network 

attackers, active network attackers, and imperfect web 

developers” by increasing the detecting of unusual activity on 

the website as well as preventing client-side activity which 

may result for mishandling improperly written or malicious 

code. This model also prevents trusted website from leaking 

data that was resulted from suspicious code from other 

websites. ForceHTTPS allows for site-controlled defenses 

that allow for security administrators to conform the policies 

that are placed.  

This framework also allows for rewrite rules to be 

implemented for client-side permissions to be put in place to 

prevent unsecure activity such as HTTP and SWF files from 

compromising secure content [6]. This technology allows for 

better protection server-side to potential attacks by requesting 

for strong policies on the client. However implementation of 

this stronger security model would need to rely on multiple 

websites to implement ForceHTTPs or another similar 

framework. Although they do have an alternate solution with 

a client-side ForceHTTPS structure, implementing either the 

client or server side versions require “Power” or technically 

sound users, which can be a barrier for the average user. 

D. Wireless 

Another location which sandboxing can be used is through 

wireless. Attackers can use nodes to “capture a node and 

tamper the applications running, in order to perform different 

types of attacks” [7]. The framework that is discussed by 

Zaharis et al. uses live forensic monitoring, through 

sandboxing to detect software tampering while alerting 

owners of the network of a potential compromise attempt.  

This sandbox framework provides a controlled set of 
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resources that guest processes can run as well as preventing 

activity such as network access, inspecting host system or 

reading from an input device [7]. This technique is run in a 

virtual machine that uses Java objects to isolate each 

application in use. Each isolated application is then verified 

for malicious activity [7]. The implementation then evaluates 

for different activity, such as replay attacks, forgery attacks 

and other types of tampering of hardware and software [7]. 

This type of framework is important for locations that allow 

for wireless access, such as cafes or restaurants that need 

tampering detection. However, this type of technique, with 

the potential number of sensors and processing threshold 

required to operate, may become too cost prohibited for 

businesses which may want to implement such a technology. 

E. Comparisons of Previous Sandbox Methods to MCD 

These examples of sandbox technologies have all be 

sampled in order to construct a model that can be used for the 

cloud environment. Although a cloud instance does not 

inherently contain a “client” instance, the requirement for 

limiting what data is authorized within a cloud backup is very 

important. The use of JSand‟s Proxy API „membrane‟ as an 

example on how to create a verification structure is important. 

The risk of vulnerabilities such as insertions of malicious 

code or other artifacts into an ecosystem that is purposed to 

supply a company a secondary source of their data encase of 

an failure of their primary systems is extremely high. This 

also needs to be considered because a cloud instance of a 

backup is inherently connected to the internet where 

malicious users could compromise the system if it is not 

harden.  

The use of Native-Clients for cloud instances can also be 

considered. For this model to work for the long-term, the 

implementation must be able to be lightweight enough to be 

implemented without limiting the time it takes for a cloud 

backup instance to sync to the production environment. 

Server-side protection for a cloud-based instance is even 

more important to review. The use of inherited rules that are 

created in order to minimize insecurity activity, similar to 

what occurs with “ForceHTTPS” has been introduced into 

the MCD structure as one of the means to protect what 

activity is authorized in and out of the cloud instance. 

In additional, Zaharis et al. monitoring framework 

provides a base for what a cloud instance could do to provide 

protection against compromise. The use of objects as a means 

to verify changes within an environment is extremely useful 

for cloud instances. Similarly to wireless networks, cloud 

instances use multiple virtual environments which are 

combined together in order to provide storage and 

management capability. 

 

III. META CLOUD DISCOVERY MODEL OVERVIEW 

Meta Cloud Discovery‟s purpose is to combine the policy 

and configuration necessities to create a functional cloud 

instance while introducing means to create a structure to 

provide verification of integrity and non-repudiation within a 

cloud instance that is designed to be a part of a disaster 

recovery planning system. In over to create this, what has 

been created is the use of “layers”. First, an algorithm that 

serves as the backend for this infrastructure has been initially 

developed using a type of metadata objects that directly 

provided relationship to data that is inserted into the cloud 

environment. In addition, a total of four layers within the 

model have been identified to serve as a means for 

verification of activity that occurs within the system. These 

layers are the following: 

1) Metadata Security Layer/Module 

2) Integrity Layer 

3) Maintenance Layer 

4) Reporting Layer 

The architecture of this type of design can be reviewed in 

Fig.1: 

 

 
Fig. 1. Meta cloud discovery model design overview. 

 

IV. MODEL METHODOLOGY 

The methodology for both the metadata backend 

components and each “layer” of protection for this data will 

be discussed in more detail in this section. 

A. Metadata Backend Overview 

Data is transported from primary data center to backup 

location. When data enters the backup environment the 

following occurs: 

Algorithm is ran which determines the approximate size of 

each data cluster. As data is transmitted, cluster is defined to 

closest X% ending at end of file. Calculation is then made for 

exact size to thousands of cluster. Cluster is then tagged with 

the following metadata: 

1) Exact size of cluster (block) between selected maximum 

and minimum block sizes 

2) Data of data insertion 

3) Name of server instance (if being used in public cloud 

instance, optional otherwise) 

4) Name of company (if public cloud instance, optional 

otherwise) 

Information is hashed using an encryption method of 

choose (such as MD5 or a stronger algorithm). Although 

encryption and decryption are important, it must also be 

aware that this will reduce the amount of time it takes to 

complete the data transportation, conversion and upload to 

the sandbox because of the computational requirements for 

these methods. To mitigate this problem, the results are 

stored in the Metadata Security Layer, which is enclosed 

within the policy-enabled sandbox and is used as a means to 

enable the other layers of the implementations for 

maintenance, monitoring and reporting. This is done by 

created an indirect link of the created metadata that is then 
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stored in Metadata Security Layer.  

For larger data sets, such as databases and other instances 

where data must continue to be placed logically together to 

prevent failures in synchronization, the block size and 

minimum and maximum sizes of the instance can be 

customized to fit those needs. Alternately those instances can 

be ignored if necessary and placed in the smaller sandbox 

instances within the policy-enabled sandbox with the 

maintenance and monitoring layer used to reduce the risk of 

changes being made to those instances. More about this will 

be discussed later in the paper. 

The basic algorithm used to inset metadata instances into 

block of works like this block of pseudo-code below:  

 

VARIABLE SELECTMIN 

VARIABLE SELECT MAX 

 

METHOD blocksize { 

blocksize.MB=RANDOM((SELECTMIN,SELECTMAX)} 

 

METHOD metadata { 

SUM(blocksize.unique+date.unixtime+serverinstance.hexva

lue+company.hexvalue) } 

 

METHOD decrypt { 

DATADECRYPTION METHOD} 

 

blocksize.unique = CALLMETHOD blocksize+0.075% 

INSERT blocksize.unique 

LOCATE date.unixtime 

SELECT serverinstance 

CONVERT serverinstance.hexvalue 

IF INSTANCE = publiccloud{ 

SELECT companyname 

CONVERT company.hexvalue 

} ELSE company.hexvalue=0 

 

CALLMETHOD metadata 

datablock.unique = APPEND(block.blocksize+metadata) 

NUMBER(ID.unique) = NEW ID datablock.unique 

datablock.unique = datablock.unique+ID.unique  

INSERT datablock.unique INTO metalayer.security 

ENCRYPT datablock.unique 

 

IF report.initiated { 

CALL METHOD decrypt(datablock.unique)} 

 

 
Fig. 2. MCD transportation and blocking configuration design. 

Fig. 2 above shows the basic backend design for how the 

transport and storage process would work within this 

framework. 

B. Protection and Monitoring Layers 

 

 
Fig. 3. Overall layer design in relation to sandbox. 

 

Fig. 3 shows how the monitoring layers relate to each other 

from a higher level in relation to the Metadata backend 

design. The colored sections are the metadata block sections 

that were created through the metadata backend after 

completion of the block insertion into the sandbox clod 

environment. Each of the protection layers will be described 

in more detailed in the next four sections. 

1) Metadata security layer 

As discussed in the previous section, the Metadata Security 

Layer may be considered as the most important portion of the 

model. This layer is used extensively as a means to provide 

integrity protection for the instance. 

Within this layer, the metadata indirect links are provided a 

reference point in which the remaining layers can reference 

instead of referencing the sandbox directly.  

This layer can also have encryption (such as MD5 or 

another stronger encryption method) enabled. However, 

encrypting this layer would cause an increase in the amount 

of time to complete the backup. This is because each time the 

sandbox is updated or monitored, the layer would need to be 

decrypted, updated, and then encrypted again to prevent 

tampering of the resource. As a result, more research into 

how to best handle this type of additional security and to 

decrease the time to compete encryption would serve as a 

way to improve the model. 

2) Integrity layer 

This layer is used to ensure that the integrity of the 

sandbox is maintained. Also, this serves as the intermediary 

point between the Metadata Security Layer and the remaining 

layers. 

The purpose of this layer is to contain the information 

about the block size set by the company, verify when backup 

instances have been performed, and ensure that changes are 

only performed when authorized. This will be maintained by 

information being stored while serving as the point when 

integrity checks will be started, stopped and completed. 

Results from these checks can be referenced in other layers. 

3) Maintenance layer 

This layer serves as a means for authorized administrative 



  

user accounts to update important settings for the model. This 

includes the following: 

1) Block Size 

2) Integrity check scheduling 

3) Frequency of backups 

4) Authorized users to the system 

5) Settings for the sandbox 

6) If company name metadata value will be incorporated 

7) If server name metadata value will be incorporated. 

By minimizing the number of administrative user accounts, 

this limits the risk of unauthorized users gaining access to the 

sandbox cloud instance. Since this layer would be set to only 

allow authorized users to set the permissions that are used by 

the Integrity layer (and the sandbox itself) it is a point that can 

be leveraged to limit the locations entry to the backup cloud 

instances can be used from. 

4) Reporting layer 

A reporting layer is required to allow for the cloud sandbox 

infrastructure to be monitored for unusual activity that could 

occur. To do this, reporting could potentially be created for 

the following criteria (although not limited to this selection): 

1) Integrity checks 

2) Monitoring results 

3) Results of backups 

4) Attempts to access the system with escalated privileges 

5) Review of policies and configurations of the sandbox. 

This layer would house reporting mechanisms that will 

allow for reporting to be conducting while limiting the 

number of users who are provided administrative privileges. 

C. Example Implementations 

To provide an example on how this model can be utilized, 

different examples of cloud environments will be used, 

including a private cloud environment, which is maintained 

by the company requiring disaster recovery, and a public 

cloud environment maintained by a third party provider. 

1) Private cloud environment 

In such an environment, private cloud instances are 

maintained and monitored by a private company that has 

established the need for a disaster recovery cloud 

infrastructure. The model should include the following 

considerations. 

1) Should the company include the company name and/or 

the server name in the metadata? Since only the 

company should be storing their own data into the 

instance, and depending on the size of the instance, these 

settings may not be necessary in all situations (and 

decrease storage size). 

2) What additional storage requirements are needed? 

Storage for backups would most likely need to be 

increased by some amount to fit the additional 

requirements for the model. 

3) What block sizes should be used to create the block 

sectors? Larger block sectors can increase the 

computation requirements of the process, and increase 

the amount of time to complete a backup. 

4) What is the Service Level Agreement (SLA) agree to 

with their customers? Many companies have SLA 

requirements that need to be met that include the disaster 

recovery process. A company must consider if this 

model would significantly change how their SLA should 

be worded. 

Although these considerations have to be made, the 

advantage of this model is that it can monitor when there are 

changes to the backup and minimize the chance of the backup 

being compromised when not in use. This can be leveraged 

by companies in order to minimize the risk of a secondary 

disaster occurring during their DR process because the 

company did not realize that their cloud instance backup has 

been compromised until too late. 

2) Public cloud environment 

In addition to the considerations discussed in the Private 

Cloud Environment example, additional implementation 

considerations would need to be made for Public Cloud 

instances. These considerations are below: 

1) Public Cloud instances have multiple customers‟ data 

within the system. As a result, there is the risk that 

vulnerability from one customer data set can potentially 

compromise another business‟s data. For such an 

important resource such as a backup instance, would the 

company want to use a Public Cloud instance as a source 

for their data? 

2) Would the third party provider be able to add this model 

to their infrastructure? 

3) What other measures does the third party company to 

prevent data leakages from occurring? 

The positive of using the MCD model is that it can be used 

as a remediation tactic to frequently monitor public cloud 

instances.  

 

V. FUTURE RESEARCH AND CONSIDERATIONS 

Although some of the requirements for improved integrity 

monitoring for cloud instances, there are future research 

opportunities that can be done to improve this model. The 

current model currently is not optimized for efficiently 

convert the block sizes to include the metadata area.  

Also, this type of design leans more to incremental 

backups where organizations have a large data that is 

infrequently changed. Is this a fixed point? Can additional, 

larger data sets use this model? Further research in how this 

may work for large database instances would determine if 

this type of model could be implemented. 

Since there are many types of cloud instances, unique 

review of each cloud instance would need to be performed to 

make sure that configuration and policies enabled on the 

cloud instance can be converted to sandbox environment. 

Potentially, the Reporting Layer of model or a mixture of 

multiple methods to protect these assets can then monitor 

this. 

 

VI. CONCLUSION 

Integrity monitoring of backups is extremely important to 

protect potential compromises to these systems. However, as 

industries transition to potentially using cloud infrastructure 

to reduce the cost of creating disaster recovery backups for 

their environments, the need for improved integrity 

monitoring is even more relevant. Meta Cloud Discovery is 

an initial model that has been created to attempt to provide a 

model that may serve as a way to provide integrity 

monitoring to these systems.  

The use of metadata backend, with a security layer model 
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is used as a means to limit what is inserted and deleted into 

the systems while monitoring when authorized (and 

potentially unauthorized) changes to the sandbox are 

attempted. With the example implementations, there has been 

shown to be some positives that this model provides. 

However, further research is required to ensure that this type 

of model can be used for future instances of cloud 

environments as well as to stabilize what can be done with 

using this model with larger infrastructures which have larger 

variance in their the data that would be needed to be backed 

up to the cloud environment. 
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