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Abstract—This paper investigates the traits of the interval 

tree in solving the blind-searched problems of finding 

uninformed terms in an ordered data set.  It first proves several 

new properties of the interval tree and then shows that applying 

an interval tree to express data set results in half of the objective 

terms lying on the bottom level while another half lying on the 

levels over the bottom, and a bigger probability as well as half 

or less than half a amount of searching steps to find an objective 

term in comparison to conventional search strategies. 

Mathematical reasoning on the new properties of the interval 

tree plus conclusions related with the distribution of the 

objective terms on the interval tree is shown in detail and 

searching strategy is proposed in the end. The results in this 

paper are helpful for designing a searching algorithm. 

 
Index Terms—Artificial intelligence, blind search, binary 

tree, probability, algorithm. 

 

I. INTRODUCTION 

The concept of the interval tree was originally put 

forwards by X WANG in paper [1] to study the divisibility of 

odd integers. The tree is constructed with the terms in an 

integer-interval by picking a middle term to be the root to 

subdivide the interval into two subintervals, and picking the 

middle terms in the subintervals to be the left-son and 

right-son respectively and recursively. By means of the 

interval tree, properties of integers were demonstrated in a 

different point of view.  

A recent study has revealed another new trait of the 

interval tree in solving the problems of so-called 

blind-searches, which was named in book [2], in a large 

integer interval or ordered data set. The background 

originates from a search problem in cryptography. 

It is known that, guessing and searching a hidden number 

in a large data set is an ordinary task in study of network 

security or cryptography, as stated in [3], and most of such 

searches are blind ones. A typical problem is stated as 

follows. 

Let S be a subinterval consisting of 2  integers that belong 

to a large integer interval I that contains 2  integers, 

where 0  and 0   are integers and the location of S is 

unknown in advance; find a term in S as fast as possible. 

For example, the odd interval [2558595694593,  

2558596743167]  contains 
192 odd integers, and among these 

192 ones, there are 42 16 consecutive odd 
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integers , 2,..., 30n n n  that are calculated from 

N=78081683 by a certain rule. We do not where the 16 

numbers lie, and the task is to find them as fast as possible. 

Since the interval I is very big when   is big (normally 

more than 
2002 ) and S’s location is unknown in advance, it is 

hard to search in I one by one even with the fastest computer 

in the world. Considering that an interval tree is actually a 

bi-subdivision approach that is very like the binary-search 

method, it is found via test and theoretical reasoning that the 

interval tree could increase the probability and reduce the 

amount of the searching steps as well as be well incorporated 

with the Monte Carlo pseudorandom number generator [4], 

which has been widely applied in cryptography, to find out 

the objective. This paper shows the details. 

 

II. PRELIMINARIES 

This section introduces symbols, definitions and lemmas 

that are necessary in later sections. 

A. Symbols and Notation 

Throughout this paper, an odd sequence is defined to be a 

sequence of odd numbers, e.g., 13,15,19,23,31. An odd 

interval [ , ]a b  is a set of consecutive odd numbers that take a 

as their lower bound and b as their upper bound. For example, 

[3,11] {3,5,7,9,11} . Two odd intervals, 1I  and 2I , are said 

to have intersection and denoted by 1 2I I    if they 

contain some common terms. For example, [3,11]  

[7,19] . The terms binary tree and its root, nodes, father, 

left-son, right-son as well as subtrees can be seen in 

school-books of data structure, for example, Dinesh‟s 

handbook [5]. This paper mainly concerns the perfect full 

binary tree that has 
12 1n   nodes with depth 0n  . Symbol 

( , )k jN  is to denote the node at position j on level k of a tree T, 

where 0k   and 0 2 1kj   . On the same level k, two 

nodes ( , )k jN  and 
( ,2 1 )kk j

N
 

 called co-symmetric nodes 

because they station at the geometric symmetric positions. 

Symbol ( , )k jT  is to denote the subtree whose root is ( , )k jN  

symbol x T  means number x  is a node of T. Symbol x    

is to express x’s floor function defined by 1x x x     , 

where x is a real number. Symbol A B  means A  holds 

and simultaneously B holds; symbol A B  means A or 

B holds. Symbol ( )a b c   means a  takes the value of 

b and a c . Symbol A B means conclusion B can be 

derived from condition A, and symbol A B means A is 

equivalent to B. Symbol Z+ means the set of positive 
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integers. 

Let 0K  be an integer, 12 1Ku    and 
1 2{ , ,..., }uS a a a  

be a set consisting of 12 1K   terms; construct a full perfect 

binary tree 
1[ , ]ua aT  with 

12 1K   nodes by following way. 

1. The intermediate term 
2Ka is set to the root 

(0,0)N of 

1[ , ]ua aT . 

2. The term 12Ka  , the intermediate term of the 2 1K  terms 

left to 
2Ka , is set to the left son of

(0,0)N ; the term 12 2K Ka 
, the 

intermediate term of the 2 1K  terms right to 
2Ka , is set to 

the right son of 
(0,0)N . 

3. Recursively take each son‟s left son and right son by the 

above „rule of intermediate term‟ to finish constructing the 

whole tree
1[ , ]ua aT . 

 
Fig. 1. A full perfect binary tree constructed from odd interval [13, 41]. 

 

For example, with 1 2 1413, 15,..., 39a a a   and 
15 41a  , 

setting 3K  , 
[13,41]T is constructed as Fig. 1. 

For convenience, the tree constructed above is called a set 

tree, simply denoted by 
ST . If the set consists of integers in 

an interval, it is also called an interval tree. An interval tree 

can be denoted with an abstract symbol IT , or an interval 

symbol [ , ]x yT for the case the interval [ , ]x y is given or a root 

symbol 
( 0 ,0 )NT for the case that (0,0)N is the root of the tree. If 

the interval [ , ]x y is an odd one, the tree 
[ , ]x yT or IT is also 

called an odd interval tree. The nonnegative integer K is the 

depth of the tree. A tree of depth 0K  means it contains 

merely 1 node, the root. The left and the right subtrees of 

IT are respectively denoted by IlT and IrT . On level l with 

0l   there are 2l
nodes each of which can be a root of a 

subtree. Subtree ( , )l sT is said left to subtree ( , )l tT if s t .  By 

default, interval tree or set tree means a perfect tree and the 

set is an ordered one in this whole paper. 

B. Lemmas 

Lemma 1 (In-order Traversal Restoration, see in [1]) 

Let 0K  , 12 1Ku   be an integer, 1[ , ]uI a a be an odd 

interval and 
1[ , ]ua aT  be the interval tree constructed from I ; 

then the odd interval 1[ , ]uI a a can be restored by applying 

the in-order traversal on
1[ , ]ua aT . 

Lemma 2 (Node in In-order Traversal Restoration, see 

in [1]) Let IT  be an (0,0)N -rooted odd interval tree with 

depth 0K  ,and 1[ , ]ua a be its in-order traversal restoration; 

then 
( , ) 2 (1 2 )K iiN a  

 and there are | 2 (2 2 1) | 1K i i     odd 

integers from
(0,0)N to 

( , )iN   in the interval 1[ , ]ua a , where 

0 i K   and 0 2 1i   . 

Lemma 3(See in [1]) Let 0K  , 12 1Ku    be an integer, 

1[ , ]uI a a be an odd interval and 
(0,0)N be the root of the odd 

interval tree IT that is constructed from I ; then the items that 

satisfy x I and (0,0)x N lie in IlT whereas the items that 

satisfy x I and 
(0,0)x N  lie in IrT . Among a father and its 

two sons, the left son is the smallest, the father is the average 

of the two sons and the right son is the biggest. Consequently, 

for a node G and its left son lS , right son rS , if lln  is a node 

in the left subtree of lS  and lrn  is a node in the right subtree 

of 
lS , it holds ll ln S G   and l lrS n G  ; whereas, if rln  

is a node in the left subtree of
rS  and 

rrn  is a node in the right 

sub -tree of 
rS , it holds rl rG n S   and r rrG S n  . 

Lemma 4 (Calculation of Nodes, see in [1]). Let 0K  , 
12 1Ku    be integers and 1 2, ,..., ua a a be 

12 1K    

consecutive positive odd integers; assume 
(0,0) 2KN a is the 

root of 
1[ , ]ua aT ; then  

1

( , ) (0,0) 2 (2 2 1)

0,1,..., ; 0,1,..., 2 1

K i i

i

i

N N

i K

 



    

  
 

Lemma 5(See in [6]) In a binary tree, nodes 
( 1,2 )k jN 

and 

( 1,2 1)k jN    on the (k+1)th level are respectively left son and 

right son of node ( , )k jN on the kth level.  

Lemma 6 (See in [8]) Let { }ix be a sequence of 

non-negative integers generated by 

1 (mod )i ix ax c m   

Then the sequence has full period m provided that 

(1) c is relatively prime to m; 

(2) 1(mod )a p if p is a prime factor of m; 

(3) 1(mod 4)a  if 4 is a factor of m.    

Particularly, if m is a power of 2, it suffices to have 

1(mod 4)a  and c odd. 

 

III. NEW FUNDAMENTAL PROPERTIES 

Property 1. Let 0K  be an integer, 12 1Ku   , 

1 2{ , ,..., }uS a a a be a set consisting of 
12 1K   terms and 

(0,0)S NT T be the (0,0)N -rooted set tree constructed with S; then 

(0,0) 2KN a  

1(1,0) 2KN a  , 1(1,1) 2 2K KN a 
  

2(2,0) 2KN a  ,
1 2(2,1) 2 2K KN a  

 ,
2(2,2) 2 2K KN a 

 ,
1 2(2,3) 2 2 2K K KN a   

  

( , ) 2 (2 1)K iiN a  
  

Particularly, 
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( ,0) 1KN a ,
( ,1) 3KN a ,

( ,2) 5KN a ,..., 1( ,2 1) 2 1K KK
N a  

 ,

1( ,2 ) 2 1K KK
N a 

 ,..., 1( ,2 1) 2 1K KK
N a  

  

Proof. See in Lemma 2. 

 

1 1 2

1

1(

2

2 2 (2 1)

2 2 (2 1)

1 3 2 1 2 1 2 2 1)K K

K

K K

K i K i i

K K K

a

a a

a a

a a a a a 

 

  







  

 

Fig. 2. A set tree constructed from 
1 2{ , ,..., }uS a a a . 

 

Property 2. Let IT be an odd interval tree with depth 

0K  ; then subtree 
( , )iNT


contains 12 1K i   nodes that 

originate from subinterval 
( , ) ( , )[ 2(2 1), 2(2 1)]K i K i

i iN N I 

      . 

Proof. By definition, the depth of 
( , )iNT


is 

d K i  because ( , )iN  is on level i of 
IT . Thereby, there are 

1 12 1 2 1d K i     nodes on 
( , )iNT


. By Lemma 3 and Lemma 4, 

the smallest node and the biggest node are respectively  
1

( ,0) ( , ) ( , )2 (2 1) 2(2 1)d d d K i

d i iN N N 

         

and 
1

( , ) ( , )( ,2 1)
2 (2 2(2 1) 1) 2(2 1)d

d d d d K i

i id
N N N 

  


         

Since 
( , )iNT


is also an odd interval tree, by Lemma 2, the 

proposition 1 holds. 
 

Example 1. Take the odd interval tree in Fig. 1; it knows 

that 

3 1 3 1

19 [19 2(2 1),19 2(2 1)] [13,25]T         

3 1 3 1

35 [35 2(2 1),35 2(2 1)] [29,41]T         

3 2 3 2

15 [15 2(2 1),15 2(2 1)] [13,17]T         

3 2 3 2

23 [23 2(2 1),23 2(2 1)] [21,25]T         

3 2 3 2

31 [31 2(2 1),31 2(2 1)] [29,33]T         

3 2 3 2

39 [39 2(2 1),39 2(2 1)] [37,41]T         

For a set tree, Property 2 is stated as the following Property 

2*. 

Property 2*. Let ST be a set tree with depth 0K  ; then 

subtree 
( , )iNT


contains 12 1K i   nodes. 

Property 3. Let IT be an odd interval tree with depth 

0K  ; then the node at position s on level l of the subtree 

( , )iNT


is calculated by 

( , ) 1

( , ) ( , ) 2 (2 2 1)

0,1,..., ; 0,1,..., 2 1

iN K i l l

l s i

l

N N s

l K i s





     

   
 

Proof. Since ( , )iN   is on level i of IT , there are 

K i levels in 
( , )iNT


. Then referring to Lemma 4 directly 

yields the result. 

Example 2. Look at the odd interval tree in Fig. 1 and take 

the node (1,0) 19N  ; it knows 1, 0i    and 

19 3 1 1 1 1

(1,0)

19 3 1 1 1 1

(1,1)

19 3 1 1 2 2

(2,0)

19 2 (2 2 0 1) 15

19 2 (2 2 1 1) 23

19 2 (2 2 0 1) 13

N

N

N

  

  

  

     

     

     

19 3 1 1 2 2

(2,1)

19 3 1 1 2 2

(2,2)

19 3 1 1 2 2

(2,3)

19 2 (2 2 1 1) 17

19 2 (2 2 2 1) 21

19 2 (2 2 3 1) 25

N

N

N

  

  

  

     

     

     

 

Property 3*. Let IT be an odd interval tree with depth 

0K  ; then the node at position s on level l of the subtree 

( , )iNT


is calculated by 

( , )

( , ) ( ,2 )

0,1,..., ; 0,1,..., 2 1

0,1,..., ; 0,1,..., 2 1

i

l

N

l s i l s

i

l

N N

i K

l K i s







 


  

   

 

Proof. By Property 3 and by Lemma 4, it holds 

( , ) 1

( , ) ( , )

1 1

(0,0)

1 1 1 1 1 1

(0,0)

1 1

(0,0)

1

(0,0)

2 (2 2 1)

( 2 (2 2 1)) 2 (2 2 1)

2 2 2 2

2 (2 2 2 1)

2 (2 2(2 ) 1)

iN K i l l

l s i

K i i K i l l

K K i K i l K i l

K i l i l l

K i l i l l

N N s

N s

N s

N s

N s













  

    

          

    

   

   

      

    

    

    

 

Again direct calculation by Lemma 4 yields 
1

(0,0)( ,2 )
2 (2 2(2 ) 1)l

K i l i l l

i l s
N N s


   

 
      

Therefore, 

( , )

( , ) ( ,2 )

i

l

N

l s i l s
N N

 
  

Property 4. Let IT  be an interval tree with depth 

0K  and ( , )iN  be a node of   
IT with 0i  ; then  ( , )iN  is 

right next to subtree   
( 1 , 2 )iNT


  and it left next to  

( 1,2 1)iNT
 

  in 

the interval restored from the in-order traversal restoration.  

Proof. Considering by Lemma 5 that ( 1,2 )iN  and 

( 1,2 1)iN   are the left son and right son of ( , )iN  respectively, as 

depicted with Fig. 3, and by Lemma 4, it knows the 

proposition holds. 

 

 
Fig. 3. Relationships among a node and its descendants. 

 

Property 4 can be directly applied on the set tree as the  

following Property 3*. 
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Property 4*. Let ST be a set tree with depth 0K  and 
( , )iN 

  

be a node of  
ST   with 0i  ; then ( , )iN  is right next to subtree 

( 1 , 2 )iNT


 and it left next to 
( 1,2 1)iNT

 
.  

Property 5. Let IT be an interval tree with depth 

0K  and ( , )iN  be a node of 
IT with 0i  ; then node 

( 1,2 )

1 1( 1,2 1) ( ,2 2 1)

i

K i K i K i

N

K i K
N N





        
 , the rightmost node on the 

bottom level of 
( 1 , 2 )iNT


, is left next to ( , )iN  , and node 

( 1,2 1)

1( 1,0) ( ,2 2 )

i

K i K i

N

K i K
N N



 

    
  the leftmost node on the bottom 

level of 
( 1,2 1)iNT

 
, is right next to ( , )iN   in the interval restored 

from the in-order traversal restoration. In another word, 
( 1,2 )

1 1( 1,2 1) ( ,2 2 1)

i

K i K i K i

N

K i K
N N





        
 , ( , )iN  and ( 1,2 1)

1( 1,0) ( ,2 2 )

i

K i K i

N

K i K
N N



 

    


are three consecutive integers in the interval I restored from 

IT  by the in-order traversal restoration. 

Proof. This property is directly derived from Property 3, 

Property 3*, Property 4 and the in-order traversal restoration 

of 
( , )iNT


. 

 

What the property 5 says can be illustrated with Fig. 4. 
 

 

Fig. 4. Three consecutive nodes in the in-order traversal restoration of a tree. 
 

Example 3. Look at the odd interval tree in Fig. 1 and take 

the node (1,0) 19N   and it knows 1, 0i   , 3K  ; then 

(1 1,0) (2,0) 15N N   , (1 1,2 0 1) (2,1) 23N N      

( 1,2 ) (2,0) (2,0)

2 3 1 1 3 1 3 1 1(1,1) (3,1)( 1,2 1) (1,2 1) (3,2 0 2 1)
17i

K i

N N N

K i
N N N N N

            
      

( 1,2 1) (2,1)

3 1 3 1 1( 1,0) (1,0) (3,2)(3,2 0 2 )
21iN N

K iN N N N 

     
     

If take the node (2,2) 31N  , then 3, 2, 2K i     

( 1,2 ) (3,4)

1 1 3 2 3 2 1(0,0) (3,4)( 1,2 1) ( ,2 2 1) (3,2 2 2 1)
29i

K i K i K i

N N

K i K
N N N N N





              
      

( 1,2 1) (3,5)

1 3 2 3 2 1( 1,0) (0,0) (3,5)( ,2 2 ) (3,2 2 2 )
33i

K i K i

N N

K i K
N N N N N



 

         
      

 

IV. NEW EXTENSIVE PROPERTIES 

The following corollaries are derived from the 

fundamental properties of the interval tree. 

Corollary 1. Let S be a set consisting of 2 consecutive 

integers (or odd integers) with 0  being an integer and S be 

embedded in an interval tree TI whose depth is no less than  ; 

then S occupies totally 1  levels in which   levels are 

consecutive from the bottom upwards and there are 12 terms 

of S on the bottom level of TI. 

Proof. Let 

11 2 3 4 2 2 1 2
{ , , , ..., ,..., , }S a a a a a a a   

  

and it be on an interval tree IT (Notice: not 
ST  because S is 

embedded into 
IT ). Since 2 1   terms can form a perfect 

subtree of depth 1  , there are several cases needed 

investigation by Properties 4 and 5. 

Case 1. 
1a is an ancestor and 

11 2 3 4 2 2 1 2
{ , , ..., ,..., , }S a a a a a a   

 is 

a perfect right subtree such that 2a  is right next to 1a in the 

in-order traversal restoration of IT . This time, the depth of 

subtree 
1ST is 1   and there are 12 nodes on the bottom 

level of 
1ST , as depicted in Fig. 5(a), in which the curves with 

arrows mean the in-order traversal directions. Hence 
1a lies 

on a level upper than 1  . 

 

 
Fig. 5. 

1a   or 
2

a   is ancestor. 

 

Case 2. 
2

a  is an ancestor and 
12 1 2 3 2 2 1

{ , , ..., ,..., }S a a a a a  
 is 

a perfect left subtree such that 
2 1

a  
 is left next to

2
a  in the 

in-order traversal restoration of IT . This time, the depth of 

subtree 
2ST is 1   and there are 12 nodes on the bottom 

level of 
2ST , as depicted in Fig. 5(b). Hence 

2
a  lies on a level 

upper than 1  . 

 

 
Fig. 6. ka is ancestor. 

 

Case 3. ka with 2,3,...,2 1k   is an ancestor and in the 

in-order traversal restoration of IT , 1 1 2 3 1{ , , ..., }kS a a a a  is 
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a left subtree (not necessarily perfect) such that 1ka   is left 

next to ka while 
2 1 2 2 1 2

{ , ,..., , }k kS a a a a   
 is a right 

subtree (not necessarily perfect) such that 1ka   is right next 

to ka , as illustrated in Fig. 6. 

This time, it can prove that there are 
12

 nodes on the 

bottom of 
IT  and one of 

1ST and 
2ST has a depth no less than 

1  . This proof is established with three steps. 

Firstly, apart from 
ka , the other 2 1  nodes can form a 

perfect tree. 

Secondly, consider the set *

1 2 1 2 12 1 2
{ , ,..., , , , ,..., }k k kS a a a a b b b   

  

that contains 2 1   terms, where 
1 2 1{ , ,..., }kB b b b   are 1k   

consecutive integers (or odd integers) following 
2

a  , form a 

perfect interval tree as shown in Fig. 7. In the figure area A 

means the subtree for 
1 2 2 1 2

{ , ,..., , }k kA a a a a   
 and area B 

for 1 2 1{ , ,..., }kB b b b  . For this reason, B is said to be a 

complementary of A. Of course, A can be said to be a 

complementary of B. 

Thirdly, the subtree for 
1 2 1 1, 2

{ , ,..., , , ..., }k k kS a a a a a a   is 

sure as Fig. 8, where the graph structure of 
1T is exact to be 

the graph structure of the complementary of 
2T .In another 

word, the tree 
1T is geometrically a transition of T

2T ‟s 

complementary and re-valuated.  

 

 
Fig. 7. Subtree and its complementary parts. 

 

 
Fig. 8. Transition of a complementary subtree. 

 

Example 2. See from Fig. 4, one can see that, in tree 

[65,125]T , 4 consecutive odd integers, 65, 67, 69 and 71, occupy 

3 levels with 65, 69 on the bottom level and 65, 67,69 on 2 

consecutive levels while 4 consecutive odd integers, 91,93, 

95, and 97 occupy 3 levels with 93, 97 at the bottom level and 

91, 93 ,97 on 2 consecutive levels. It also can see that, 8 

consecutive odd integers, 69,71,73,75,77,79,81 and 83 take 4 

levels with 65,69,73,77 at the bottom level and 69,71,73,75, 

77 on 3 consecutive levels; 8 consecutive odd integers, 

89,91,93,95,97,99,101 and 103, occupy 4 levels with 

89,93,97,101 at the bottom level and 89,93,97,101,91,99, 

103 on 3 consecutive levels. 

 

 
Fig. 9. Interval tree constructed from odd interval [65, 125]. 

 

Corollary 2. Let S be a subinterval consisting of 2 terms 

that belong to an interval I that contains 2 1    terms, 

where 0  and 0  are integers; then there must be a term 

of S lying on level 1  or a upper level. Let p be the 

probability to pick successfully one term of S; then 

1 1

2 2 1
p

 
 


. 

Proof. Three are five ways to pick randomly the terms in I. 

The first one is to pick directly and randomly in the interval I. 

This time, 

1

2 2 1

2 1 2 2
p

 

     
  


 

The other ways are based on constructing an interval tree 

IT  because 2 1    terms can form an interval tree of depth 

1   . By Corollary 1, one term of S is on level 1   or an 

upper level of
IT  and the other 2 1   ones are on the lower 

levels, as illustrated in Fig. 10. In the figure, the hatched area 

is the area where the ancestor of 
ST  possibly lies, and the 

triangular area S_ means the area where the other 2 1  terms 

of S lie. 

 

 
Fig. 10. 2 terms are embedded in an interval tree of depth -1. 

 

Accordingly, the second way is to pick randomly on level 

1   or an upper level of IT . Since level 1   and its upper 

levels has 11 2 ... 2 2 1      nodes, it yields  

2

1 1

2 1 2
p

 
 


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Note that, 

1 2

2 1 1 2

2 1 2 1 (2 1)(2 1)
p p

 

      


   

   
 

which says 1 2p p when 1  . 

The third way is to pick randomly on level  . This time 

since there is merely one term on the level, it holds 

3

1

2
p


  

The fourth way is to pick randomly from level  to the 

bottom level. Since the number of total nodes of TI from 

level   to the bottom is 

1 1 12 2 ... 2 2 (1 2 ... 2 ) 2 (2 1)                    

and there are 2 1  terms in S, it holds 

4

2 1 1

2 (2 1) 2
p



  


 


 

The last way is to pick randomly on level bottom of IT . 

This time, the total nodes on the bottom level 
12  
 and 

among the nodes there are 
12
ones in S, accordingly 

1

5 1

2 1

2 2
p



  



 
   

Summarizing the above cases yields the corollary. 
 

V. SEARCHING STRATEGY 

Now we look back at the problem raised in the 

introductory section. Conventionally, we have to subdivide 

the large interval into many small subintervals to perform the 

parallel search. For example, we can subdivide the 

2  terms into 2
subintervals each of which contains 

2
terms, and then search on each subinterval one by one. 

This strategy is a resource-consuming one because there are 

at most two subintervals containing the objective terms. 

Fortunately, Corollary 2 tells us that, an interval tree can 

deposit half of the objective terms on the bottom level and 

another half on the levels over the bottom. Since each level 

except for the root contains 2 ( 0  ) terms, it is certainly 

suitable to apply the Monte Carlos algorithm, as introduced 

in [4]. Of course, parallel computing can be surely performed 

on each independent level. 

Meanwhile, by Property 1, it can see that, the objective 

terms are distributed as described in Table I. 

 
TABLE I: DISTRIBUTION OF OBJECTIVE TERMS ON DIFFERENT LEVELS 

Level Total Terms Objective Terms Index trait 

K 
12    12  2 1a   

K-1 
22    22  4 2a   

K-2 
32    32  8 4a   

…… …… …… …… 

1K      2  1 12 (2 1)
a     

 

 

It can see that, with the same probability, the total searched 

terms are reduced by 2‟s power. This provides more 

possibilities for us to design the search algorithm. Our team 

have designed two different probabilistic searching 

algorithms on large interval searches, as shown in [7] and [8]. 

Here roughly introduce a search-by-level method as follows. 

1) Search from level 1 to level k by parallel computing, 

where k is determined with the predefined Tolerance Time as 

proposed in [7].  

2) From level k to level bottom – 1, perform the 

deterministic-embedded Monte Carlo approach, which was 

introduced in [8]. 

3) Choose a proper level, perform the deterministic 

-embedded Monte Carlo approach, which was introduced in 

[8]. 

 

VI. CONCLUSION AND FUTURE WORK 

A blind search or uninformed search, like the search 

problem that is raised in the introductory section, frequently 

occurs in cryptography and almost all of such searches 

require new theory and algorithm to realize. By disclosing the 

new properties of the interval tree, this paper shows that, the 

interval tree method might be a helpful attempt. However, 

frankly speaking, this does not eventually solve the problem 

because the attempt is still a resource-consuming one for a 

very large interval according our experiments although our 

method can reduce the number of searching steps by a half. 

How to improve the searching efficiency will be the future 

work. Hope more young people join this work.  
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