

Abstract—We have developed a framework to match records

from different data sources that refer to the same entities, using
proper names as the matching keys. There are two challenges to
overcome. Firstly, there may be typographical errors. Secondly,
some data sources may store the data in Thai characters while
some store them in English characters. Thus, Thai-version keys
are romanized and compared with English-version keys, using
string comparators and rule-based decision function. We report
our experimental results and problems encountered, as well as
suggest future research directions.

Index Terms—Entity names, record matching, romanization,
Thai characters.

I. INTRODUCTION
Many information systems these days process data from

many data sources. Therefore, one essential task is
identifying records from disparate sources that refer to the
same entities. Once matched records are found, they are
merged to increase the dimensionality of data, or duplicate
ones are removed. This task has several names such as entity
matching, record matching, record linkage, or data
deduplication.

In testing whether any two records are matched, their keys
are compared. Deterministic approach requires them to be
exactly equal, whereas approximate approach requires them
to be similar to a certain degree. The approximate approach is
suitable when the keys are proper names because there may
be inconsistencies or typographical errors across different
data sources. Firstly, in Thai, an entity’s name may be spelled
with slight variations such as “พิสณุ”, “พิสนุ”, “พิศณุ”,

“พิศนุ”, or “พิษณุ”. Secondly, some data sources may store
the data in Thai characters while some store them in English
characters. In such a case, one needs to convert the
Thai-version names into English (or English-version names
into Thai) so that the keys are written in the same language
characters. Although an official romanization standard has
been set [1], it is hardly followed in real practice. Hence,
“พิสณุ” (or its variant) may be written in English as “Pitsanu”,
“Pissanu”, or “Pisanu”.

In short, we must be able to compare an entity’s names
written in any different variations, either in Thai or English.
Our record matching framework is shown in Fig. 1. The rest
of this paper is organized as follows. Section II explains Thai
writing system. Section III presents record matching method

Manuscript received November 18, 2011; revised December 20, 2011.
R. Marukatat is with the Department of Computer Engineering, Faculty of

Engineering, Mahidol University, Thailand. (phone: +662-889-2138 ext
6251-2; fax: +662-889-2138 ext 6259; e-mail: egrmr@mahidol.ac.th).

and tool. Section IV reports experimental results, and Section
V concludes the paper.

Fig. 1. An overview of record matching task

TABLE I: THAI CHARACTERS AND THEIR ENGLISH MAPPING

Thai Consonant
English Thai Vowel

(� is consonant)
English

Lead Final
ก k k ◌ะ ั ◌า a
ข ฃ ค ฅ ฆ kh k ำ am
ง ng ng ิ ี i
จ ch t ึ ื ue
ฉ ช ฌ ch t ุ ู u
ซ ศ ษ ส s t เ◌ เ◌ะ e
ญ ย y n แ◌ แ◌ะ ae
ฎ ด d t ใ◌ ไ◌ ai
ฏ ต t t โ◌ โ◌ะ เ◌าะ ◌อ o
ฐ ฑ ฒ ถ ท ธ th t เ◌า ao
ณ น n n เ ย เ ยะ ia
บ b p เ◌อ เ◌อะ เ oe
ป p p เ อ เ อะ uea
ผ พ ภ ph p ัว ัวะ ua
ฝ ฟ f p ฤ ฤๅ lue
ม m m ฦ ฦๅ rue
ร r n
ล ฬ l n Consonant Suffix (+ is vowel)
ว w w +ย +i
ห ฮ h h +ว +ua, +ao, +eo
อ - -
Tone Mark (not romanized) Diacritic (not romanized)
     ็ sound shortener
  sound killer

Matching Entities by Their Thai and English Proper
Names

Rangsipan Marukatat, Member, IACSIT

International Journal of Information and Education Technology, Vol. 1, No. 5, December 2011

384

Fig. 2. Thai characters and their reading order

II. THAI WRITING SYSTEM

A. Characters and Syllable Structure
Thai Unicode characters range from \u0E00 to \u0E7F. As

displayed in Table I, there are 44 consonants in 21 phonetic
groups, 18 vowel symbols (making up single and compound
vowels), 4 tone marks, and 2 diacritics [2]. The characters are
printed in four lines (Fig. 2). Forward characters are printed
on the base line, occupying horizontal space. Dead characters
are printed above or below the forward characters. According
to Thai encoding standard, TIS620, characters are read from
left to right. If there are multiple characters in one column,
the reading order starts from forward character, dead
character on the lower line, dead character on the upper line,
and finally dead character on the top line.

A Thai syllable typically consists of a leading consonant, a
vowel, a tone, and a final consonant. Because there is no
space between syllables, determining the correct boundary of
each one, i.e. syllable segmentation, is a complicated task.
Indeed, it is one of challenges in linguistic and information
retrieval research, such as [3]-[5].

B. Thai Romanization
Thai proper names are usually derived from Indian origin

languages, Pali or Sanskrit. Through a series of conversions
from the original language, a name can be written in a few
subtly different ways. Misunderstanding or typing errors are
therefore very common. To write a name in Roman or
English characters, Thai romanization is performed.
According to the government proclamation, reported in [6],
romanization rules are based on sound transcription. Thai
characters are mapped to certain English characters that give
the closest sounds (as in Table I). The mapping disregards
tone marks, diacritics, and even meaning. Exceptions to these
rules were gathered and summarized in [5].

Following the rules, “รุง” and “รุง”, pronounced in

different tones, are converted into “Rung”. The names “พงก”,

“พงศ”, and “ภงค” are all converted into “Phong” as “พ” and

“ภ” are members of the same phonetic group while “ก”, “ศ”,

and “ค” are silenced by sound killers.
However, sometimes Pali/Sanskrit romanization is applied

to retain the meaning in Pali/Sanskrit, despite inexact sound
mapping. For example, an international airport “สุวรรณภูมิ”
is officially written “Suvarnabhumi” by Sanskrit

romanization, rather than “Suwannaphum” by Thai
romanization.

Note that our framework converts Thai-version names into
English, not vice versa, because Thai spelling is more diverse
than English one (as seen in the aforesaid examples). When a
name is romanized, it tends to be close, if not exactly equal,
to the English-version name spelled by the person herself.
We use Aroonmanakun’s romanization ([5], [7]) in this
research. It involves three main tasks:
1) Syllable segmentation by predefined syllable patterns. If

there are many possible outcomes, the best one is chosen
based on trigram probability from a training corpus.

2) Syllable pronunciation. Each syllable is attached with all
possible pronunciations. Again, the most probable one is
chosen based on probability from another corpus.

3) Romanization. Each syllable’s sound is then mapped to
English characters using the official standard. A hyphen
is added to avoid ambiguity at the syllables’ boundaries,
so “สอาด” is converted into “Sa-at”. A space is added
for groups of syllables that form isolable words or
subwords, so “ฉัตรสกล” is converted into “Chat Sakon”.

III. RECORD MATCHING METHOD AND TOOL
Suppose that there are two data sources A and B. Our task

is identifying record(s) b in B that belong to the same entity as
record a in A. The set of matched records can be written A x B
or {(a, b) | ∀a ∈ A, ∀b ∈ B}. To determine whether a and b
are matched, a’s keys {Ka1, Ka2…, Kan} are compared with the
corresponding b’s keys {Kb1, Kb2…, Kbn }. This research
focuses on approximate matching. The similarity between Kai
and Kbi, 1 ≤ i ≤ n, is measured, yielding δi. Then, a decision
function takes {δ1, δ2… δn} and produces a record matching
score (Δ) for a and b.

A. String Comparators
To measure the similarity (δ) between Ka and Kb, both

keys are treated as strings. The similarity score is normalized
to [0,1] range. String comparators currently used in our
research are as follows:
1) Levenshtein. This comparator calculates an edit distance

based on the minimum number of insertions, deletions,
and substitutions of characters to convert one string into
another. Each operation incurs a unit cost. The similarity
score is a reverse measurement of the edit distance.

2) Monge-Elkan. Like Levenshtein, it calculates a
similarity score based on edit distance, but assigns
decreasing costs to successive operations [8].

3) Jaro-Winkler. This comparator counts characters that
appear in the corresponding and nearby positions (not
farther than half of the length of the shorter string) of
both strings, and the conversion from one string into
another. Weights are added according to the characters’
positions because characters at the tail-end of the string
are more likely to differ than those at the beginning of
the string [9].

4) Recursive comparator. Strings Ka and Kb may consist of
tokens or substrings delimited by punctuations, arranged
in different orders. Examples are “Harry James Potter”

International Journal of Information and Education Technology, Vol. 1, No. 5, December 2011

385

and “Potter, Harry J.”. The recursive method compares
every token in one string with every token in the other,
using a distance-based comparator (such as Levenshtein,
Monge-Elkan, and Jaro-Winkler in this research), and
calculates the total similarity score [10].

Our comparators compare Thai and Thai strings or English
and English strings. In case that one of them is Thai and the
other is English, the Thai string will be romanized prior to the
comparison.

B. Decision Function
A decision function combines n comparison results {δ1,

δ2…, δn } and gives a record matching score. This function
can be simple linear regression, expectation-maximization
(EM), decision tree, support vector machine, or user-defined
rules. Our decision function is rule-based. A user can specify
a set of matching rules, as illustrated by Fig. 3 and Fig. 4.
Each rule is composed of clauses connected by logical AND
operators. For example,

Rule 1: JaroWinkler(Ka1, Kb1) ≥ s11 AND
 JaroWinkler(Ka2, Kb2) ≥ s12 .
Rule 2: Levenshtein(Ka1, Kb1) ≥ s21 AND
 Levenshtein(Ka3, Kb3) ≥ s22 AND
 JaroWinkler(Ka4, Kb4) ≥ s23 .
A similarity threshold s is set for every clause in a rule. A

matching score (Δ) according to rule R is the average of all
similarity scores (δ ’s) in that rule.

To find a record in data set B that best matches record a,

the following is performed:
1) Candidate_Set = ∅
2) For each record b in data set B {
3) For each rule R {
4) If every clause in R is true {
5) Calculate matching score Δ
6) Add b to Candidate_Set
7) Break (i.e. skip remaining rules)
8) }
9) }
10) }
11) Choose b with the highest Δ from Candidate_Set

If we want to find multiple matches for a, then candidates

can be sorted by their matching scores and the first few can
be chosen. On the other hand, if no match is found, then
decision rules can be adjusted, e.g. by lowering similarity
thresholds or changing string comparators.

C. Data Integration Tool
Our data integration with privacy protection environment,

or Dipper, was developed, initially aiming to match records
whose sensitive data are concealed [11] (the concealment of
sensitive data is not in focus of this paper). It was written in
Java, employing Cohen’s SecondString API [12] for string
comparison. We have been extending it to handle bilingual
matching keys, assuming that all characters in a key are either
Thai or English.

Fig. 3. Data Integrator window

Fig. 4. Rule Editor and Rule Constructor windows

International Journal of Information and Education Technology, Vol. 1, No. 5, December 2011

386

IV. EXPERIMENTS

A. Experimental Setup
Our Master data set contained 1,480 records of students in

the Faculty of Engineering, Mahidol University. Each record
had six attributes: ID, name and surname in Thai characters
(TH_Name and TH_Surname), name and surname in English
characters (EN_Name and EN_Surname), and major of study.
We generated five Lookup sets, each containing 200 records
randomed from Master. Two experiments were conducted.
Their setups are summarized in Table II.

We used the same comparator and similarity threshold for
comparing names and surnames. Rule setting was similar to
that shown in Fig. 4. But the threshold was only 0.1 in order
to allow both correct and incorrect matching, for
performance evaluation purpose. Our comparators included
Jaro-Winkler (JW), Levenshtein (L), and Monge-Elkan
(ME).

In the second experiment, we added typographical errors
to 50% of records in both Master and Lookup. The number of
induced errors ranged from 1 to 4 per record. Each error was
randomed from one of the following common errors:
1) Repetition, e.g. from “Rung” to “Runng”
2) Substitution with neighboring character on the keyboard,

e.g. from “Rung” to “Ryng”
3) Substitution with look-alike character, e.g. from “Rung”

to “Runq”
4) Substitution with shifted/unshifted character, e.g. from

“รุง” to “ณุง” (shift and “ร” yields “ณ”)

The result of an experimental run was a set of 200 records
belonging to the Lookup set used in that run. Each record was
expanded with attributes from the matched Master’s and their
matching score. We counted the number of matches (correct
matching), mismatches (incorrect matching), and unmatches
(no matching was found).

B. Results
Fig. 5 shows the average number, across 5 Lookup sets, of

correctly matched records in both experiments. Fig. 6 shows
the average number of mismatches and unmatches. In the
first experiment, all comparators gave more than 90%
accuracy. Monge-Elkan was the best one. It was the most
optimistic as its matching scores were higher than the others
(Fig. 7).

All comparators left nearly identical sets of unmatches in
Lookup. It means Dipper could not find any Master’s record
that passed the matching rule, despite the similarity threshold
being only 0.1. We found that TH_Name/TH_Surname in
these records had unconventional spelling that did not fit any
syllable pattern in the romanization program. As a result, they
were segmented and romanized incorrectly. In many cases,
whole syllables were missing from RO_Name/RO_Surname,
making them too much different from their corresponding
EN_Name/EN_Surname.

With typographical errors in the second experiment, the
number of unpronounceable strings increased, leading to
even more incorrect romanization and unmatches. On the
other hand, adding some errors to TH_Name/TH_Surname

did not affect the romanization. For example, “พงก” and

“ภงค” (with two errors) were both mapped to “Phong”.
There was a little drop in Levenshtein’s and Jaro-Winkler’s
performance. In contrast, Monge-Elkan was too optimistic
and gave too many mismatches. As seen in Fig. 7, its average
matching scores for matches and mismatches were both high
and close to each other, compared to those of Levenshtein.

TABLE II: SUMMARY OF EXPERIMENTAL SETUP

 Matching Keys Compa-
rator

Thres-
hold Master Lookup

1

EN_Name TH_Name
romanized to

RO_Name JW
L

ME

0.1
0.1
0.1 EN_Surname TH_Surname

romanized to
RO_Surname

2

EN_Name
with typos

TH_Name with typos
romanized to

RO_Name JW
L

ME

0.1
0.1
0.1 EN_Surname

with typos
TH_Surname with typos

romanized to
RO_Surname

Data set summary
Master: 1,480 records
Lookup: 200 records × 5 sets

0

50

100

150

200

JW L ME JW L ME

N
o.

 o
f R

ec
or

ds
 (

co
rr

ec
t m

at
ch

in
g)

Experiment 2Experiment 1

92%
97%

88%

63%

Fig. 5. Average number of matches in both experiments

0

20

40

60

80

JW L ME JW L ME

N
o.

 o
f R

ec
or

ds

Unmatch

Mismatch

Experiment 2Experiment 1

Fig. 6. Average number of mismatches and unmatches in both experiments

0

0.2

0.4

0.6

0.8

1

JW L ME JW L ME

M
at

ch
in

g
Sc

or
e

Match Mismatch

Experiment 2Experiment 1

Fig. 7. Average matching scores for matches and mismatches in both

experiment

International Journal of Information and Education Technology, Vol. 1, No. 5, December 2011

387

V. CONCLUSION
Our research aims to tackle approximate record matching,

where matching keys are proper names that may be stored in
different variations, either in Thai or English characters. We
convert names written in Thai characters into English, and
compare them with those written in English characters. The
conversion is currently via transcription-based romanization.
String comparators namely Levenshtein, Monge-Elkan, and
Jaro-Winkler, together with user-defined rules, are employed
for comparing names and matching records. Our experiments
showed that these comparators were effective. But there were
still problems with automatic romanization, especially when
typographical errors were present and the boundary of each
syllable could not be determined.

Thus, making our data integration program recognize and
cleanse some errors beforehand will alleviate the problem.
One way is to compare input names with those in a training
corpus. To handle unconventionally spelled names, which
are increasingly popular, up-to-date samples should be
included for training. Besides, we will investigate other
approaches to syllable segmentation and romanization. An
interesting one, for example, was proposed by
Chareonpornsawat and Schultz ([4]). It predicted the
syllable’s boundary based on entropy measures, and built the
pronunciation of an unseen syllable based on the closest one
in the training corpus. Another work focusing on
romanization was proposed by Tangverapong et al. [13].

Lastly, we will incorporate other Thai-English mappings.
Dictionary-based techniques can be applied for cases where
Thai names are translated rather than romanized, e.g. from
“ตึกชาง” to “Elephant Building”, instead of “Tuek Chang”.
Another mapping is when Thai names are neither romanized
nor translated to English. For example, “กรุงเทพมหานคร” is
mapped to “Bangkok”, not “Krungthep Maha Nakhon” by
romanization, or “Great Angel City” by translation.

REFERENCES
[1] N. Kanchanawan, “Romanization, transliteration, and transcription for

the globalization of the Thai language,” The Journal of the Royal
Institute of Thailand, 31(3): 832-841, 2006.

[2] T. Karoonboonyanan, “Standardization and implementations of Thai
language,” National Electronics and Computer Technology Center
(NECTEC), Thailand. Available:

 http://www.nectec.or.th/it-standards/thaistd.pdf.
[3] C. Wutiwiwatchai and A. Thangthai, “Syllable-based Thai-English

machine transliteration,” in Proceedings of the 2010 Named Entities
Workshop, ACL 2010, Upsala, Sweden, 2010, pp. 66-70.

[4] P. Chareonpornsawat and T. Schultz, “Example-based grapheme-to-
phoneme conversion for Thai,” in INTERSPEECH 2006 - ICSLP,
Ninth International Conference on Spoken Language Processing,
Pittsburgh, PA, USA, 2006, pp. 1268-1271.

[5] W. Aroonmanakun and W. Rivepiboon, “A unified model of Thai
romanization and word segmentation,” in Proceedings of the 18th
Pacific Asia Conference on Language, Information and Computation
(PACLIC), Japan, 2004, pp. 205-214.

[6] The Royal Institute of Thailand, “Principles of romanization for Thai
script by transcription method,” presented at the 8th United Nations
Conference on the Standardization of Geographical Names, Berlin,
Germany, 2002.

[7] W. Aroonmanakun, Thai romanization [software]. Available:
 http://www.arts.chula.ac.th/~ling/tts.
[8] A. E. Monge and C. P. Elkan, “The field matching problem: algorithms

and applications,” in Proceedings of the 2nd International Conference
on Knowledge Discovery and Data Mining (KDD), E. Simoudis, et al.
Eds. AAAI Press, 1996, pp. 267-270.

[9] W. E. Winkler, “The state of record linkage and current research
problems,” Technical Report RR/1999/04, US Bureau of Census,
Washington DC, USA, 1999.

[10] W. W. Cohen, P. Ravikumar, and S. E. Feinberg, “A comparison of
string distance metrics for name matching tasks,” in Proceedings of the
International Joint Conference on Artificial Intelligence (IJCAI),
Mexico, 2003, pp. 73-78.

[11] R. Marukatat, “Dipper: a data integration with privacy protection
environment,” in Proceedings of the International MultiConference of
Engineers and Computer Scientists (IMECS), Hong Kong, 2009, pp.
750-754.

[12] Second String Project Page. Available:
 http://secondstring.sourceforge.net.
[13] A. Tangverapong, A. Suchato, and P. Punyabukkana, “Romanization

of Thai proper names based on the popularity of usages,” in PAKDD
2009, Lecture Notes in Computer Science, vol. 5476, T.
Theeramunkong, et al. Eds. Springer, 2009, pp. 580-587.

International Journal of Information and Education Technology, Vol. 1, No. 5, December 2011

388

