



Abstract—Software testing plays a vital role in developing

software that is freedom from bugs and defects. Manual test is a

cost and time consuming process although it may find many

defects in a software application. If the testing process could be

automated, the cost of developing software could be reduced

obviously. The most critical part of the testing process is

generation of test cases. Model based test path generation

approaches identify faults in the implementation at early design

phase, reduce the software development time, and inspire

developer to improve design quality. The proposed approach

focuses on Model Based testing for automatic best test path

generation. In this approach, the proposed system generates all

possible test paths and optimizes a test path from these paths.

The proposed system will reduce the processing time by using

XMI based activity diagram, validate the generated test paths

with Cyclomatic Complexity and choose the best test path

without dependence on others.

Index Terms—Model-based testing, test path, test path

generation, UML activity diagram.

I. INTRODUCTION

Software testing is an essential part of the software

development life cycle. Software testing is also an activity

that should be done throughout the whole development

process [1]. The testing process consists of three parts: test

case generation, test execution, and test evaluation.

Comparing with the other two parts, test case generation is

more challenging and difficult [2]. Generating test data form

high level design notations has several advantages over

code-based test case design. Testing based on design models

has the advantage that the test cases remain valid even when

the code changes a little bit. Design models can be used as a

basis for test case generation, significantly reducing the costs

of testing [3].

There are many testing strategy and among them, some are

Model-Based Testing (MBT) that depends on extracting test

cases from different models (requirements models, usage

models, and models constructed from source code),

Specification-based testing (or black-box testing) that

depends on requirements models, and Program-based testing

(or white-box testing) that uses source code as the underlying

model [4].

Unified Modeling Language (UML) is a de-facto standard

for modeling analysis and design artifacts. UML models are

an important source of information for test case design,

which is satisfactorily exploited, can go a long way in

reducing testing cost and effort and at the same time improve

Manuscript received May 5, 2014; revised July 23, 2014.

The authors are with the University of Computer Studies, Mandalay,

Myanmar (e-mail: ayeayekyaw2009@gmail.com, myatiimin@gmail.com).

software quality [5]. UML activity diagram is the only design

artifact which is good at describing the flow of control in an

object-oriented system. Due to this reason, activity diagrams

are treated as one of the most important design artifact among

several UML diagrams. As UML activity diagram captures

the key system behavior, so it is well suited for the system

level testing of systems [6]. Activity diagram is an important

diagram among 13 diagrams supported by UML 2.0. It is

used for business modeling, control and object flow modeling,

complex operation modeling etc. Main advantage of this

model is its simplicity and ease of understanding the flow of

logic of the system [7].

In recent trend, Model-Based test case attracts many

researchers by using some data mining concept to produce an

automated optimal test case. Most of existing automation tool

using MBT is performed step by step. (e. g. constructing

dependency table, creating dependency graph, generating

possible paths). The efficient and effective approaches are

needed still although there are many existing automatic test

case generation approaches [8]. With this motivation, we aim

our work at generating all possible test paths and optimizing

the best test path from activity diagram. Our approach

minimizes the size of test, time and cost, and reduces steps at

the evolution of generated test paths.

The rest of the paper is organized as follows: The next

section reviews the use of activity diagrams for software

testing and optimization techniques. Section III scribes the

architecture of our proposed system with an illustration.

Section IV presents a case study to demonstrate the use of our

methodology with the Home Insurance Proposal

management system. The paper concludes with Section V.

II. UML ACTIVITY DIAGRAM MODELING

This section describes the fundamentals about activity

diagram. Activity diagrams are static-behavioral. Compared

to use case diagrams, activity diagrams are capable of

documenting the flow within a use case or within a system.

An important characteristic of activity diagrams is their

ability to show dependency between activities. An activity

diagram has two kinds of modeling elements: Activity nodes

and Activity edges.

A. Activity Nodes

There are two main kinds of nodes in activity diagrams:

 Action nodes (AN): Action nodes consume all input

data/control tokens when they are ready to generate new

tokens and send them to output activity edges. Action, an

individual step within an activity, can posses input and

output information. The output of one action can be the

input of a subsequent action within an activity.

 Control nodes (CN): Control nodes route tokens through

An Efficient Approach for Model Based Test Path

Generation

Aye Aye Kyaw and Myat Myat Min

International Journal of Information and Education Technology, Vol. 5, No. 10, October 2015

763DOI: 10.7763/IJIET.2015.V5.607

the graph. The control nodes include constructs to start

the diagram, to terminate the diagram, to choose between

alternative flows (decision/ merge), to split or merge the

flow for concurrent processing (fork / join). Control node

is an activity node used to coordinate the flows between

other nodes. Control nodes are Initial node, Flow final

node, Activity final node, Decision node, Merge node,

Fork node, Join node.

B. Activity Edges

Edges represent flow of control through the activity. It

connects the individual components of activity diagrams [9].

Fig. 1. Elements of activity diagram.

III. MODEL BASED TEST PATH GENERATION

Various authors have used the following architecture for

generating the test path.

Fig. 2. System flow of test path generation.

Following are the steps of test case generation by using

activity diagram among other UML diagram. The reasons

that activity diagram is used as input are:

1) The concepts at a higher abstraction level compared to

other diagrams like sequence diagrams, class diagrams,

etc. are presented.

2) The results in path are the presence of loop and concurrent

activities in the activity diagram.

3) It is difficult to consider all execution paths for testing

[10].

The description of each step in Figure 2 will be illustrated

as follows:

A. Generation of ADT

Activity diagram is used to automatically generate the

Activity Dependency Table (ADT) with all the activities.

These activities include decisions, loops and synchronization

along with the entity performing the activity. ADT also

consist of the input and the expected output values for each

activity. Dependency of each activity on others is also shown

clearly in ADT. The repeated activities in the diagram are

grouped into one symbol only instead of having several

symbols for the same activity.

B. Generation of ADG

The ADT is accomplished to automatically generate the

Activity Dependency Graph (ADG). The symbols given for

each activity are used to name the nodes in the ADG where

each node represents an activity in the activity diagram. Since

repeated activities are given the same symbol in the ADT,

only one node is created for them no matter how many times

they are used in the activity diagram. This will decrease the

search space in the ADG. The transitions from one activity to

another are represented by edges in the ADG. The presence

of an edge from a node to another is determined by checking

the dependency column in the ADT for the current node‟s

symbol. Specifically, if it contains the previous node‟s

symbol then an edge from the previous node to the current

one is drawn in the ADG.

C. Generation of Test Path

The generated ADG applied to obtain all the possible test

paths. A test path is composed of steps represented by

successive symbols/nodes (representing the activities)

forming a complete path from the start node in ADG to the

end node separated by arrows. Details are then extracted from

the ADT and added to each node in the test path to obtain all

the final test cases. Each node in the test case is accompanied

with its input and expected output. Besides, the whole test

case will be accompanied with its initial input and final

expected output [7].

IV. ARCHITECTURE OF PROPOSED SYSTEM

The proposed system uses the activity diagram as an input

for the automated algorithm of generating test paths. This

model constructs three main modules as shown in Fig. 3.

Fig. 3. Overall architecture of the proposed system.

The description of each module will be illustrated as

International Journal of Information and Education Technology, Vol. 5, No. 10, October 2015

764

D. Generation of Best Test Path / Optimal Test Path

Generation

Many researchers have been successfully proposed test

case generation for much software, using mainly search

optimization techniques such as Genetic Algorithm, Ant

Colony Optimization Algorithm, Tabu Search Algorithm et

al.

follows:

A. Conversion to XMI File

The Modelio activity diagram is converted to XMI file.

The converted XMI file is the input to the proposed system.

In order to generate test path in the next step, some important

information must be detected and extracted as the followings:

1) The “packagedElement” is a tag that provides description

of the activity diagram: diagram type, identity of diagram,

and diagram name.

2) The “node” is a tag that provides description of a node in

the activity diagram: node type, identity of node, node

name, identity of incoming edges, and identity of

outgoing edges. Inside incoming edge and outgoing edge,

if it has more than one edge, each edge will be separated

with the space character.

3) The “edge” is a tag that provides description of an edge in

the activity diagram: edge type, identity of edge, edge

name, identity of source node, and identity of target node.

The fundamental elements of the activity diagram are

actions node and control nodes such as Initial node, Flow

final node, Activity final node, Decision node, Merge node,

Fork node, Join node. Edges connect the individual

components of activity diagrams. These node and edge in the

activity diagram are mapped with the extracted from the

above information.

B. Generation of Possible Test Path

The extracted information is applied to obtain all the

possible test paths. A test path is composed of steps

represented by successive symbols/nodes (representing the

activities) forming a complete path from the start node in the

activity diagram to the end node separated by arrows. Details

are then extracted from the XMI file and added to each node

in the test path to obtain all the final test cases. This module

generates all possible test paths by applying the following

assumption;

),()),(),(arg(

)),(),(arg(,,,,

32

21321

yxPatheySourceeyetT

exSourceexetTeeeyx




 (1)

where x, y are nodes in the activity diagram and e1, e2, e3 are

edges in the activity diagram. Alternatively,

),(),(arg),(,, 222 yxPatheyetTexSourceeyx 

(2)

where x, y are nodes in the activity diagram and e2 is an edge

in the activity diagram.

C. Optimization of the Best Test Path

With the help of these test cases are generated, most

prioritized test case are generated by applying the proposed

assumption. The proposed assumption is as follows;

)(),(

),(

pBestPathdeMaxTotalNopHas

NodeMaxControlpHasp



 (3)

where p is a path in the activity diagram, MaxControlNode is

maximum number of control node of the test path and

MaxTotalNode is maximum number of total node of the test

path.

If a test path has maximum total number of control nodes

and maximum total number of nodes, it is the best test path

for given activity diagram.

D. Validation of the Generated Test Path

The minimum numbers of test cases are computed that

should be covered for each activity diagram using one of the

following two ways:

1) Cyclomatic complexity is defined as:

2 NEV (4)

where E, is the number of edges; and N is the number of

nodes.

2) Cyclomatic complexity is also defined as:

1 PV (5)

where P is the number of predicate nodes contained in the

diagram.

Branch coverage<=Cyclomatic complexity<=no. of paths

The generated test cases apply Branch coverage criteria,

and the Cyclomatic complexity coverage. In some cases the

generated test cases exceed the Cyclomatic complexity

criterion which means that the proposed model‟s test cases

apply the full-path coverage criteria. The proposed model

applies the hybrid coverage criterion [11]-[14].

V. CASE STUDY

This section presents a case study of Home Insurance

Proposal management system. Problem statement: The

system represents the process of making an insurance

proposal. The system receives „AcceptHomeInsurance

Proposal‟. One dealing with validation of the proposal details

called „ValidateProposalDetails‟ and the other with obtaining

the underwriter‟s approval, „ObtainUnderwriter Approval‟.

ValidateProposalDetails may take only half an hour, but

ObtainUnderwriterApproval may take a day. It is only when

both of these activities, with different time frames, are

complete that the next activity can start. Either the insurance

proposal is valid, or it is invalid and the cover is rejected. The

activity diagram for the above problem is as shown in Fig. 4.

Fig. 4. Activity diagram for home insurance proposal management system.

International Journal of Information and Education Technology, Vol. 5, No. 10, October 2015

765

In Fig. 5, the nodes and edges information of the activity

diagram is extracted from converted XMI file of the activity

diagram.

Fig. 5. Converted XMI file from activity diagram.

The number of node and edge and detailed information are

shown in Fig. 6.

Fig. 6. Extracted the information details of activity diagram.

Based on these extracted information, all possible test paths are

generated directly from XMI file as mentioned in section 3, B. Fig. 7

shows these generated test paths.

Fig. 7. All possible test paths.

And then the best test path is optimized depend on number

of control nodes and number of total nodes of each test path

according to Section III-C. The best test path is shown in Fig.

8.

Fig. 8. The best test path.

Then the upper bound of test paths that ensures the full

activity path coverage is 2 test paths which were produced by

the proposed model. Since,

Therefore, the branch coverage criteria, and the

Cyclomatic complexity coverage are applied by the

generated test cases.

VI. CONCLUSION

Most of existing automation tool using MBT is needed to

the fundamental steps such as constructing dependency table,

creating dependency graph, generating possible paths. The

proposed system can develop to be more accurate all possible

test paths due to generate directly from XMI file instead of

using the dependency table and graph. The generated test

paths are validated with Cyclomatic Complexity. Moreover

the proposed system saves time in choosing the best test path

because other optimization algorithms spend time to

calculate weight but the proposed approach does not need to

evaluate weight. As the human effort (cost and time) in

finding bugs and errors, and the steps at the evolution of

generated test paths are reduced, the proposed system is more

efficient and effective in the software development.

REFERENCES

[1] A. Bertolino, “Chapter 5: Software Testing,” IEEE SWEBOK Trial

Version 1.00, May 2001.

[2] A. V. K. Shanthi and G. Mohan Kumar, “A heuristic technique for

automated test cases generation from UML activity diagram,” Journal

of Computer Science and Applications, vol. 4, no. 2, pp. 75-86, 2012.

[3] S. Srivastava, S. Kumar, and A. K. Verma, “Optimal path sequencing

in basis path testing,” International Journal of Advanced

Computational Engineering and Networking, ISSN (PRINT):

2320-2106, vol. 1, iss. 1, 2013.

[4] S. S. Priya and P. D. Sheba. “Test Case Generation from UML

models-A survey,” in Proc. International Conference on Information

Systems and Computing (ICISC-2013), INDIA, January 2013, vol. 3,

special iss. 1.

[5] P. N. Boghdady, N. L. Badr, M. Hashem, and M. F. Tolba, “A

proposed test case generation technique based on activity diagrams,”

International Journal of Engineering & Technology IJET-IJENS, vol.

11, no, 3.

[6] A. A. Kyaw and M. M. Min, “Model-Based automatic optimal test path

generation via search optimization techniques: A critical review,” in

Proc. the 12th International Conference on Computer Applications

2014.

[7] R. K. Swain, V. Panthi, and P. K. Beher, “Generation of test cases

using activity diagram,” International Journal of Computer Science

and Informatics, ISSN (PRINT): 2231 –5292, vol. 3, 2013.

[8] T. D. Trong: “A systematic procedure for testing UML designs,” in

Proc. ISSRE, 2003.

[9] A. V. K. Shanthi and G. MohanKumar, “A novel approach for

automated test path generation using TABU search algorithm,”

International Journal of Computer Applications (0975 – 888), vol. 48,

no. 13, June 2012.

[10] V. M. Sumalatha and G. S. V. P. Raju, “A model based test case

generation technique using genetic algorithms,” The International

Journal of Computer Science & Applications (TIJCSA), vol. 1, no. 9,

November 2012, ISSN: 2278-1080.

[11] P. N. Boghdady, N. L. Badr, M. Hashem, and M. F. Tolba, “A

proposed test case generation technique based on activity diagrams,”

International Journal of Engineering & Technology IJET-IJENS, vol.

11.

[12] M. Chen, P. Mishra, and D. Kalita, “Coverage-driven automatic test

generation for UML activity diagrams,” in Proc. the 18th ACM Great

Lakes symposium on VLSI, 2006, pp. 139–142.

[13] R. K. Swain, V. Panthi, and P. K. Behera, “Generation of test cases

using activity diagram,” International Journal of Computer Science

and Informatics, ISSN (PRINT): 2231 –5292, vol. 3, iss. 2, 2013.

International Journal of Information and Education Technology, Vol. 5, No. 10, October 2015

766

We can see that the number of predicates are two, edges E

are 11 and nodes N are 11, then the will be as follows:

testpathsNEV 2211112 

Branch coverage<=Cyclomatic complexity<=no. of paths

[14] S. Tahiliani and P. Pandit, “A survey of UML-Based approaches to

testing,” International Journal of Computational Engineering

Research, vol. 2, iss. 5, September 2012.

[15] S. K. Swain and D. P. Mohapatra, “Test case generation from

behavioral UML models,” International Journal of Computer

Applications (0975 – 8887), vol. 6, no. 8, September 2010.

Myat Myat Min received the PhD in information

technology from the University of Computer Studies,

Yangon, Myanmar. She is an associate professor and

the head of Computer Software Development and

Technology Department at the University of

Computer Studies, Mandalay. Her special fields of

interest included software engineering, operating

system and wireless network system.

Aye Aye Kyaw was born on March 3, 1985. She

graduated from the University of Computer Studies,

Mandalay, Myanmar and she studied her M.C.Sc at

the University of Computer Studies, Mandalay. She is

persuing Ph.D in University of Computer Studies,

Mandalay. Her employment experience includes tutor

in Computer University (Lashio). Her special fields of

interest included software engineering, UML-based.

International Journal of Information and Education Technology, Vol. 5, No. 10, October 2015

767

