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Abstract—The orthogonal array and sample size determine 

the experimental cost. Selection of an appropriate sample size is 

one the most important aspects of any experimental design 

problem. The choice of sample size and the probabilities of type 

I error  and type II error  are closely connected in traditional 

experimental design. We can specify the  and , and then 

decide the standard deviation  based on the prior experience to 

calculate the ratio,  , of absolute value for difference in means 

dividing by standard deviation. The required sample size n is 

obtained from operating characteristic curve. The purpose of 

this paper is to present economical models for selecting an 

appropriate sample size based on the testing cost of 

observations and loss by adopting a wrong level and probability 

of factor. Some tables are provided that can be used to select 

sample size for the variances of two populations are known or 

unknown. 

 

 

 

I. INTRODUCTION 

The Taguchi method has been widely applied to optimize 

the industrial parameter design, including static and dynamic 

problems. Robust design is where a product or process to be 

optimized has several control factors that directly decide the 

target or desired value of the output. The optimization 

involves determining the best control factor levels so that the 

output is at the target or desired value. The static problem is 

defined so that the desired output of product or process has a 

fixed target. In the dynamic problem, the desired output of 

the system depends on the signal factor setting, that is, the 

dynamic system is the one without a single target but a 

response, which is a function of a signal. To conduct the 

optimization experiments by using the orthogonal array, the 

experimental cost is decided by the orthogonal array and 

sample size. Selection of an appropriate sample size is one 

the most important aspects of any experimental design 

problem. A statistical hypothesis is a statement concerning 

one or more populations. Suppose that we are interested in 

 

 

 

 

 

testing the equality of means for the two populations. Thus, 

the null hypothesis (H0) and alternative hypothesis (H1) are 

stated as 
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Two kinds of errors may be committed when testing 

hypotheses. Rejection of the null hypothesis when it is true is 

called a type I error. Acceptance of the null hypothesis when 

it is false is called a type II error. The probabilities of these 

two errors are given special symbols: 
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The choice of sample size and the probabilities of type I 

error  and type II error  are closely connected in traditional 

experimental design. If the means are not equal so 

that 1 2    . Since the H0 is not true, the probability  of 

type II error depends on the true difference in means   and 

is also a function of sample size. A graph of  versus   for a 

particular sample size is called the operating characteristic 

curve or O.C. curve for the test [1]. We can specify the  and 

, and then decide the standard deviation  based on the prior 

experience to calculate the ratio,  , of absolute value for 

difference in means dividing by standard deviation. The 

required sample size n is obtained from operating 

characteristic curve yielded n* by * 2 1n n  . 

Several researchers have studied the sample size 

determination for experiments. Gould [2] provided a 

procedure for incorporating the uncertainty explicitly into the 

sample size determination on the basis of joint confidence 

distributions obtained from the pilot or prior information. 

Hand, Stamey and Young [3] developed methods for 

sample-size determination for hypothesis testing in a 

Bayesian context. Rao [4] derived sample size equations for 

studies with a continuous exposure. Dunnett, Horn and 

Vollandt [5] addressed the problem of sample size 

determination in multiple comparisons of k treatments with a 

control for step-down and step-up testing, assuming normal 

data and homogeneous variances. Rahme and Joseph [6] 

provided a new approach for calculating sample size is 

developed by combining Bayesian and frequentist idea when 

a hypothesis test between two binomial proportions is 

conducted. Thode [7] studied the power and sample size 

requirements for tests of differences between two Poisson 

rates. Gordon and Watson [8] studied the sample size 
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determination for comparison of small probabilities. Lachin 

[9] introduced the sample size determination and power 

analysis for clinical trials. Schulz and Grimes [10] provided a 

method to calculate the sample size in randomized trials. Lui 

[11] used the full likelihood for calculating sample sizes. Lui 

and Cumberland [12] used the Monte Carlo simulation to 

estimate the corresponding type I error and power with the 

given resulting sample sizes in a variety of situations. 

Heilbrun and McGee [13] derived a formula for the required 

number of subjects in a comparison group to test the equality 

of two Normal means when one sample size is fixed. Gail [14] 

described a procedure to calculate the total sample size, 2n, 

required to attain specified power against the null hypothesis. 

Tang, Tang and Carey [15] proposed two kinds of 

approximate sample size formulas, based on rate ratio, for 

comparison of the marginal and conditional probabilities in a 

correlated 2×2 table with structural zero. Becker [16] studied 

the sample size determination in case-control studies. Murthy 

and Haywood [17] provided an additional consideration 

when plausible effect sizes and error tolerances on 

hypothesis tests are balanced against feasibility of accruing 

various sample sizes. Hale [18] presented the equations for 

calculating the sample size necessary to determine, within a 

given probability, the upper and lower confidence limits of 

the geometric mean of a log normal distribution. Zhang, 

Cutter and Belin [19] developed a Bayesian approach for 

calculating sample sizes for clinical trials under the 

framework of hypothesis tests. Taguchi [20] considered the 

economical view to determine an appropriate sample size n of 

experiments. Suppose that factor A has two levels A1 and A2. 

The means of two populations A1 and A2 are 1 and 2, 

respectively. If 1 equals to 2, there is no loss whichever 

level is selected. The loss increases as the sample size 

increases under this situation. If 1 and 2 have large 

difference, we can almost identify which level is better only 

using one sample. The optimal sample size is one for this 

situation. 

The purpose of this paper is to present the economical 

models for selecting an appropriate sample size based on loss 

function. We consider the standard deviation of population is 

known or not to decide the optimal sample size based on the 

testing cost of observations and loss by adopting a wrong 

level and probability of factor. 

 

II. ECONOMICAL MODELS FOR SAMPLE SIZE 

Consider the difference in the means of two populations 

from normal distributions. Population 1 has mean 1  and 

variance 2

1 , while population 2 has mean 2  and 

variance 2

2 . The sample sizes from the two populations are 

equal; that is, 1 2n n n  . 11 12 1,  , ,  nX X X  is a random 

sample of n observation from population 1, and 

21 22 2,  , ,  nX X X  is a random sample of n observation from 

population 2. The testing cost of observations is denoted as a 

and the loss is denoted as b for adopting a wrong level of 

factor when the true difference in means 1. Since the 

probability  for adopting a wrong level of factor depends on 

the true difference in means. The loss function,  nI  , for 

sample size n is expressed as a quadratic model. 

 

  22nI an b                                   (3) 

A. Two Population Variances 2

1  and 2

2  Are Known 

and Equal 

Suppose that random variable X presents Let the random 

variable X present the difference in sample means 1 2X X  

and has mean 1 2   and variance 2 2

1 2n n  . We 

consider the mean of population is the larger-the-better 

characteristic and the true difference in means    for 

population 1 is larger than population 2. Under this situation, 

the loss function is expressed as 
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Let b a   and  nI a  substitute for  nI  , and then 

equation is modified as 
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Let     1 2 2  Z X n     , and then equation (5) 

is transformed as 
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When   is known 

 

TABLE I: THE OPTIMAL SAMPLE SIZE WHEN   IS KNOWN 

  
Optimal sample size 

=100 =500 =1000 

0.0 1 1 1 

0.1 1 1 1 

0.2 1 1 1 

0.3 1 1 3 

0.4 1 4 10 

0.5 1 8 14 

0.6 2 10 15 

0.7 3 11 15 

0.8 4 11 14 

0.9 4 10 13 

1.0 5 10 12 

1.2 5 8 10 

1.4 5 7 9 

1.6 4 6 7 

1.8 4 6 6 

2.0 3 5 6 

2.5 3 4 4 

3.0 2 3 3 

3.5 2 2 3 

4.0 2 2 2 

4.5 1 2 2 

5.0 1 2 2 
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From equation (6), the optimal sample size for a particular 

 is tabulated in Table I.



  

When   is unknown 

Similarly, we use the Minimax principle to find the upper 

bound of optimal sample size for the quadratic model. The 

economical model in equation (6) is rewritten as: 
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Differentiating  nI   with respect to  , and setting the 

derivative equal to zero, we have 
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Let 2n y  , and then we have 
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Solving equation (10), we can obtain 1.1906y  . 

Therefore, we have 
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Differentiating 2 0.3314n n   with respect to n, and 

setting the derivative equal to zero, we have 

0.1657n                                        (12) 

From equation (12), the upper bound of optimal sample 

size for a particular λ is TABULATED in Table II. 

 
       

 

Range of λ  Sample size n Range of λ  Sample size n 

1~12 1 2064~2293 19 

13~36 2 2294~2534 20 

37~72 3 2535~2787 21 

73~120 4 2788~3053 22 

121~181 5 3054~3330 23 

182~253 6 3331~3620 24 

254~337 7 3621~3922 25 

338~434 8 3923~4236 26 

435~543 9 4237~4562 27 

544~663 10 4563~4899 28 

664~496 11 4900~5249 29 

797~941 12 5250~5611 30 

942~1098 13 5612~5986 31 

1099~1267 14 5987~6372 32 

1268~1448 15 6373~6770 33 

1449~1641 16 6771~7180 34 

1642~1846 17 7181~7603 35 

1847~2063 18 7604~8037 36 

B.  Two Population Variances 2

1  and 2

2  Are Unknown 

but Equal 

TABLE III: THE OPTIMAL SAMPLE SIZE WHEN   IS KNOWN 

  
Optimal sample size 

=100 =500 =1000 

0.0 1 1 1 

0.1 1 1 1 

0.2 1 1 1 

0.3 1 1 3 

0.4 1 4 10 

0.5 1 8 14 

0.6 2 10 15 

0.7 3 11 15 

0.8 4 11 14 

0.9 4 10 13 

1.0 5 10 12 

1.2 5 8 10 

1.4 5 7 9 

1.6 4 6 7 

1.8 4 6 6 

2.0 3 5 6 

2.5 3 4 4 

3.0 2 3 3 

3.5 2 2 3 

4.0 2 2 2 

4.5 1 2 2 

5.0 1 2 2 

     

 

Range of λ  Sample size n Range of λ  Sample size n 

1~5 2 2143~2376 20 

6~36 3 2377~2622 21 

37~77 4 2623~2880 22 

78~131 5 2881~3150 23 

132~196 6 3151~3433 24 

197~274 7 3434~3727 25 

275~363 8 3728~4034 26 

364~464 9 4035~4352 27 

465~578 10 4353~4683 28 

579~703 11 4684~5025 29 

704~841 12 5026~5380 30 

842~990 13 5381~5747 31 

991~1152 14 5748~6126 32 

1153~1326 15 6127~6517 33 

1327~1512 16 6518~6920 34 

1513~1710 17 6921~7335 35 

1711~1919 18 7336~7762 36 

1920~2142 19 7763~8202 37 
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where the pooled estimator of 2 , denoted by 
2

pS , is defined 

by 
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1 1 1 12 1 1

1 2

1 1

2 2
p

n S n S S S
S

n n

   
 

 
             (14) 

We consider the mean of population is the larger-the-better 

characteristic and the true difference in means pS  for 
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TABLE II: The UPPER BOUND of OPTIMAL SAMPLE SIZE WHEN  IS

UNKNOWN

TABLE IV: THE UPPER BOUND OF OPTIMAL SAMPLE SIZE WHEN  IS 

UNKNOWN

Since the two population variances 2

1 and 2

2 are 

unknown but equal, we assume that 2

1S and 2

2S represent the 

sample variances of population 1 and population 2. The T

statistic [21] is expressed as



  

population 1 is larger than population 2. Under this situation, 

the loss function is expressed as 
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III. RESULT 

From the above Tables, we can obtain the following results 

for the selection of an appropriate sample size. 

1) When variances 2

1  and 2

2  are known and equal, if  is 

known, from Table I, the sample size 15n   is 

disadvantageous for the quadratic model at 1000   

2) When variances 2

1  and 2

2  are known and equal, if   is 

unknown, from Table II, the upper bounds of optimal 

sample size are 4, 9 and 13 for the quadratic model at 

100  , 500   and 1000  , respectively. 

3) When variances 2

1  and 2

2  are unknown and equal, if 

  is known, from Table III, the sample size 16n   is 

disadvantageous for the quadratic model at 1000   

4) When variances 2

1  and 2

2  are unknown and equal, if 

  is unknown, from Table IV, the upper bounds of 

optimal sample size are 5, 10 and 14 for the quadratic 

model at 100  , 500   and 1000  , respectively. 

 

IV. CONCLUSION 

The determination of sample size is a common task for 

many experiments. Inappropriate, inadequate, or excessive 

sample sizes continue to influence the accuracy and cost of 

experiments. This paper describes the economical models of 

selecting an appropriate sample size of experiments. Some 

tables are provided that can be used to determine sample size 

for experiments based on the testing cost of observations and 

loss by adopting a wrong level and probability of factor. The 

sampling issues for the variances of two populations are 

known or unknown are addressed. 
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When  is known

From equation (15), the optimal sample size for a 

particular  is tabulated in Table III.
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The upper bound of optimal sample size for a particular λ
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