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Abstract—In this paper, we developed tool to learn the 

calculation process of HOSVD. This tool uses newly created 

puzzle using some of MacMahon’s coloured cubes. The puzzle is 

represented as the 2D map using the matrix unfolding required 

to calculate HOSVD. In order to investigate the difficulty level 

of the puzzle and the visibility of its map representation, the 

teaching tool is tried by our students and others at the Campus 

Open Day of our college. As a result, it was confirmed that most 

users could understand the map and that the puzzle was rather 

easy to solve. Therefore, it was thought that the users seemed to 

understand the concept of the matrix unfolding roughly. 

 
Index Terms—MacMahon’s coloured cubes, 3D puzzle, 

matrix unfolding, HOSVD, understanding support tools. 

 

I. INTRODUCTION 

Tensor decomposition is often widely used in big data 

analysis, fuzzy modeling, signal processing, image 

processing, image classification, biological signal analysis, 

text mining, social networking, and web hyperlink analysis 

[1]-[3]. This computation decomposes high-dimensional data 

represented by higher-order tensors into a product of a tensor 

and matrices or a sum of products of vectors. Note that in this 

paper the higher-order tensors have the same meaning as 

multidimensional arrays. We have been working on the 

medical data analysis using the tensor decomposition [4] and 

the development of teaching tools of this decomposition 

using 3D puzzles [5], [6]. Recent research in the latter field, 

we took a Rubik’s cube and an Instant Insanity as 3D puzzles. 

However, it is very difficult to actually solve these puzzles, 

hence we recognized the need for easier puzzle. 

Under the background as described above, we devised new 

3D puzzle using some of the MacMahon’s coloured cubes [7]. 

The puzzle is used as a teaching tool to learn the principle of 

tensor decomposition, and focuses on a matrix unfolding and 

a folding (an inverse of the matrix unfolding) that appears in 

the calculation process of higher-order singular value 

decomposition (HOSVD) [8] where HOSVD is one of the 

tensor decomposition. In this paper, we first explain the 

MacMahon’s coloured cubes, a devised 3D puzzle, and 

HOSVD algorithm. Then we describe the higher-order tensor 
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representation of the puzzle and its map representation. Next 

we show teaching tool developed using this map 

representation. Finally, we describe the results of trials of 

using this tool for junior high school students and our college 

students at the Campus Open Day of our college. In addition, 

the analysis results on the level of difficulty of the puzzle, the 

visibility of the map representation, and the degree of 

understanding of the matrix unfolding are also shown. 

 

II. 3D PUZZLE USING MACMAHON’S COLOURED CUBES 

MacMahon’s cubes are cubes coloured on each side with 

six different colors, and 30 different cubes can be obtained by 

combining the colors on each side [7]. We selected four types 

of cubes from those 30 cubes and used them to create a new 

3D puzzle. Fig. 1 shows a 3D puzzle composed of four types 

of cubes made by pasting color stickers on wooden cubes. 

The color scheme of each cube is shown as expanded views 

in Fig. 2. The colors used here are six colors, red (1), white 

(2), blue (3), green (4), yellow (5), and black (6), and the 

numbers in parentheses are color numbers. In these expanded 

views, the crossing part of the vertical and horizontal rows is 

the top face (red) of each cube. 

This puzzle is a rectangular parallelepiped composed of 

22  cubes when viewed from top face (red) of Fig. 1, and is 

solved by rearranging so that the colors of each side of this 

rectangular parallelepiped are the same color. We created this 

puzzle using MacMahon’s coloured cubes as a puzzle that is 

easier to solve than the previously used Instant Insanity and 

Rubik’s cube. 

 

III. HOSVD AND N-MODE MATRIX UNFOLDING 

A. HOSVD Algorithm 

The higher order singular value decomposition (HOSVD) 

is the extension of the singular value decomposition (SVD) 

on a matrix and is used to decompose a higher order tensor of 

third order or higher, and is often used as one of the tensor 

decompositions [9].  This method is often applied to fuzzy 

modeling, image processing and classification, data analysis, 

data compression, and so on [3], [4], [9], [10]. The higher 

order tensor refers to a multidimensional array, for example, 

first, second, and third order tensors correspond to a vector, a 

matrix, and a three-dimensional array, respectively.  

As an example of HOSVD, Fig. 3 shows a pattern diagram 

of decomposition in the case of the third order tensor. The 

original tensor A  is decomposed into an n-mode product of 
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one core tensor B  and three orthogonal matrices 
)(n

U , 

1,2,3)( n , where the n-mode product means a product of a 

tensor and a matrix, as an example of the operator, an 1-mode 

product is represented as 1 , and the core tensor corresponds 

to a diagonal matrix of SVD. Now, a HOSVD algorithm 

generalized to M-th order tensor is shown as follows: 
 

 
Fig. 1. Overall view of self-made 3D puzzle. 

 

 
Fig. 2. Color scheme of each cube. 

 

 [ (Algorithm 1) HOSVD of M-th order tensor ] 

Input: An M-th order tensor A . 

Output: M orthogonal matrices 
)(n

U , ),1,2,( Mn   

and a core tensor B . 

(Step 1) Apply the n-mode matrix unfolding to the M-th 

order tensor A  to obtain M types of matrices 

)(nA , ),1,2,( Mn  . 

(Step 2) Apply SVD to the matrices )(nA  obtained in Step 

1, respectively, to calculate M left singular matrices (i.e. 

orthogonal matrices) 
)(n

U , ),1,2,( Mn  . 

(Step 3) Calculate the core tensor B  by the following 

equation, 

 
(1)T (2)T (M)T

1 2 M .U U U   B A             (1) 

 

(Step 4) Return the matrices 
)(n

U , ),1,2,( Mn   and 

the core tensor B . 

(End of Algorithm) 

 

The definition of the n-mode matrix unfolding in Step 1 of 

the HOSVD algorithm described in the previous section is as 

follows [8]: 
 

Core tensor

               

    

  

    

  

Third-order

tensor

A B

 
Fig. 3. HOSVD of third-order tensor. 
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Fig. 4. 1-mode matrix unfolding of third-order tensor. 

 

[ (Definition 1) n-mode matrix unfolding ] 

The n-mode matrix unfolding is to obtain a matrix )(nA  of 

size )( 12121  nMnnn IIIIIII   with an ),,,( 21 Miii  th 

element 
Miiia 21

 of the M-th order tensor A  of size  

MIII  21 as an ),( nn ji th element of )(nA , where the 

column element nj  is given by the following formula:  

 

n n 1 n 2 n 3 M 1 2 n 1

n 2 n 3 n 4 M 1 2 n 1

M 1 2 n 1 1 2 3 n 1

2 3 4 n 1 n 1

j (i 1)I I I I I I

(i 1)I I I I I I

(i 1)I I I (i 1)I I I

(i 1)I I I i .

   

   

 

 

 

  

   

   

      (2) 

 (End of Definition) 

 

In short, the n-mode matrix unfolding is an operation of 

converting the M-th order tensor into the matrix. Regarding 

the mode of the higher order tensor, it refers to the direction 

of the tensor, and in the case of the third order tensor A  in 

the top of Fig. 4, the vertical, horizontal, and depth directions 
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of A  show the 1-, 2-, and 3-modes of the tensor, severally. 

Assuming that an ),,( 321 iii th element of A  is 
321 iiia , the 

corresponding relationship between the subscripts and the 

tensor modes represents that 1i , 2i , and 3i  are 1-, 2-, and 3 

-modes, respectively.  

 

TABLE I:  COLOR INFORMATION OF EACH CUBE IN FIG 

 

 

According to the Definition 1, in the 1-mode matrix 

unfolding of A  of Fig. 4, since the ),,( 321 iii th element 

321 iiia  of A  is arranged in the 1i  row and the 

3321 )1( iIij   column of the matrix (1)A , the whole 

matrix unfolding can be obtained by arranging the elements 

for all cases of 11 ,,1 Ii  , 22 ,,1 Ii  , 33 ,,1 Ii   as 

shown in the bottom of Fig.4. Matrix unfoldings of other 

modes can also be obtained in the same way. 

In order to obtain the matrix unfolding, it is a steady way to 

move each element of the higher order tensor one by one to 

each element of the matrix unfolding according to the 

Definition 1, however there is a more efficient way to 

implement it. That is, in the case of Fig.4, the 1-mode matrix 

unfolding is calculated by slicing A  from left to right along 

the 2-mode of A  and horizontally arranging the obtained 

matrices from left to right. An algorithm for the efficient 

matrix unfolding is shown below. 

 

[ (Algorithm 2) 1-mode matrix unfolding of third order 

tensor ] 

Input: A third order tensor A  of size 321 III  . 

Output: An 1-mode matrix unfolding (1)A  of  

size 321 III  . 

(Step 1) Extract the submatrix  
22 ii aA , 

),,1( 22 Ii   from A  and combine them side by side to 

 
2

||| 21(1) IAAAA  , where   2i
a  is the matrix with 

index 2i  fixed and first and third subscripts 11 ,,1 Ii   and 

33 ,,1 Ii  . 

(Step 2) Return (1)A . 

(End of Algorithm) 

 

IV. HIGHER-ORDER TENSOR REPRESENTATION OF 3D 

PUZZLE AND ITS MAP 

A. Higher-Order Tensor Representation of 3D Puzzle 

As described earlier, the higher-order tensors used in this 

paper are multidimensional arrays. That is, the first to 

third-order tensors correspond to vectors, matrices, and 3D 

arrays, respectively. Here, in order to represent the puzzle 

shown in Fig. 1 as a multidimensional array, it is modeled by 

a fifth-order tensor as shown in Fig. 5. And then, each 111   

cube in Fig. 1 is enlarged to third-order tensor with a size of 

333  , and the color of each face of the original cube is 

given to the center element of each face of the third-order 

tensors. Since each original cube is arranged in 22 , the 

size of the fifth-order tensor is 22333  . 

Now, let us denote this fifth-order tensor and its 

),,,,( 54321 iiiii th element as A  and 
54321 iiiiia , respectively. 

Then, the tensor A  is expressed by the following equation: 

 

1 2 3 4 5i i i i i 1 2 3 4 5(a ), (i ,i ,i 1,2,3; i ,i 1,2).  A      (3) 

 

Table I shows the color values given to each element of A . 

Note that all values for element numbers not shown in this 

table are 0. In Fig. 5, n-mode ,5)1,2,( n  represents the 

directions of the tensor data indicated by the arrows of tensor 

data and correspond to the subscripts 1i , 2i , 3i , 4i  and 5i  of 

A , respectively. 

B. Map of 3D Puzzle 

To represent this 3D puzzle as a 2D map, we apply the 

n-mode matrix unfolding used in the calculation process of 

HOSVD. Here we use an 1-mode matrix unfolding especially 

as an algorithm for creating a puzzle map. The following is 

the algorithm for creating a map of this 3D puzzle. 
 

 
Fig. 5. Fifth-order tensor representation of the 3D puzzle. 

 

[ (Algorithm 3) Map creation of 3D puzzle ] 
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Input: A fifth-order tensor A  of size 22333   

Output: A map matrix mapA  of 3D puzzle 

(Step 1) Extract the sub-third-order tensor  
5454 , iiii a A , 

)2,1,( 54 ii  from A , where  
54iia   is a third-order tensor 

with indices 4i  and 5i  fixed and the first to third subscripts 

3,2,1,, 321 iii . 

 (Step 2) Apply Algorithm 2 to 
54 ,iiA , )2,1,( 54 ii  

obtained in Step 1 to compute the 1-mode matrix unfolding 

)1(, 54 iiA , )2,1,( 54 ii . 

(Step 3) The map matrix mapA  is constructed by arranging 

)1(, 54 iiA , )2,1,( 54 ii  obtained in Step 2 as shown in the 

following equation: 
 

 
1,2(1) 2,2(1)

map

1,1(1) 2,1(1)

.
A A

A
A A

 
  
 

                    (4) 

 

(Step 4) Return mapA . 

(End of Algorithm) 
 

In (4), )1(1,1A , )1(1,2A , )1(2,1A , and )1(2,2A  are partial map 

matrices for the cubes 1, 2, 3, and 4, respectively.  

    
(a) Title screen of the 3D puzzle    (b) Screen of a puzzle map for exercises 

    
(c) Question screen to solve the puzzle within the time limit   (d) Screen of a puzzle map for checking answers 

Fig. 6. Example of display screen of developed teaching tool. 

 

V. TEACHING TOOL USING MAP OF 3D PUZZLE 

A. Developed Teaching Tool and Its Usage 

A teaching tool for learning the concept and procedure of 

the n-mode matrix unfolding and folding (inverse operation 

of the unfolding) of HOSVD algorithm was developed using 

MS PowerPoint application. Fig. 6 shows the example of 

display screen of these teaching tool. The following (i) to (iv) 

show the procedure for using the tool. 

1) The title screen shown in Fig. 6(a) appears on the display. 

Next, how to solve the puzzle is explained. 

2) Fig. 6(b) is displayed to explain how to read the map. 

Users practice placing each cube as shown in Fig. 1, while 

watching the map. Fig. 7 shows this situation. The map in 

Fig. 6(b) is created by adding color information and 

position information (that is, Front/Back, Top/Under, and 

Left/Right.) to the elements having the color values of the 

map matrix mapA  in (4). 

3) The question screen shown in Fig. 6(c) is displayed, and 

the users solve the puzzle within one-minute. When the 

mouse is clicked, a start tone sounds and the timer works. 

The elapsed time is indicated by a blue bar extending 

from left to right, as shown at the bottom of Fig. 6(c). 

4) Finally, by displaying Fig. 6(d), the user sees an example 

of the answer of this puzzle. As same as the case of Fig. 

6(b), the user actually puts each cube while looking at the 

answer map. 

Because the map of each cube of these teaching tool is 

created from the 1-mode matrix unfolding, we consider that it 

is possible to learn the matrix unfolding by repeatedly 

referencing the map and to learn the folding by actually 

placing the cubes according to the map. 

B. Results of Using This Teaching Tool 

This teaching tool was used by junior high school students 

and our college students who visited the Campus Open Day 

held at our college in August 2019. There were 30 users 

(including 22 junior high school students, 8 our college 

students and adults). As described in the previous subsection, 

users were asked to answer simple questions after using the 

teaching tool. Fig. 8 summarizes the contents of the questions 

and the results. 

Question 1 asks the level of difficulty of the puzzle. 
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Although 70% of users felt that the puzzle was "hard", 16 out 

of 30 people, more than half of the total, could solve the 

puzzle within the time limit for the question in Fig. 6(c).  
 

 
Fig. 7.  Scene of exercise of how to read the map. 

 

Question 2 is about the readability of the map. The total of 

“easy to read” and “standard” was about 77%, so we found 

that the map of this teaching tool is generally easy to read. 

Also, by checking the map in Fig. 6(d), all users were able to 

confirm the answer to the puzzle, so it seems that the most 

users understood the map. 

Fig. 9 shows a cumulative relative frequency distribution 

of the time required for the users to check the answer of the 

puzzle by placing the cubes as shown in the answer map in 

Fig. 6(d). The average time required for the confirmation was 

approximately 63 seconds. We found that about 57% of users 

confirmed the answer by this average time, and that about 

70% of them in 80 seconds and about 93% in 100 seconds 

completed the confirmation. 

 
Fig. 8. Summary of questions and answers after use the tool. 

 

 
Fig. 9. Cumulative relative frequency distribution of time 

required to confirm the answer. 

 

VI. CONCLUSIONS 

In this paper, we show a new 3D puzzle created using 

some of MacMahon’s coloured cubes for teaching tensor 

decomposition. This puzzle is not as difficult as the Instant 

Insanity and the Rubik’s cube, so it can be solved almost 

within the time limit. By applying the mode matrix unfolding 

of HOSVD, the puzzle was expressed as a 2D map. Our 

developed teaching tool allow users to learn matrix unfolding 

and folding in the calculation process of HOSVD by solving 

this 3D puzzle while referring the map. 

The developed teaching tool was used by our college 

students and others at the Campus Open Day to investigate 

the level of difficulty of the puzzle and the readability of the 

map. As a result, there were many answers that the difficulty 

level was high, but it was confirmed that more than half of 

users can solve the puzzle within the time limit. In addition, 

we saw that the map is generally easy to read and that almost 

everyone understood how to read it. From these results, the 

learners of the concept of matrix unfolding and folding can 

be understood by using this teaching tool. Our future work is 

to use this teaching tool in class at our college and to verify 

that this tool is effective in learning the concept and 

calculation process of HOSVD. 
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