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Abstract— Data smoothing is an important step within a data 

processing procedure that allows one to stress the most 

important pattern of a function relation between a studied 

object and given variables. Recently, Holčapek and Tichý (2011) 

suggested a smoothing filter based on fuzzy transform approach 

of Perfilieva (2004) and compared it to Nadaraya-Watson 

estimator. In this contribution, we provide some results on 

smoothing of FX rates. 

 

Index Terms—Fuzzy smoothingfilter, FX rates, volatility.  

 

I. INTRODUCTION 

Many issues of financial modeling require to present the 

price evolution in time as well as its probability distribution. 

Since it is often difficult to asses the problem quickly 

according to raw data, which can potentially consists of 

several thousand observations, and calculation of basic 

descriptive statistics might lead to too simplifying 

conclusions, it can be useful to provide a chart as a first 

insight into the problem. 

Obviously, if we know the model, which is followed by a 

given random variable, ie. the market price, we can estimate 

its parameters and draw a function. Such approach is called 

parametrical. Within the real world problems, however, we 

cannot be sure about the properness of a given model. Since 

the evolution at financial markets is strongly related to the 

psychology of market participants, it can happen that a model, 

which has been identified as valid at one time instant, will not 

prove to be reliable at next time instant. 

A natural way how to provide a first picture about the data 

therefore is a non-parametric smoothing. The most standard 

way of smoothing financial data is based on kernel regression. 

As an alternative, one can consider a smoothing filter based 

on fuzzy-transform approach of Perfilieva (2006) [1]. Both 

these approaches will be applied in the following text on a 

chosen part of FX rate time series aiming on their visual as 

well as computational comparison. 

 

II. DATA SMOOTHING 

Let us assume observations of random variable, such as 

market price of foreign currency or equity index, with fixed 

length among particular observations,  𝑆𝑡 𝑡=0
𝑇 . When dealing 
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with such kind of data in finance, we might be interested in 

approximation of: 

1) the evolution of the price in time, ie. a functional 

relationship of  St and t; 

2) the evolution of price returns 𝑥𝑡 , 𝑥𝑡 = ln
𝑆𝑡

𝑆𝑡−1
; 

3) the probability density function of returns 𝑥𝑡 𝑡=1
𝑇 . 

Specifically, the reason why we might be interested in (b) 

is that the evolution of price returns in time is more 

comparative than the price itself; next, the returns can be 

further standardized, eg. to get zero mean and unit variance. It 

follows, that also in (c) we are interested in the distribution of 

returns. Moreover, since many financial applications 

crucially depends on tails, it may be useful to transform the 

probability function f into lnf. 

Generally speaking, we need to study variable Yt in 

dependency on Xt. Obviously, in the most simple case, Xt 

becomes t so that Yt is a price dependent solely on the time. 

To explore the functional relationship of both variables, we 

usually take the advantage of non-parametric methods, since 

there is no presumption about the kind of the dependency. 

The main disadvantages, by contrast, are strong data 

dependency and potential over fitting. 

In the following sections we first review basic terminology 

so that we can later define probably the most popular 

approach to data smoothing – the kernel regression. After that 

an alternative approach of fuzzy-transform is presented. Both 

these two approaches are applied in order to provide 

illustrative examples on financial data. Finally, some further 

alternatives, including references, are provided. 

 

III. BASIC METHODOLOGY 

Assuming two variables, Yt and Xt, their relationship in 

time can be described as follows:  

 

𝑌𝑡 = 𝑔 𝑋 + 𝜖𝑡 .                                 (1) 

 

where g is arbitrary, continuous, smooth, but unknown 

function and ϵ  is a white noise. 

The core idea of smoothing is that by the law of large 

numbers repeating the observation of Y,  𝑌 = 𝑦𝑖 𝑖=1
𝑛 1, 

n-times for a fixed X = x with sufficiently large n we get: 

 
 𝑦𝑖𝑛

𝑛
= 𝑔 𝑥 +

 𝜖𝑖𝑛

𝑛
                           (2) 

 

Obviously, any sufficiently large white noise sequence 

must have zero mean. It means that the left-hand side of (2) is 

a consistent estimate of g(x). 

Since it is not feasible to repeat the observations at a given 

time when dealing with financial time series, we get the 

estimate by using values of any Xt located nearby to x. It is 

also natural that observations located further from x are less 
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important. A standard approach, how to take this natural 

consequence into account, is to replace the simple average (2) 

by a weighted one: 

 

𝑔  𝑥 =  𝑤𝑡 𝑥 𝑦𝑡𝑡                                 (3) 

 

where wt already includes 1/T and therefore sum to unity. 

Particular smoothing approaches differ due to the ways to 

calculate the distance between xt and x and its subsequent 

transformation into a weight measure. 

 

IV. SMOOTHING VIA KERNEL REGRESSION 

Kernel regression, probably the most common approach to 

smoothing of financial data, uses a kernel to assign the 

weights to particular observations. Typically, it is a 

probability density function, K(x), satisfying: 

 

K(x) ≥ 0,  𝐾 𝑧 d𝑧 = 1                           (4)  

 

It is often useful to rescale (4) by a constant h called 

bandwidth as follows: 

 

𝐾ℎ 𝑥 = 1/ℎ𝐾 𝑥/ℎ                                 (5) 

  

Finally, the weights can be obtained as follows: 

 

𝑤𝑡 𝑥 =
𝐾ℎ  𝑥−𝑥𝑡 

 𝐾ℎ  𝑥−𝑥𝑡 𝑡
                               (6) 

 

This leads to Nadaraya-Watson kernel estimator [2], [3]: 

 

𝑔  𝑥 =  𝑤𝑡 𝑥 𝑦𝑡𝑡 =
𝐾ℎ  𝑥−𝑥𝑡 𝑦𝑡

𝑔  𝑥 
                     (7) 

Useful choices of kernels are either Gaussian kernel, 

 

𝐾ℎ 𝑥 =
1

ℎ√2𝜋
exp  −

𝑥2

2ℎ2                        (8) 

 

or Epanechnikov kernel [4], 

 

𝐾ℎ 𝑥 =
0.75

ℎ
 1 −

𝑥2

ℎ2 𝐼 𝑥/ℎ ≤1                         (9) 

 

where I is the indicator function. 

Selection of the proper bandwidth h is even more 

importantthan the choice of the kernel. Observe what 

happens in theextreme cases: 

1) If h is very large, potentially going to infinity, all 

observationshas the same weight so that we receive a 

singleline – a sample mean. This is called oversmoothing. 

2) By contrast, as h approach to zero, the level of 

smoothingwill be decreasing and finally, we get the 

original curve.Moreover, if we increase h, the Bias of the 

estimation willincrease, too. Similarly, with lowering h, 

we loose the opportunityto decrease the variance of the 

estimator. 

  

 

 

  

 

V. SMOOTHING BASED ON FUZZY TRANSFORMATION 

Sometimes dealing with the data in the original spaceis 

complicated. It might be therefore fruitful to transformthe 

data into a different space, in which the data handlingis 

simpler. After constructing the approximation, themodel is 

transformed back to the original space via 

inversetransformation. 

In this section we will focus on the technique of 

fuzzytransform originally proposed by [6], [1] as a tool for 

imageprocessing. Recently, in [7] it was suggested to use this 

method forfinancial time series smoothing. Moreover, in [8] 

and [9] theconditions for corresponding behavior of fuzzy 

transform andkernel estimator were derived and subsequently 

applied onsmoothing of FX rate series. 

Following [1], when we apply fuzzy transform approach, 

aswe can guess from the term fuzzy, the independent 

variables are fuzzy fied according to the proximity to a given 

point, which can be compared to the concept of weights 

obtained viaprobability distribution function in kernel 

regression approach. 

Next, the observations of the dependent variable are 

averaged, which forms a functional relation for a given point. 

This stepof fuzzy transform is called direct fuzzy transform. 

Obviously, the second step is inverse fuzzy transform, within 

which wereturn back to the original crisp space and obtain a 

smoothedfunction describing the relation of both 

variables.Bellow, we will focus on the relation between 

fuzzytransformation and kernel smoothing in line with[1] and 

[8]. 

Assuming that R is a real interval, g is a finite real 

functiongiven at the nodes x1< · · · <xn with Dom(g) ⊆R 

and𝐴 =  𝐴𝑖|𝑖 ∈ 𝐼  is a fuzzy r-partition of R determined by(T, 

S) such that Dom(g) is sufficiently dense with respect toA, 

one can say that a collection of real numbers  𝐹𝑖|𝑖 ∈ 𝐼 is 

discrete fuzzy (F-)transform of g with respect to A, if 

𝐹𝑖 =
 𝑔 𝑥𝑗  𝐴𝑖 𝑥𝑗  
𝑛
𝑗=1

 𝐴𝑖 𝑥𝑗  
𝑛
𝑗=1 ℎ

                                   (10) 

The numbers Fi are called components of the discrete 

F-transform. 

Moreover, if g is a real function as above, then Fi 

minimizesthe weighted least square criterion 

Φ𝑖 𝑦 =   𝑔 𝑥𝑗  − 𝑦 
2𝑛

𝑗=1 𝐴𝑖 𝑥𝑗                (11) 

Thus, FT-smoothing filter determined by A is a 

mappingFA : F(In,A) →CF(A) defined by 

 

F𝐴 𝑔  𝑥 =
1

𝑟
 𝐹𝑖𝐴𝑖 𝑥 𝑖∈𝐼                       (12) 

 

for any x∈R, where Fk are the components of the discrete 

Ftransformand the set of all continuous real functions g 

definedon R. 

 
 

VI. COMPARISON EXAMPLES 

Applying the asymptotic mean square error (AMSE) of the 

and the sample standard deviation.

One approach, how to select optimal bandwidth h isbased 

on mean integrated square error criterion (MISE),which, 

according to [5], leads to ℎ𝐺𝑎𝑢𝑠𝑠
𝑜𝑝𝑡

= 1.06𝑠𝑇−1/5 or ℎ𝐸𝑝𝑛
𝑜𝑝𝑡

=

2.34𝑠𝑇−1/5 for Gaussian and Epanechnikov kernel,

respectively, with T being the length of the data as usually 
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form 

 𝐴𝑀𝑆𝐸 𝑔 𝐹𝑇 𝑥  =
𝑘2𝜎2

𝑟2𝑛ℎ 𝑏−𝑎 
𝑅 𝐾 +

ℎ4𝜇2 𝐾 2

𝑟2𝑢2 𝑔′′ 𝑥 2  (13) 

the optimal value of bandwidth h can be derived by settingits 

derivative with respect to h equal to zero. Thus, 

withelementary calculus one can obtain 

ℎ𝐴𝑀𝑆𝐸 =
𝑘2𝑢2𝜎2

𝑟𝑛𝑔 ′′  𝑥 2 𝑏−𝑎 
𝐶 𝐾 1/5                     (14) 

In the formulas above, K is a symmetric Kernel,𝜇2 𝐾 =

 𝑧2𝐾 𝑧 𝑑𝑧
1

−1
, 𝑅 𝐾 =  𝐾2 𝑧 𝑑𝑧

1

−1
, 𝐶 𝐾 =

𝑅 𝐾 

𝜇2 𝐾 2, u= ti+1 

−ti and k denotes the number ofbasic functions obtained by a 

kernel. Since 𝑡𝑖 ∉ 𝑅 for somei = 1,…, k, we can deduce ku≥

b−a. One can notice thatku≈b−a for small h and 

ℎ𝐴𝑀𝑆𝐸 =
 𝑏−𝑎 2𝜎2

𝑟𝑛𝑔 ′′  𝑥 2 𝑏−𝑎 
𝐶 𝐾 1/5 =

 𝑏−𝑎 𝜎2

𝑟𝑛𝑔 ′′  𝑥 2 𝐶 𝐾 
1/5    (15) 

Comparing this result of [8] with the well known result for 

theNadaraya-Watson estimator, we get the following 

approximaterelation: 

ℎ𝐴𝑀𝑆𝐸
𝑁𝑊 ≈

ℎ𝐴𝑀𝑆𝐸
𝐹𝑇

0.76
                                        (16) 

 

 

 

 

 

 

 

 
Fig. 1. Fuzzy-transform (black) and Nadaraya-Watson (gray) 

filterappliedwiththesamebandwidth (left) and adjustedbandwidth (right) to 

FX ratelogreturnsof CZK (hFT= 2 atthe top and hFT= 4 atthebottom); 

original data depicted by dottedcurve. 
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where 0, 76 ≈  1/45
 . Hence, we need theoretically a higher 

bandwidth to obtain an optimal model for unknown function. 

On Fig. 1 we provide some illustration of both filters 

(Nadaraya-Watson and fuzzy-transform), and specifically the 

effect of various h, when applied to daily evolution of FX rate 

of CZK in terms of EUR over the period of about six months 

(first half of 2001). Charts in the first and third line provides 

the results obtained for the normalized FX rate, ie. it is set 

equal to 1.0 at the beginning, while the second and fourth line 

shows the results for daily log-returns. 

In all cases, dotted black lines show the original data while 

solid gray and black lines are used for smoothed curve 

according to the Nadaraya-Watson estimator and 

fuzzy-transform, respectively. Comparing the left (hNW = hFT) 

and right panel (hNW = hFT/0.76), one can see the effect of the 

previous result on the relation between optimal h of both 

filters (as based on AMSE criterion). Note moreover, that the 

first two lines were obtained assuming basic h = 2, while the 

last two are for h = 4. 

 

VII. CONCLUSION 

Following the application results, we can clearly see that 

under certain circumstances both approaches can lead to 

equivalent results. However, Holčapek and Tichý [8] argued, 

that one should prefer fuzzy-transform estimator if a storage 

problem may arise. By contrast, standard approach due to 

Nadaraya-Watson is easier to understand and thus there is a 

low risk of inappropriate parameters selection. 
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