
  

  
Abstract—Feature subset selection is a technique for 

reducing the attribute space of a feature set. In other words, it is 
identifying a subset of features by removing irrelevant or 
redundant features. A good feature set that contains highly 
correlated features with the class improves not only the 
efficiency of the classification algorithms but also the 
classification accuracy. A novel metric that integrates the 
correlation and reliability information between each feature 
and each class obtained from multiple correspondence analysis 
(MCA) is currently the popular solution to score the features 
for feature selection. However, it has the disadvantage that 
p-value which examines the reliability is conventional 
confidence interval.  In this paper, modified multiple 
correspondence analysis (M-MCA) is used to improve the 
reliability. The efficiency and effectiveness of proposed method 
is demonstrated through extensive comparisons with MCA 
using five benchmark datasets provided by WEKA and UCI 
repository. Naïve bayes, decision tree and jrip are used as the 
classifiers. The classification results, in terms of classification 
accuracy and size of feature subspace,   show that the proposed 
Modified-MCA outperforms three other feature selection 
methods, MCA, information gain, and relief.  
 

Index Terms—Feature selection, correlation, reliability, 
P-value, confidence interval. 
 

I. INTRODUCTION 
In real-world data, the representation of data often uses too 

many features, but only a few of them, may be related to the 
target concept. There may be redundancy, where certain 
features are correlated so that is not necessary to include all 
of them in modeling.  Feature subset selection is the process 
of identifying and removing as much irrelevant and 
redundant information as possible. This reduces the 
dimensionality of the data and may allow learning algorithms 
to operate faster and more effectively. In some cases, 
accuracy on future classification can be improved; in others, 
the result is a more compact, easily interpreted representation 
of the target concept. Instead of altering the original 
representation of features like those based on projection (e.g., 
principal component analysis) and compression (e.g., 
information theory) [1], feature selection eliminates those 
features with little predictive information, keeps those with 
better representation of the underlying data structure. 

Instead of altering the original representation of features 
like those based on projection (e.g., principal component 
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analysis) and compression (e.g., information theory), feature 
selection eliminates those features with little predictive 
information, keeps those with better representation of the 
underlying data structure.  

Today, different areas have adopted the feature selection 
technique to pre-process the data in order to improve model 
performance [2]. In general data mining and pattern 
recognition domains introduced a criterion function of 
mutual information and proposed a mutual information based 
feature selection method which could generate a subset of 
features without taking class labels into account. However, 
these proposed methods were time consuming since the 
values of mutual information of a feature subset needed to be 
re-calculated after a feature had been chosen, and it was also 
sensitive to noise. The comparison of some famous feature 
selection method in the area of bioinformatics was given in 
[3], including information gain, gini index, t-test, sequential 
forward selection (SFS), and etc. Feature selection in this 
area is inevitable but quite challenging because biological 
technologies usually produce size. Experiments on both 
synthetic and real data showed that revaled some trend 
relative to the sample size and relations among the features. 

Multiple correspondence analysis (MCA) [4] is designed 
for nominal data. If it can be effectively utilized to indicate 
the relations between a feature and a class, MCA could be 
considered as a potentially better approach since by choosing 
a subset from the original feature space, the semantic 
meaning of the feature is retained. In ([5], [6]), the angle 
values obtained from MCA have shown to be able to capture 
the correlation between each feature and the class, However, 
correlation may not be sufficient and accurate enough to 
describe the data structure, and thus it studied complex 
feature dependencies in multivariate settings for multimedia 
information fusion [7]. In statistics, p-value serves as a 
measure of reliability of the relation between a feature and a 
class. 

In this paper, the proposed approach, modified-MCA, 
continues to explore the geometrical representation of MCA 
and aims to find an effective way to indicate the relation 
between features and classes. However, the study tries the 
p-value as smaller as possible by adjusting with the 
significance level. Therefore, modified-MCA could be 
considered as a potentially better approach. This paper is 
organized as follows: Related work is introduced in Section 2; 
the proposed Modified-MCA is presented in Section 3; 
followed by an analysis of the experimental results in Section 
4. Finally, conclusions are given in Section 5. 

Modified-MCA Based Feature Selection Model for  
Preprocessing Step of Classification 
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II. RELATED WORK 
If, however, the data is suitable for machine learning, then 

the task of discovering regularities can be made easier and 
less time consuming by removing features of the data that are 
irrelevant or redundant with respect to the task to be learned. 
This process is called feature selection. The benefits of 
feature selection for learning can include a reduction in the 
amount of data needed to achieve learning, improved 
predictive accuracy, learned knowledge that is more compact 
and easily understood, and reduced execution time [8].  

Depending on how it is combined with the construction of 
the classification model, feature selection can be further 
divided into three categories: wrapper methods, embedded 
methods, and filter methods. Wrappers choose feature 
subsets with high prediction performance estimated by a 
specified learning algorithm which acts as a black box, and 
thus wrappers are often criticized for their massive amounts 
of computation which are not necessary. Similar to wrappers, 
embedded methods incorporate feature selection into the 
process of training for a given learning algorithm, and thus 
they have the advantage of interacting with the classification 
model, meanwhile being less computationally intensive than 
wrappers. In contrast, filter methods are independent of the 
classifiers and can be scaled for high-dimensional datasets 
while remaining computationally efficient. In addition, 
filtering can be used as a pre-processing step to reduce space 
dimensionality and overcome the overfitting problem. 
Therefore, filter methods only need to be executed once, and 
then different classifiers can be evaluated based on the 
generated feature subsets [9]. 

Filter methods can be further divided into two main 
sub-categories: univeriate and multivariate. The first one is 
univariate methods which consider each feature with the 
class separately and ignore the inter-dependence between the 
features, such as information gain and chi-square measure 
([9], [10]). Both methods are widely used to measure the 
dependence to measure the dependence of two random 
variables. Information gain evaluates the importance of 
features by calculating their information gain with the class, 
but this method is biased to features with more values. A new 
feature selection method was proposed which selected 
features according to a combined criterion of information 
gain and novelty of information [10]. This criterion serves to 
reduce the redundancy between features while maintaining 
information gain in selecting appropriate features. 

The second sub-category is the multivariate methods 
which take features’ interdependence into account, for 
example, Correlation-based feature selection (CFS) and 
Relief [3], [11]. They are slower and less-scalable compared 
to the univariate methods. Relief is another commonly used 
method whose idea is to choose the features that ca be most 
distinguishable between classes. It evaluates the worth of a 
feature by repeatedly sampling an instance and considering 
the value of the given feature for the nearest instance of the 
same and different classes. However, relief lacks a 
mechanism to deal with the outlier instances, and it has worse 
performance than the univeriate filter methods in most case 
[3]. 

According to the form of the outputs, the feature selection 
methods can also be categorized into ranker and non-ranker. 

A non-ranker method provides a subset of features 
automatically without giving an order of the selected features. 
On the other hand, a ranker method provides a ranked list by 
scoring the features based on a certain metric, to which 
information gain, chi-square measure, and relief belong [9].  

 

III. MODIFIED MULTIPLE CORRESPONDENCE ANALYSIS 
Multiple correspondence analysis (MCA) extends the 

standard Correspondence Analysis (CA) by providing the 
ability to analyze tables containing some measure of 
correspondence between the rows and columns with more 
than two variables. 

A. Correspondence Analysis (CA) 
Standard Correspondence Analysis (CA) is a 

descriptive/exploratory technique designed to analyze simple 
two-way contingency tables containing some measure of 
correspondence between the rows and columns. multiple 
correspondence analysis (MCA) is an extension of the 
standard CA [4], and the proposed method Modified-MCA is 
the modification of MCA. 

B. Geometrical Representation of MCA 
MCA constructs an indicator matrix with instances as rows 

and categories of valuables as columns. Here in order to 
apply MCA, each feature needs to be first discretized into 
several intervals or nominal values (called feature-value pairs 
in the study), and then each feature is combined with the class 
to form an indicator matrix. Assuming the kth feature has jk 
feature-value pairs and the number of classes is m, then the 
indicator matrix is denoted by Z with size (n × (jk + m)), 
where n is the number of instances. Instead of performing on 
the indicator matrix which is often vary large, MCA analyzes 
the inner product of this indicator matrix, i.e., ZTZ, called the 
Burt Table which is symmetric with size ((jk + m) × (jk + m)). 
The grand total of the Burt Table is the number of instances 
which is n, then P = ZTZ /n is called the correspondence 
matrix with each element denoted as pij .Let ri and cj be the 
row and column masses of P, that is, ri = ∑ j pij and cj = ∑i pij. 
The center involves calculating the differences (pij − ricj) 
between the observed and expected relative frequencies, and 
normalization involves dividing these differences by √ ricj, 
leading to a matrix of standardized residuals sij = (pij − ricj)  /  
√ ricj. The matrix notation of this equation is presented in 
Equation (1). 

 
S = Dr

−1/2 (P – rcT) Dc−1/2                                  (1) 
 
Where r and c are vectors of row and column masses, and 

Dr and Dc are diagonal matrices with these masses on the 
respective diagonals. Through Singular Value 
Decomposition (SVD), S = UΣVT where Σ is the diagonal 
matrix with singular values, the columns of U are called left 
singular vectors, and those of V are called right singular 
vectors. The connection of the eigenvalue decomposition and 
SVD can be seen through the transformation in Equation (2). 

SST = UΣVT VΣUT = UΣ2UT = UΛUT,            (2) 
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Here, Λ=Σ2 is the diagonal matrix of the eigenvalues, 
which is also called principal inertia. Thus, the summation of 
each principal inertia is the total inertia which is also the 
amount that quantifies the total variance of S. The 
geometrical way to interpret the total inertia is that it is the 
weighted sum of squares of principal coordinates in the full 
S-dimensional space, which is equal to the weighted sum of 
squared distances of the column or row profiles to the 
average profile. This motivates us to explore the distance 
between feature-value pairs and classes represented by rows 
of principal coordinates in the full space. The χ2 distance 
between a feature-value pair and a class can be well 
represented by the Euclidean distance between them in the 
first two dimensions of their principal coordinates. Thus, a 
graphical representation, called the symmetric map, can 
visualize a feature-value pair and a class as two points in the 
two dimensional map. As shown in Fig. 1, a nominal feature 
with three feature-value pairs corresponds to three points in 
the map, namely P1, P2, and P3, respectively. Considering a 
binary class, it is represented by two points lying in the x-axis, 
where C1 is the positive class and C2 is the negative class. 
Take P1 as an example. The angle between P1 and C1 is a11, 
and the distance between them is d11. Similar to standard CA, 
the meaning of a11 and d11 in MCA can be interpreted as 
follows.  

Correlation: This is the cosine value of the angle between a 
feature-value pair and a class in the symmetric map. The 
symmetric map of the first two dimensions represents the 
percentage of the variance that the feature-value pair point is 
explained by the class point. A larger cosine value which is 
equal to a smaller angle indicates a higher quality of 
representation [9]. 

Reliability: As stated before, χ2 distance could be used to 
measure the dependence between a feature-value pair point 
and a class point. Here, a derived value from χ2 distance 
called the p-value is used because it is a standard measure of 
the reliability of a relation, and a smaller p-value indicates a 
higher level of reliability [9].  

 

 
Fig. 1. The symmetric map of the first two dimension 

Assume that the null hypothesis H0 is true. Generally, one 
rejects the null hypothesis if the p-value is smaller than or 
equal to the significance level, which means the smaller the 
p-value, the higher possibility of the correlation between a 
feature-value pair and a class is true. Here, the conventional 
significant level is 0.05. It means that a 5% risk of making an 
incorrect estimate and confidence level of 95%. One never 
rounds a p-value to zero. Low p-values reported as “<10-9”, 
or something similar, indicating that the null hypothesis is 
‘very, very unlikely to be true’, but not ‘impossible’. In this 

paper, the propose Modified-MCA tries the p-value as 
smaller as possible by adjusting with the significance level. 
By this way, standard measure of the reliability can be 
improved.  

P-value can be calculated through the χ2 Cumulative 
Distribution Function (CDF) and the degree of freedom is 
(number of feature-value pairs −1) × (number of classes −1). 
For example, the χ2 distance between P1 and C1 is d11 and 
their degree of freedom is (3 − 1) × (2 − 1), and then their 
p-value is 1−CDF (d11, 2). Therefore, correlation and 
reliability are from different points of view, and can be 
integrated together to represent the relation between a feature 
and a class. 

C. Modified-MCA Based Feature Selection Model 
Modified-MCA continues to explore the geometrical 

representation of MCA and aims to find an effective way to 
indicate the relation between features and classes which 
contains three stages: Modified-MCA calculation, feature 
evaluation, and stopping criteria. First, before applying 
Modified-MCA, each feature would be discretized into 
multiple feature-value pairs. For each feature, the angles and 
p-values between each feature-value pair of this feature to the 
positive and negative classes are calculated, corresponding to 
correlation and reliability, respectively. If the angle of a 
feature-value pair with the positive class is less than 90 
degrees, it indicates this feature-value pair is more closely 
related to the positive class than to the negative class, or vice 
versa. For p-value, since a smaller p-value indicates a higher 
reliability, (1 - p-value) can be used as the probability of a 
correlation being true. The p-value is very close to zero but 
the probability of the correlation being true is very close to 
zero as well.  

 
 

Fig. 2. Modified –MCA based feature selection model 

After getting the correlation and reliability information of 
each feature-value pair, the equations which take the cosine 
value of an angle and p-value as two parameters are defined 
(as presented in Equations (3) and (4)) in the feature 
evaluation stage. Since these two parameters may play 
different roles in different datasets and both of them lie 
between [0, 1], different weights can be assigned to these two 
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parameters in order to sum them together as an integrated 
feature scoring metric. Considering different nominal 
features contain a different number of feature-value pairs, to 
avoid being biased to features with more categories like 
Information Gain does, the final score of a feature should be 
the summation of the weighted parameters divided by the 
number of feature-value pairs. Assume there are totally K 
features. For the kth feature with jk feature-value pairs, the 
angles and p-values for the ith feature-value pair are ai1 and p 

i1 for the positive class, and ai2 and pi2 for the negative class, 
respectively. Then the score of the kth feature can be 
calculated through Equation (3) or (4). 

( ) ( )( )( )Score k feature w a w p p jth
i i i

j

k

k

= + −∑ 1 1 2 1 2
1

1cos max , /
 (3) 

 

( ) ( )( )( )Score k feature w a w p p jth
i i i

j

k

k

= + −∑ 1 2 2 2 1
1

1cos max , /
 (4) 

 
Calculating Score 
  1 for k =1 to K 
  2    for i =1 to jk 
  3       if cos ai1 > 0 
  4             sumk+= w1 × cos ai1 
  5             if counti1 > 0.01 AND count i2 > 0.01 
  6                  sumk+= w2 × max((1 − pi1),pi2) 
  7       elseif cos ai1 < 0 

  8             sumk+= w1 × cos a i2 
  9             if counti1 > 0.01 AND count i2> 0.01 
  10                sumk+= w2 × max((1 − p i2),pi1) 
  11     else 
  12              sumk+=0 
  13  end 
  14      scorek = sumk/jk 
  15end 

Fig. 3. Calculation score algorithm 

If a feature-value pair is closer to the positive class, which 
means ai1 is less than 90 degrees, then equation (3) is applied, 
where max((1− p i1), p i2) would allow us to take the p-value 
with both classes into account. This is because that (1−p i1) is 
the probability of the correlation between this feature-value 
pair and the positive class being true, and p i2 is the 
probability of its correlation with the negative class being 
false. Larger values of these two probabilities both indicate a 
higher level of reliability. On the other hand, if a i1 is larger 
than 90 degrees, which means the feature-value pair is closer 
to the negative class, then max((1− p i2), p i1) will be used 
instead, that is Equation (4). w1 and w2 are the weights 
assigned to these two parameters. The pseudo code of 
integrating the angle value and p-value as a feature scoring 
metric [12] is shown in Fig.3. Finally, after getting a score for 
each feature, a ranked list would be generated according to 
these scores, and then different stopping criteria can be 
adopted to generate a subset of features [9]. 

 

IV. EXPERIMENTS AND RESULTS 
In this section, proposed method is evaluated in terms of 

speed, number of selected features, and learning accuracy on 
selected feature subset. Three representative feature selection 
algorithms, MCA, Information Gain, relief are chosen in 
comparison with Modified-MCA. The proposed 
Modified-MCA is evaluated using five different benchmark 
datasets from WEKA and UCI repository. The dataset 
numbers, dataset names, and number of Features in original 
datasets are shown in Table.1.  

TABLE I: DATASETS DESCRIPTION 

No. Dataset 
Name 

No. of 
Features 

No. of 
Instances 

1 Diabetes 8 768 

2 Labor 16 57 
3 Ozone 72 2534 
4 Soybean 35 683 

5 Weather 5 14 

TABLE II: AVERAGE PERFORMANCE OF MODIFIED-MCA BASED FEATURE 
SELECTION 

Dataset
Modified-MCA 

Precision Recall F-Measure Running  
Time (sec) 

1 0.754 0.756 0.754 0.036 
2 0.860 0.859 0.859 0.016 
3 0.917 0.869 0.880 0.490 
4 0.893 0.871 0.870 0.213 
5 0.510 0.667 0.566 0.010 

Avg 0.787 0.804 0.786 0.153 

TABLE III: AVERAGE PERFORMANCE OF MCA BASED FEATURE SELECTION 

Dataset
MCA 

Precision Recall F-Measure Running  
Time (sec) 

1 0.750 0.743 0.746 0.045 
2 0.850 0.850 0.850 0.025 
3 0.901 0.834 0.866 0.602 
4 0.850 0.855 0.852 0.324 
5 0.501 0.647 0.564 0.030 

Avg 0.770 0.785 0.775 0.205 

TABLE IV: AVERAGE PERFORMANCE OF INFORMATION GAIN FEATURE 
SELECTION 

Dataset
Information Gain 

Precision Recall F-Measure Running  
Time (sec) 

1 0.733 0.737 0.734 0.13 
2 0.843 0.841 0.838 0.006 
3 0.915 0.846 0.846 2.716 
4 0.911 0.889 0.889 0.356 
5 0.542 0.690 0.598 0.001 

Avg 0.788 0.8006 0.781 0.6418 

TABLE V: AVERAGE PERFORMANCE OF RELIEF FEATURE SELECTION 

Dataset
Relief 

Precision Recall F-Measure Running  
Time (sec) 

1 0.736 0.741 0.737 0.07 
2 0.843 0.841 0.838 0.006 
3 0.916 0.845 0.864 1.63 
4 0.903 0.882 0.901 0.346 
5 0.542 0.690 0.598 0.001 

Avg 0.786 0.798 0.787 0.416 
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Fig. 4. Comparison results of No. of features generated by modified-MCA 

and MCA 
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 Fig. 5. Comparison results of No. of features generated by modified-MCA 

and information gain 
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 Fig. 6. Comparison results of No. of features generated by modified-MCA 

and relief 
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Fig. 7. Comparison results of No. of features generated by modified-MCA 
and other three feature selection methods with the number of features in 

original datasets 
 

Three-fold cross validation is first applied to the whole 
dataset of each concept, which randomly splits the data into 
three sets with an approximately equal number of data 

instances and an equal P/N ratio. Then each fold uses two of 
three sets as the training data set and the remaining one as the 
testing data set. The final result is the average of these three 
folds. The proposed method, modified-MCA, only takes 
nominal features. In order to get nominal features, 
discretization on the training dataset needs to be conducted, 
and then the same intervals are used to discretize the testing 
dataset. The discretization methods chosen would affect the 
final classification result. However, according to ([13], [14]) 
and also testing results, so far no particular discretization 
method is clearly superior to the others for our data. 
Therefore, the discretization method applied in this research 
is the standard discretization method embedded in WEKA 
which is minimum description length ([15], [16]). And then, 
all feature selection algorithms are performed on the 
discretized training dataset which also reduce the effect of 
discretization on comparison.  

In Fig. 4, 5 and 6, the comparison results of number of 
features generated by modified-MCA, MCA, Information 
Gain, and Relief, are shown, comparing with the number of 
features in original datasets. Based on the classification 
results, it can be significantly seen that the proposed 
Modified-MCA can generate less number of meaningful 
features than other three feature selection methods, while 
Relief performs the worst. There is only small amount of 
differences in number of features between the two feature 
sets generated by Information Gain and Relief. However, 
Information Gain is slightly better than Relief. In Fig.7, we 
can see significantly that the proposed method 
Modified-MCA can do the best in reducing the size of feature 
sets among these feature selection methods. In dataset no. 3, 
Ozone, it is very significant. While MCA reduces 72 features 
of original dataset to 52, Information Gain reduce to 60 and 
Relief reduce to 65, the proposed method modified-MCA can 
reduced to 23. The advantage of modified-MCA is more 
significant in large datasets with large number of features. 

After applying, these five sets of data, one for each feature 
selection method, are run under three classifiers, namely 
Decision Tree (DT), Rule based JRip (JRip), Native Bayes 
(NB). Each time, the precision, recall, F-Measure and 
running time for each classifier based on a particular subset 
of the features can be obtained.  In Table.2 to 5, the 
evaluations are discussed by means of average Recall, 
average Precision, average F-measure and average running 
time over three classifiers rather than that of only one 
classifier to be more accurate. 

Based on the classification results, we can see significantly 
that the proposed modified-MCA do better than MCA and 
other feature selection methods, in terms of average precision, 
average recall, average F-measure and running time. 
Although the average F-measure of proposed method is 
nearly equal to that of Relief, the running time taken to build 
the classification model is significantly less than that of 
Relief, in terms of numbers, 0.153 seconds and 0.416 seconds 
respectively. The difference is 0.263 seconds. Therefore, the 
proposed method does better than others feature selection 
methods. 
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V. CONCLUSION 
In this study, a new feature subset selection algorithm for 

classification task, modified-MCA, was developed. The 
angles from the proposed method have been used as an 
indicator of correlation between features and classes, and 
also an indicator of the contribution of the features. The 
p-values is taken as a measure of reliability of the relation 
between features and classes. A ranking list of features can be 
generated according to the scores and then a features subset 
can be selected. Based on the results of that experiment, the 
performance of modified-MCA is evaluated by several 
measures such as precision, recall and F-measure. Five 
different datasets are used to evaluate the proposed method. 
The results are compared to simple MCA, information gain 
and relief. The results assure that proposed modified-MCA 
makes better results than MCA and other feature selection 
methods over three popular classifiers.  
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