

Abstract—Software testing is a necessary process to ensure

quality of software. Unfortunately, it is usually perceived as a

very difficult process for inexperienced software developers.

Defect-driven Development (DDD) is a novel development

concept which aims to bridge such gap. DDD helps

inexperienced developers to automatically generate essential

test cases and scripts from defect information collected from a

knowledge base. This research describes an implementation of

the concept as well as its performance evaluation. The result

suggests that this technique helps beginners to create an

equivalent effectiveness level of unit test compared to experts in

both term of time used and defect density.

Index Terms—Software testing, defect-driven development,

automatic test case generation.

I. INTRODUCTION

Testing is undeniably an essential process in software

development [1]. In order to perform this process effectively,

a software developer needs to possess certain skills and

techniques due to the fact that there are a number of aspects

of testing, such as unit testing, functional testing, integration

testing and usability testing. This can be challenging for

inexperienced developers. Lack of experience may lead to

several undesirable outcomes such as inappropriate testing

model and inadequate testing coverages which inevitably

lead to defects and performance problems. Without close

supervision and guidance from experts, these inexperienced

developers may slowly improve their skills and performance.

On the other hand, an efficient mentoring system can greatly

accelerate this learning process.

The foundation of Defect-driven Development (DDD) is

the collection and knowledge management of data on

software defect. This includes all potential defects from

every step of software development, regardless of process

models. These data are stored in a database or semantics data

model as Knowledge Software Defect (KSD). Two main

classes of defects are defined in KSD. Firstly, the high-level

software defects include problems on design and abstraction

processes. Secondly, the low-level software defects involves

coding and testing related issues. This classification helps the

practitioners to put appropriate focus on relevant stages. KSD

is then used by inexperienced software developers as a

Manuscript received October 9, 2019; revised December 20, 2019.

Wacharapong Nachiengmai is with the Department of Business Computer,

Faculty of Business Administration, North – Chiangmai University, Chiang

Mai, Thailand (e-mail: wacharapong@northcm.ac.th).

Sakgasit Ramingwong is with the Department of Computer Engineering,

Faculty of Engineering, Chiang Mai University, Chiang Mai, Thailand

(e-mail: sakgasit@eng.cmu.ac.th).

Amphol Kongkeaw is with the Department of Software Engineering,

Faculty of Engineering and Technology, North – Chiang Mai University,

Chiang Mai, Thailand (e-mail: amphol@northcm.ac.th).

guideline on identification of potential defect patterns which

may surface during their implementation. The list of defect

patterns can be varied based on different development

environment, project characteristics, technical skills, tools,

etc. These information are then used to generator test cases

and scripts which are subsequently used by inexperienced

software developer. Fig. 1 summarizes the concept and

process of DDD.

Fig. 1. Main concepts of defect-driven development (DDD).

II. RELATED WORKS

A. Defect-Driven Development

Defect-driven Development (DDD) is a development

concept which aims to improve the overall quality of the

software [2]. By providing defects information, software

developers are likely to become more aware and commit less

mistakes. The information on defects, such as name, types,

likelihood, where it usually surfaces and how to avoid or fix

it. These data were previously collected from experienced

programmers and systematically stored in the Knowledge of

Software Defects (KSD). As aforementioned, defect

information is classified into Low-level and High-level, in

order to help practitioners focus on their relevant

development stages. Previous studies report that

implementing DDD significantly help improving the

efficiency of defect detection for software engineering

students [2]. In fact, not only inexperienced developers can

gain benefits from DDD, skilled programmers can also use

DDD to help improving their awareness as well as

preparation towards potential defects.

B. Software Testing

The main objective of software testing is to investigate the

quality of software from various aspects [3]. Not only

functional requirements but also non-functional issues are

thoroughly processed during this stage. In traditional

software development, a suite of test cases is generally

constructed after the coding is completed. However, in

modern software engineering, the test suite are usually

created in the earlier phase, sometimes as soon as after the

requirement engineering [4]. Automated tools are also

Implementing DDD for Automatic Test Case Generation

Wacharapong Nachiengmai, Sakgasit Ramingwong, and Amphol Kongkeaw

International Journal of Information and Education Technology, Vol. 10, No. 2, February 2020

117doi: 10.18178/ijiet.2020.10.2.1349

introduced in order to facilitate and improve both the

efficiency and effectiveness of the testing [5]. Likewise, the

concept of DDD can be implemented to further increase the

overall performance of the development.

III. RESEARCH OBJECTIVE AND DESIGN

A. Research Objective

This research attempts to utilize KSD for automated

generation of test suite. Successfully implementing this could

shorten the development process along with increasing the

quality of the software. Learners will also be able to preview

and adopt testing techniques more efficiently. On the other

hand, experts can ensure that defects are managed more

thoroughly.

B. Research Design

Four modules with a similar technical difficulty are used as

the main requirement in this experiment. These modules are

described as follows:

 Registration: A form which collects email address,

password, full name, date of birth, height and weight.

All fields cannot be left blank. The password must

consist of 4–10 alphanumeric characters. The successful

operation will return 1 while the failed attempt will

return 0.

 Sign In: A form which collects an email and a password

and then verify them as can be seen in Fig. 2. Both of

them are required. Similar to the first module, the

successful operation will return 1 while the failed

attempt will return 0.

 Age calculation: A form which uses the entered date of

birth and calculates into the user’s current age. The

calculation then returns the year, month and day value

of the user’s age or 0 in case of an error.

 Body Mass Index calculation: A form which asks for the

user’s height and weight and calculate them based on

standard BMI formula. The result is then compared with

criteria. In case of error in calculation, it will return 0.

Fig. 2. The example document for sign in module.

The participants are assigned to create a suite of test cases

for all modules. The results are used to compare with the test

case that is generated with data from KSD.

C. The Use of the Knowledge of Software Defects (KSD)

Defect information in the KSD in this experiment was

collected from 5 senior testers who have more than 5 years of

experiences in various software companies. They analyzed,

identified and recorded data on potential defects that is

related with the 4 experiment modules as displays in Fig. 3.

Table I displays some examples of the identified knowledge

for the High-level Software Defect.

Fig. 3. User interface of data collection.

TABLE I: EXAMPLES OF DEFECTS DATA IN KSD

Module Test name
Parameter

Name

Parameter

Value

Expected

Result

Sign in Test case

for both

null value

{“email”,

“password”}

{“”,””} 0

Sign in Test case

for null of

email value

{“email”,

“password”}

{“”,

“password”}

0

Sign in Test case

for null of

password

value

{“email”,

“password”}

{“test@mail.c

om”, “”}

0

D. Participants

Three groups of participants with different experiences in

software development joined this experiment. The first group

of participants consisted of 5 freshmen in computer

engineering program who have just taken a first course of

programming. They were identified as a group of

inexperienced developers. The second group, the

intermediate, included five senior software engineering

students who had passed more than five subjects of software

development and software testing e.g. Fundamental of

Computer Programming, Object-oriented Programming,

Software Construction and Evolution, Component-based

Software Development, Mobile Programming and Software

Validation and Verification, etc. Finally, the last group

consisted of 5 invited university lecturers who had extensive

experience in software development.

E. Framework

Mocha JS [6] was the selected framework for creating unit

tests under Node JS [7] environment. This is due to its

simplicity and applicability. Since none of the participants

had previously used this tool, according to the principle of

International Journal of Information and Education Technology, Vol. 10, No. 2, February 2020

118

DDD, they were all considered as beginners for Mocha JS in

this experiment.

F. Test Case Creation

All groups of participants were instructed to create suites

of test cases for the four foregoing modules. Each participant

individually created his or her own suites. They were not

allowed to either consult with their group members or search

for more information regarding to the defects from the

Internet. No time limitation was enforced in this process.

G. Test Case Generation

After all participants finished their test case creation, they

then implemented their test cases in Mocha JS as a black box

testing [8]. Participants in the experienced and intermediate

groups composed the test scripts by themselves. On the other

hand, the beginner group used an application that is

generated the test scripts automatically from the data of KSD

as its screen is shown in Fig. 4.

Fig. 4. The example test script code.

Three indexes used in Personal Software Process (PSP) [9]

were measured for the performance of the test scripts. These

includes Time Used, Code Size, and Defect Density [10],

[11].

IV. RESULT OF THE EXPERIMENT

A. Result of Test Case Creation

TABLE II: AVERAGE NUMBERS OF GENERATED TEST CASES

Group of

test case

Beginner/

(SD.)

Intermediate/

(SD.)

Experienced/

(SD.)
KSD

Null

Checking

11.25

(3.50)

14.5

(4.88)

15.00

(3.80)

12.00

Formatting

Checking

1.00

(0.00)

3.33

(0.58)

5.33

(0.58)

3.00

Validity

checking

0.00

(0.00)

1.57

(0.07)

4.14

(1.26)

11.00

Other

Checking

0.50

(0.04)

2.50

(0.73)

6.0

(2.73)

11.00

According to the test suites developed by the participants,

four categories of tests were identified. They consisted of

Null Checking, Formatting, Validity and Others. The average

number of the generated test cases by the different groups of

participants are shown in Table II and Fig. 5.

Fig. 5. Test case creation result.

It can be seen that the test cases automatically generated by

KSD had a similar amount close to the experienced and

intermediate group for the checking of null value and

formatting. In contrast, for the tests on validity and

miscellaneous defects, KSD generated significantly more

cases than other participants. This suggests that KSD could

be an efficient tool to assist software practitioners regardless

of their levels of experience.

B. Result of Test Script Generation

Table III illustrates the three indexes PSP result of test

script generation.

TABLE III: COMPARISON OF DEVELOPMENT INDEXES

Group of

participant

Time used

(Minutes)

Code size

(LOC)

Defect Density

(per KLOC)

Experienced 11.45 44.95 14.86

Intermediate 21.45 28.45 102.37

Beginner 1.00 57.00 0.00

0

5

10

15

20

25

Experience Intermediate Beginner

Time Used

Fig. 6. Test script performance in time used.

0

10

20

30

40

50

60

Experience Intermediate Beginner

Size

Fig. 7. Test script generation performance in script size.

S
iz

e
 (

L
O

C
)

T
im

e
 (

m
in

.)

International Journal of Information and Education Technology, Vol. 10, No. 2, February 2020

119

According to Fig. 6, it can be seen that the beginners spent

significantly less average time to create a test case when

compared to both the experienced and intermediate

participants. This is highly likely to be the benefit from using

KSD since they can see and subsequently choose the

appropriate defects easily. Furthermore, Fig. 7 reveals that

the size of the test case are not much different between the

three groups of participants. The defect density shown in Fig.

8 display the defected scripts created by each group of

participants. It can be seen that the experienced participants

created sharply lower defect than the intermediate

counterparts. On the other hand, the beginner did not create

any defects since they drew them directly from the KSD.

0

20

40

60

80

100

120

Experience Intermediate Beginner

Defect Density

Fig. 8. Test script generation performance in defect density.

C. Threats to Validity

The major threat to validity of this research is the

classification of subjects. It is undeniable that although

certain participants seem to have a stronger background than

others, in fact, they might not have higher experience in some

relevant areas. For example, teachers who have more than 5

years of coding might have similar experiences in testing

when compared to students who took courses in testing for 2

years. A solution or this threat to validity is the classification

should be done based on pre-test results instead of experience

in software development.

D. Future Works

The concept of KSD can be implemented for an expansive

range of test case generation. For examples, this application

could support automatic test script generation in others

format including, JUnit of Java [12], PHPUnit of PHP [13],

etc.

Other test-intensive software development techniques

such as Test-Driven Development [14], [15] are also likely to

be beneficial from KSD. This is because KSD could help

creating a more thorough and insightful test suite as well as

saving time simultaneously.

V. CONCLUSION

Knowledge of Software Defects (KSD) is a core element

in the Defect-Driven Development (DDD). This research

conducted an experiment on the utilization of KSD in test

case generation. Three group of participants, i.e. experienced,

intermediate and beginner, were involved in the research.

The results reveal that KSD bridges the gap between the

expert and beginners efficiently. This can be seen from the

short duration of test case creation and the low defect density

of the results from the beginner participants. Consequently, it

is highly likely the use of KSD can also benefit everyone in

the development process, regardless of their experiences.

Also, it is important to initiate a knowledge management

process for this aspect in software organizations.

CONFLICT OF INTEREST

The authors declare that this research has no conflict of

interest with other research in the same area.

AUTHOR CONTRIBUTIONS

Wacharapong Nachiengmai proposed the use of KSD for

test case generation. He conducted the experiment, analyzed

the result and wrote this article.

Sakgasit Ramingwong revised and restructure paper.

Amphol Kongkeaw assisted in data collection process

from expert testers. He also co-supervised all experiment

with Wacharapong.

REFERENCES

[1] L. Fu, G. Sun, and J. Chen, “An approach for component-based

software development,” in Proc. 2010 Int. Forum Inf. Technol. Appl.

IFITA 2010, vol. 1, no. Idl, pp. 22–25, 2010.

[2] W. Nachiengmai, S. Ramingwong, K. Cosh, L. Ramingwong, and N.

Eiamkanitchat, “Defect-driven development : A new software,” Int. J.

GEOMATE, vol. 17, no. 61, pp. 149–155, 2019.

[3] K. Sneha and G. M. Malle, “Research on software testing techniques

and software automation testing tools,” in Proc. 2017 Int. Conf. Energy,

Commun. Data Anal. Soft Comput., pp. 77–81, 2018.

[4] P. E. Patel and N. N. Patil, “Testcases formation using UML activity

diagram,” in Proc. 2013 Int. Conf. Commun. Syst. Netw. Technol.

CSNT 2013, pp. 884–889, 2013.

[5] D. Nirmala and T. Lathamaheswari, “Automated testcase generation

for software quality assurance,” in Proc. 10th Int. Conf. Intell. Syst.

Control. ISCO 2016, pp. 1–6, 2016.

[6] Mochajs.org. Mocha JS. [Online]. Available: https://mochajs.org/

[7] Node.js Foundation. Node JS. [Online]. Available:

https://nodejs.org/en/

[8] N. Li, Z. Li, and X. Sun, “Classification of software defect detected by

black-box testing: An empirical study,” in Proc. 2010 2nd WRI World

Congr. Softw. Eng. WCSE 2010, vol. 2, pp. 234–240, 2010.

[9] W. S. Humphrey, “The personal process in software engineering,” in

Proc. the Third International Conference on the Software Process.

Applying the Software Process, 1994, no. c, pp. 69–77.

[10] W. Nachiengmai and S. Ramingwong, “Implementing personal

software process in undergraduate course to improve

model-view-controller software construction,” Lecture Notes in

Electrical Engineering, vol. 339, 2015, pp. 949–956.

[11] W. Nachiengmai and S. Ramingwong, “Improving reliability of defects

logging in MVC-PSP,” in Proc. 2015 2nd International Conference on

Information Science and Security (ICISS), 2015, pp. 1–4.

[12] The JUnit Team. (2019). JUnit 5. [Online]. Available:

https://junit.org/junit5/

[13] S. Bergmann, “PHPUnit – The PHP testing framework,” 2015.

[14] K. Beck, Test Driven Development: By Example, 1st ed.

Addison-Wesley Professional, 2002.

[15] J. W. Wilkerson, J. F. Nunamaker, and R. Mercer, “Comparing the

defect reduction benefits of code inspection and test-driven

development,” IEEE Trans. Softw. Eng., vol. 38, no. 3, pp. 547–560,

2012.

Copyright © 2020 by the authors. This is an open access article distributed

under the Creative Commons Attribution License which permits unrestricted

use, distribution, and reproduction in any medium, provided the original

work is properly cited (CC BY 4.0).

D
ef

e
c
t

D
en

si
ty

 (
p

e
r

K
.L

O
C

)

International Journal of Information and Education Technology, Vol. 10, No. 2, February 2020

120

https://creativecommons.org/licenses/by/4.0/

Wacharapong Nachiengmai is a lecturer at the

department of Business Computer, Faculty of

Business Administration, North – Chiang Mai

University, Chiang Mai, Thailand. He received his

doctoral degree in Computer Engineering from

Chiang Mai University, Chiang Mai, Thailand in

2019. His research involves personal software

process improvement and software construction

techniques.

Sakgasit Ramingwong received his Ph.D. from the

University of New England, Australia, in 2009. He is

currently an associate professor at Department of

Computer Engineering, Faculty of Engineering,

Chiang Mai University, Chiang Mai, Thailand. His

main research focuses on software project

management, risk management, software process

improvement and gamification of software

engineering aspects.

Amphol Kongkeaw is a lecturer for Software

Engineering Program, Faculty of Engineering and

Technology, North-Chiang Mai University,

Thailand. He received his bachelor degree in

Computer Science from Chiang Mai Rabjabhat

University, Thailand, in 2002 and master degree in

Information Technology and Management from

Chiang Mai University, Thailand, in 2008. Currently,

he is the head of Software Engineering Program, Faculty of Engineering and

Technology, North-Chiang Mai University, Thailand. His current research

includes design of project-based learning model on software production

process.

International Journal of Information and Education Technology, Vol. 10, No. 2, February 2020

121

