



Abstract—This paper investigates the traits of the interval

tree in solving the blind-searched problems of finding

uninformed terms in an ordered data set. It first proves several

new properties of the interval tree and then shows that applying

an interval tree to express data set results in half of the objective

terms lying on the bottom level while another half lying on the

levels over the bottom, and a bigger probability as well as half

or less than half a amount of searching steps to find an objective

term in comparison to conventional search strategies.

Mathematical reasoning on the new properties of the interval

tree plus conclusions related with the distribution of the

objective terms on the interval tree is shown in detail and

searching strategy is proposed in the end. The results in this

paper are helpful for designing a searching algorithm.

Index Terms—Artificial intelligence, blind search, binary

tree, probability, algorithm.

I. INTRODUCTION

The concept of the interval tree was originally put

forwards by X WANG in paper [1] to study the divisibility of

odd integers. The tree is constructed with the terms in an

integer-interval by picking a middle term to be the root to

subdivide the interval into two subintervals, and picking the

middle terms in the subintervals to be the left-son and

right-son respectively and recursively. By means of the

interval tree, properties of integers were demonstrated in a

different point of view.

A recent study has revealed another new trait of the

interval tree in solving the problems of so-called

blind-searches, which was named in book [2], in a large

integer interval or ordered data set. The background

originates from a search problem in cryptography.

It is known that, guessing and searching a hidden number

in a large data set is an ordinary task in study of network

security or cryptography, as stated in [3], and most of such

searches are blind ones. A typical problem is stated as

follows.

Let S be a subinterval consisting of 2 integers that belong

to a large integer interval I that contains 2  integers,

where 0  and 0  are integers and the location of S is

unknown in advance; find a term in S as fast as possible.

For example, the odd interval [2558595694593,

2558596743167] contains
192 odd integers, and among these

192 ones, there are 42 16 consecutive odd

Manuscript received February 10, 2020; revised May 6, 2020.

Xingbo Wang is with Department of Mechatronic Engineering, Foshan

University, Foshan, China (e-mail: 153668@qq.com).

Jicong Wu is with State Key Laboratory of Information Security, Institute

of Information Engineering, Chinese Academy of Sciences, Beijing, China.

integers , 2,..., 30n n n  that are calculated from

N=78081683 by a certain rule. We do not where the 16

numbers lie, and the task is to find them as fast as possible.

Since the interval I is very big when  is big (normally

more than
2002) and S’s location is unknown in advance, it is

hard to search in I one by one even with the fastest computer

in the world. Considering that an interval tree is actually a

bi-subdivision approach that is very like the binary-search

method, it is found via test and theoretical reasoning that the

interval tree could increase the probability and reduce the

amount of the searching steps as well as be well incorporated

with the Monte Carlo pseudorandom number generator [4],

which has been widely applied in cryptography, to find out

the objective. This paper shows the details.

II. PRELIMINARIES

This section introduces symbols, definitions and lemmas

that are necessary in later sections.

A. Symbols and Notation

Throughout this paper, an odd sequence is defined to be a

sequence of odd numbers, e.g., 13,15,19,23,31. An odd

interval [,]a b is a set of consecutive odd numbers that take a

as their lower bound and b as their upper bound. For example,

[3,11] {3,5,7,9,11} . Two odd intervals, 1I and 2I , are said

to have intersection and denoted by 1 2I I   if they

contain some common terms. For example, [3,11]

[7,19] . The terms binary tree and its root, nodes, father,

left-son, right-son as well as subtrees can be seen in

school-books of data structure, for example, Dinesh‟s

handbook [5]. This paper mainly concerns the perfect full

binary tree that has
12 1n  nodes with depth 0n  . Symbol

(,)k jN is to denote the node at position j on level k of a tree T,

where 0k  and 0 2 1kj   . On the same level k, two

nodes (,)k jN and
(,2 1)kk j

N
 

 called co-symmetric nodes

because they station at the geometric symmetric positions.

Symbol (,)k jT is to denote the subtree whose root is (,)k jN

symbol x T means number x is a node of T. Symbol x  

is to express x’s floor function defined by 1x x x     ,

where x is a real number. Symbol A B means A holds

and simultaneously B holds; symbol A B means A or

B holds. Symbol ()a b c  means a takes the value of

b and a c . Symbol A B means conclusion B can be

derived from condition A, and symbol A B means A is

equivalent to B. Symbol Z+ means the set of positive

Traits of Interval Tree in Solving Blind Search Problems of

Finding a Term in an Ordered Data Set

Xingbo Wang and Jicong Wu

International Journal of Information and Education Technology, Vol. 10, No. 7, July 2020

516doi: 10.18178/ijiet.2020.10.7.1417

integers.

Let 0K  be an integer, 12 1Ku   and
1 2{ , ,..., }uS a a a

be a set consisting of 12 1K   terms; construct a full perfect

binary tree
1[,]ua aT with

12 1K   nodes by following way.

1. The intermediate term
2Ka is set to the root

(0,0)N of

1[,]ua aT .

2. The term 12Ka  , the intermediate term of the 2 1K  terms

left to
2Ka , is set to the left son of

(0,0)N ; the term 12 2K Ka 
, the

intermediate term of the 2 1K  terms right to
2Ka , is set to

the right son of
(0,0)N .

3. Recursively take each son‟s left son and right son by the

above „rule of intermediate term‟ to finish constructing the

whole tree
1[,]ua aT .

Fig. 1. A full perfect binary tree constructed from odd interval [13, 41].

For example, with 1 2 1413, 15,..., 39a a a   and
15 41a  ,

setting 3K  ,
[13,41]T is constructed as Fig. 1.

For convenience, the tree constructed above is called a set

tree, simply denoted by
ST . If the set consists of integers in

an interval, it is also called an interval tree. An interval tree

can be denoted with an abstract symbol IT , or an interval

symbol [,]x yT for the case the interval [,]x y is given or a root

symbol
(0 ,0)NT for the case that (0,0)N is the root of the tree. If

the interval [,]x y is an odd one, the tree
[,]x yT or IT is also

called an odd interval tree. The nonnegative integer K is the

depth of the tree. A tree of depth 0K  means it contains

merely 1 node, the root. The left and the right subtrees of

IT are respectively denoted by IlT and IrT . On level l with

0l  there are 2l
nodes each of which can be a root of a

subtree. Subtree (,)l sT is said left to subtree (,)l tT if s t . By

default, interval tree or set tree means a perfect tree and the

set is an ordered one in this whole paper.

B. Lemmas

Lemma 1 (In-order Traversal Restoration, see in [1])

Let 0K  , 12 1Ku   be an integer, 1[,]uI a a be an odd

interval and
1[,]ua aT be the interval tree constructed from I ;

then the odd interval 1[,]uI a a can be restored by applying

the in-order traversal on
1[,]ua aT .

Lemma 2 (Node in In-order Traversal Restoration, see

in [1]) Let IT be an (0,0)N -rooted odd interval tree with

depth 0K  ,and 1[,]ua a be its in-order traversal restoration;

then
(,) 2 (1 2)K iiN a  

 and there are | 2 (2 2 1) | 1K i i     odd

integers from
(0,0)N to

(,)iN  in the interval 1[,]ua a , where

0 i K  and 0 2 1i   .

Lemma 3(See in [1]) Let 0K  , 12 1Ku   be an integer,

1[,]uI a a be an odd interval and
(0,0)N be the root of the odd

interval tree IT that is constructed from I ; then the items that

satisfy x I and (0,0)x N lie in IlT whereas the items that

satisfy x I and
(0,0)x N lie in IrT . Among a father and its

two sons, the left son is the smallest, the father is the average

of the two sons and the right son is the biggest. Consequently,

for a node G and its left son lS , right son rS , if lln is a node

in the left subtree of lS and lrn is a node in the right subtree

of
lS , it holds ll ln S G  and l lrS n G  ; whereas, if rln

is a node in the left subtree of
rS and

rrn is a node in the right

sub -tree of
rS , it holds rl rG n S  and r rrG S n  .

Lemma 4 (Calculation of Nodes, see in [1]). Let 0K  ,
12 1Ku   be integers and 1 2, ,..., ua a a be

12 1K  

consecutive positive odd integers; assume
(0,0) 2KN a is the

root of
1[,]ua aT ; then

1

(,) (0,0) 2 (2 2 1)

0,1,..., ; 0,1,..., 2 1

K i i

i

i

N N

i K

 



    

  

Lemma 5(See in [6]) In a binary tree, nodes
(1,2)k jN 

and

(1,2 1)k jN   on the (k+1)th level are respectively left son and

right son of node (,)k jN on the kth level.

Lemma 6 (See in [8]) Let { }ix be a sequence of

non-negative integers generated by

1 (mod)i ix ax c m 

Then the sequence has full period m provided that

(1) c is relatively prime to m;

(2) 1(mod)a p if p is a prime factor of m;

(3) 1(mod 4)a  if 4 is a factor of m.

Particularly, if m is a power of 2, it suffices to have

1(mod 4)a  and c odd.

III. NEW FUNDAMENTAL PROPERTIES

Property 1. Let 0K  be an integer, 12 1Ku   ,

1 2{ , ,..., }uS a a a be a set consisting of
12 1K   terms and

(0,0)S NT T be the (0,0)N -rooted set tree constructed with S; then

(0,0) 2KN a

1(1,0) 2KN a  , 1(1,1) 2 2K KN a 


2(2,0) 2KN a  ,
1 2(2,1) 2 2K KN a  

 ,
2(2,2) 2 2K KN a 

 ,
1 2(2,3) 2 2 2K K KN a   



(,) 2 (2 1)K iiN a  


Particularly,

International Journal of Information and Education Technology, Vol. 10, No. 7, July 2020

517

(,0) 1KN a ,
(,1) 3KN a ,

(,2) 5KN a ,..., 1(,2 1) 2 1K KK
N a  

 ,

1(,2) 2 1K KK
N a 

 ,..., 1(,2 1) 2 1K KK
N a  



Proof. See in Lemma 2.

1 1 2

1

1(

2

2 2 (2 1)

2 2 (2 1)

1 3 2 1 2 1 2 2 1)K K

K

K K

K i K i i

K K K

a

a a

a a

a a a a a 

 

  







  

Fig. 2. A set tree constructed from
1 2{ , ,..., }uS a a a .

Property 2. Let IT be an odd interval tree with depth

0K  ; then subtree
(,)iNT


contains 12 1K i   nodes that

originate from subinterval
(,) (,)[2(2 1), 2(2 1)]K i K i

i iN N I 

      .

Proof. By definition, the depth of
(,)iNT


is

d K i  because (,)iN  is on level i of
IT . Thereby, there are

1 12 1 2 1d K i     nodes on
(,)iNT


. By Lemma 3 and Lemma 4,

the smallest node and the biggest node are respectively
1

(,0) (,) (,)2 (2 1) 2(2 1)d d d K i

d i iN N N 

       

and
1

(,) (,)(,2 1)
2 (2 2(2 1) 1) 2(2 1)d

d d d d K i

i id
N N N 

  


       

Since
(,)iNT


is also an odd interval tree, by Lemma 2, the

proposition 1 holds.

Example 1. Take the odd interval tree in Fig. 1; it knows

that

3 1 3 1

19 [19 2(2 1),19 2(2 1)] [13,25]T       

3 1 3 1

35 [35 2(2 1),35 2(2 1)] [29,41]T       

3 2 3 2

15 [15 2(2 1),15 2(2 1)] [13,17]T       

3 2 3 2

23 [23 2(2 1),23 2(2 1)] [21,25]T       

3 2 3 2

31 [31 2(2 1),31 2(2 1)] [29,33]T       

3 2 3 2

39 [39 2(2 1),39 2(2 1)] [37,41]T       

For a set tree, Property 2 is stated as the following Property

2*.

Property 2*. Let ST be a set tree with depth 0K  ; then

subtree
(,)iNT


contains 12 1K i   nodes.

Property 3. Let IT be an odd interval tree with depth

0K  ; then the node at position s on level l of the subtree

(,)iNT


is calculated by

(,) 1

(,) (,) 2 (2 2 1)

0,1,..., ; 0,1,..., 2 1

iN K i l l

l s i

l

N N s

l K i s





     

   

Proof. Since (,)iN  is on level i of IT , there are

K i levels in
(,)iNT


. Then referring to Lemma 4 directly

yields the result.

Example 2. Look at the odd interval tree in Fig. 1 and take

the node (1,0) 19N  ; it knows 1, 0i   and

19 3 1 1 1 1

(1,0)

19 3 1 1 1 1

(1,1)

19 3 1 1 2 2

(2,0)

19 2 (2 2 0 1) 15

19 2 (2 2 1 1) 23

19 2 (2 2 0 1) 13

N

N

N

  

  

  

     

     

     

19 3 1 1 2 2

(2,1)

19 3 1 1 2 2

(2,2)

19 3 1 1 2 2

(2,3)

19 2 (2 2 1 1) 17

19 2 (2 2 2 1) 21

19 2 (2 2 3 1) 25

N

N

N

  

  

  

     

     

     

Property 3*. Let IT be an odd interval tree with depth

0K  ; then the node at position s on level l of the subtree

(,)iNT


is calculated by

(,)

(,) (,2)

0,1,..., ; 0,1,..., 2 1

0,1,..., ; 0,1,..., 2 1

i

l

N

l s i l s

i

l

N N

i K

l K i s







 


  

   

Proof. By Property 3 and by Lemma 4, it holds

(,) 1

(,) (,)

1 1

(0,0)

1 1 1 1 1 1

(0,0)

1 1

(0,0)

1

(0,0)

2 (2 2 1)

(2 (2 2 1)) 2 (2 2 1)

2 2 2 2

2 (2 2 2 1)

2 (2 2(2) 1)

iN K i l l

l s i

K i i K i l l

K K i K i l K i l

K i l i l l

K i l i l l

N N s

N s

N s

N s

N s













  

    

          

    

   

   

      

    

    

    

Again direct calculation by Lemma 4 yields
1

(0,0)(,2)
2 (2 2(2) 1)l

K i l i l l

i l s
N N s


   

 
    

Therefore,

(,)

(,) (,2)

i

l

N

l s i l s
N N

 


Property 4. Let IT be an interval tree with depth

0K  and (,)iN  be a node of
IT with 0i  ; then (,)iN  is

right next to subtree
(1 , 2)iNT


 and it left next to

(1,2 1)iNT
 

 in

the interval restored from the in-order traversal restoration.

Proof. Considering by Lemma 5 that (1,2)iN  and

(1,2 1)iN   are the left son and right son of (,)iN  respectively, as

depicted with Fig. 3, and by Lemma 4, it knows the

proposition holds.

Fig. 3. Relationships among a node and its descendants.

Property 4 can be directly applied on the set tree as the

following Property 3*.

International Journal of Information and Education Technology, Vol. 10, No. 7, July 2020

518

Property 4*. Let ST be a set tree with depth 0K  and
(,)iN 

be a node of
ST with 0i  ; then (,)iN  is right next to subtree

(1 , 2)iNT


 and it left next to
(1,2 1)iNT

 
.

Property 5. Let IT be an interval tree with depth

0K  and (,)iN  be a node of
IT with 0i  ; then node

(1,2)

1 1(1,2 1) (,2 2 1)

i

K i K i K i

N

K i K
N N





        
 , the rightmost node on the

bottom level of
(1 , 2)iNT


, is left next to (,)iN  , and node

(1,2 1)

1(1,0) (,2 2)

i

K i K i

N

K i K
N N



 

    
 the leftmost node on the bottom

level of
(1,2 1)iNT

 
, is right next to (,)iN  in the interval restored

from the in-order traversal restoration. In another word,
(1,2)

1 1(1,2 1) (,2 2 1)

i

K i K i K i

N

K i K
N N





        
 , (,)iN  and (1,2 1)

1(1,0) (,2 2)

i

K i K i

N

K i K
N N



 

    


are three consecutive integers in the interval I restored from

IT by the in-order traversal restoration.

Proof. This property is directly derived from Property 3,

Property 3*, Property 4 and the in-order traversal restoration

of
(,)iNT


.

What the property 5 says can be illustrated with Fig. 4.

Fig. 4. Three consecutive nodes in the in-order traversal restoration of a tree.

Example 3. Look at the odd interval tree in Fig. 1 and take

the node (1,0) 19N  and it knows 1, 0i   , 3K  ; then

(1 1,0) (2,0) 15N N   , (1 1,2 0 1) (2,1) 23N N    

(1,2) (2,0) (2,0)

2 3 1 1 3 1 3 1 1(1,1) (3,1)(1,2 1) (1,2 1) (3,2 0 2 1)
17i

K i

N N N

K i
N N N N N

            
    

(1,2 1) (2,1)

3 1 3 1 1(1,0) (1,0) (3,2)(3,2 0 2)
21iN N

K iN N N N 

     
   

If take the node (2,2) 31N  , then 3, 2, 2K i   

(1,2) (3,4)

1 1 3 2 3 2 1(0,0) (3,4)(1,2 1) (,2 2 1) (3,2 2 2 1)
29i

K i K i K i

N N

K i K
N N N N N





              
    

(1,2 1) (3,5)

1 3 2 3 2 1(1,0) (0,0) (3,5)(,2 2) (3,2 2 2)
33i

K i K i

N N

K i K
N N N N N



 

         
    

IV. NEW EXTENSIVE PROPERTIES

The following corollaries are derived from the

fundamental properties of the interval tree.

Corollary 1. Let S be a set consisting of 2 consecutive

integers (or odd integers) with 0  being an integer and S be

embedded in an interval tree TI whose depth is no less than  ;

then S occupies totally 1  levels in which  levels are

consecutive from the bottom upwards and there are 12 terms

of S on the bottom level of TI.

Proof. Let

11 2 3 4 2 2 1 2
{ , , , ..., ,..., , }S a a a a a a a   



and it be on an interval tree IT (Notice: not
ST because S is

embedded into
IT). Since 2 1  terms can form a perfect

subtree of depth 1  , there are several cases needed

investigation by Properties 4 and 5.

Case 1.
1a is an ancestor and

11 2 3 4 2 2 1 2
{ , , ..., ,..., , }S a a a a a a   

 is

a perfect right subtree such that 2a is right next to 1a in the

in-order traversal restoration of IT . This time, the depth of

subtree
1ST is 1  and there are 12 nodes on the bottom

level of
1ST , as depicted in Fig. 5(a), in which the curves with

arrows mean the in-order traversal directions. Hence
1a lies

on a level upper than 1  .

Fig. 5.

1a or
2

a  is ancestor.

Case 2.
2

a  is an ancestor and
12 1 2 3 2 2 1

{ , , ..., ,..., }S a a a a a  
 is

a perfect left subtree such that
2 1

a  
 is left next to

2
a  in the

in-order traversal restoration of IT . This time, the depth of

subtree
2ST is 1  and there are 12 nodes on the bottom

level of
2ST , as depicted in Fig. 5(b). Hence

2
a  lies on a level

upper than 1  .

Fig. 6. ka is ancestor.

Case 3. ka with 2,3,...,2 1k   is an ancestor and in the

in-order traversal restoration of IT , 1 1 2 3 1{ , , ..., }kS a a a a  is

International Journal of Information and Education Technology, Vol. 10, No. 7, July 2020

519

a left subtree (not necessarily perfect) such that 1ka  is left

next to ka while
2 1 2 2 1 2

{ , ,..., , }k kS a a a a   
 is a right

subtree (not necessarily perfect) such that 1ka  is right next

to ka , as illustrated in Fig. 6.

This time, it can prove that there are
12

 nodes on the

bottom of
IT and one of

1ST and
2ST has a depth no less than

1  . This proof is established with three steps.

Firstly, apart from
ka , the other 2 1  nodes can form a

perfect tree.

Secondly, consider the set *

1 2 1 2 12 1 2
{ , ,..., , , , ,..., }k k kS a a a a b b b   



that contains 2 1  terms, where
1 2 1{ , ,..., }kB b b b  are 1k 

consecutive integers (or odd integers) following
2

a  , form a

perfect interval tree as shown in Fig. 7. In the figure area A

means the subtree for
1 2 2 1 2

{ , ,..., , }k kA a a a a   
 and area B

for 1 2 1{ , ,..., }kB b b b  . For this reason, B is said to be a

complementary of A. Of course, A can be said to be a

complementary of B.

Thirdly, the subtree for
1 2 1 1, 2

{ , ,..., , , ..., }k k kS a a a a a a   is

sure as Fig. 8, where the graph structure of
1T is exact to be

the graph structure of the complementary of
2T .In another

word, the tree
1T is geometrically a transition of T

2T ‟s

complementary and re-valuated.

Fig. 7. Subtree and its complementary parts.

Fig. 8. Transition of a complementary subtree.

Example 2. See from Fig. 4, one can see that, in tree

[65,125]T , 4 consecutive odd integers, 65, 67, 69 and 71, occupy

3 levels with 65, 69 on the bottom level and 65, 67,69 on 2

consecutive levels while 4 consecutive odd integers, 91,93,

95, and 97 occupy 3 levels with 93, 97 at the bottom level and

91, 93 ,97 on 2 consecutive levels. It also can see that, 8

consecutive odd integers, 69,71,73,75,77,79,81 and 83 take 4

levels with 65,69,73,77 at the bottom level and 69,71,73,75,

77 on 3 consecutive levels; 8 consecutive odd integers,

89,91,93,95,97,99,101 and 103, occupy 4 levels with

89,93,97,101 at the bottom level and 89,93,97,101,91,99,

103 on 3 consecutive levels.

Fig. 9. Interval tree constructed from odd interval [65, 125].

Corollary 2. Let S be a subinterval consisting of 2 terms

that belong to an interval I that contains 2 1   terms,

where 0  and 0  are integers; then there must be a term

of S lying on level 1  or a upper level. Let p be the

probability to pick successfully one term of S; then

1 1

2 2 1
p

 
 


.

Proof. Three are five ways to pick randomly the terms in I.

The first one is to pick directly and randomly in the interval I.

This time,

1

2 2 1

2 1 2 2
p

 

     
  



The other ways are based on constructing an interval tree

IT because 2 1   terms can form an interval tree of depth

1   . By Corollary 1, one term of S is on level 1  or an

upper level of
IT and the other 2 1  ones are on the lower

levels, as illustrated in Fig. 10. In the figure, the hatched area

is the area where the ancestor of
ST possibly lies, and the

triangular area S_ means the area where the other 2 1  terms

of S lie.

Fig. 10. 2 terms are embedded in an interval tree of depth -1.

Accordingly, the second way is to pick randomly on level

1  or an upper level of IT . Since level 1  and its upper

levels has 11 2 ... 2 2 1      nodes, it yields

2

1 1

2 1 2
p

 
 



International Journal of Information and Education Technology, Vol. 10, No. 7, July 2020

520

Note that,

1 2

2 1 1 2

2 1 2 1 (2 1)(2 1)
p p

 

      


   

   

which says 1 2p p when 1  .

The third way is to pick randomly on level  . This time

since there is merely one term on the level, it holds

3

1

2
p




The fourth way is to pick randomly from level  to the

bottom level. Since the number of total nodes of TI from

level  to the bottom is

1 1 12 2 ... 2 2 (1 2 ... 2) 2 (2 1)                  

and there are 2 1  terms in S, it holds

4

2 1 1

2 (2 1) 2
p



  


 



The last way is to pick randomly on level bottom of IT .

This time, the total nodes on the bottom level
12  
 and

among the nodes there are
12
ones in S, accordingly

1

5 1

2 1

2 2
p



  



 
 

Summarizing the above cases yields the corollary.

V. SEARCHING STRATEGY

Now we look back at the problem raised in the

introductory section. Conventionally, we have to subdivide

the large interval into many small subintervals to perform the

parallel search. For example, we can subdivide the

2  terms into 2
subintervals each of which contains

2
terms, and then search on each subinterval one by one.

This strategy is a resource-consuming one because there are

at most two subintervals containing the objective terms.

Fortunately, Corollary 2 tells us that, an interval tree can

deposit half of the objective terms on the bottom level and

another half on the levels over the bottom. Since each level

except for the root contains 2 (0 ) terms, it is certainly

suitable to apply the Monte Carlos algorithm, as introduced

in [4]. Of course, parallel computing can be surely performed

on each independent level.

Meanwhile, by Property 1, it can see that, the objective

terms are distributed as described in Table I.

TABLE I: DISTRIBUTION OF OBJECTIVE TERMS ON DIFFERENT LEVELS

Level Total Terms Objective Terms Index trait

K
12   12 2 1a 

K-1
22   22 4 2a 

K-2
32   32 8 4a 

…… …… …… ……

1K     2 1 12 (2 1)
a     

It can see that, with the same probability, the total searched

terms are reduced by 2‟s power. This provides more

possibilities for us to design the search algorithm. Our team

have designed two different probabilistic searching

algorithms on large interval searches, as shown in [7] and [8].

Here roughly introduce a search-by-level method as follows.

1) Search from level 1 to level k by parallel computing,

where k is determined with the predefined Tolerance Time as

proposed in [7].

2) From level k to level bottom – 1, perform the

deterministic-embedded Monte Carlo approach, which was

introduced in [8].

3) Choose a proper level, perform the deterministic

-embedded Monte Carlo approach, which was introduced in

[8].

VI. CONCLUSION AND FUTURE WORK

A blind search or uninformed search, like the search

problem that is raised in the introductory section, frequently

occurs in cryptography and almost all of such searches

require new theory and algorithm to realize. By disclosing the

new properties of the interval tree, this paper shows that, the

interval tree method might be a helpful attempt. However,

frankly speaking, this does not eventually solve the problem

because the attempt is still a resource-consuming one for a

very large interval according our experiments although our

method can reduce the number of searching steps by a half.

How to improve the searching efficiency will be the future

work. Hope more young people join this work.

CONFLICT OF INTEREST

The authors declare that there is no conflict of interests

regarding the publication of this article.

AUTHOR CONTRIBUTIONS

Prof. Xingbo Wang contributes 95% of the work in this

paper, including discovering and proving the corollaries and

theorems as well as designing the algorithm. Mr. Jicong Wu

contributes 5% of the work.

ACKNOWLEDGMENT

The research is supported by the Open Project Program of

the State Key Lab of CAD&CG (Grant No. A2002) and by

Foshan University and Foshan Bureau of Science and

Technology under project that constructs Guangdong

Engineering Center of Information Security for Intelligent

Manufacturing System.

REFERENCES

[1] X. Wang, “Interval tree and its application in integer factorization,”

Journal of Mathematics Research, vol. 11, no. 2, pp. 103-113, 2019.

[2] W. Ertel, Introduction to Artificial Intelligence, Springer, 2017.

[3] X. Wang, “Two number-guessing problems plus applications in

cryptography,” International Journal of Network Security, vol. 21, no.

3, pp. 498-504, 2019.

[4] T. E. Hull and A. R. Dobell, “Random number generator,” SIAM

Review, vol. l4, no. 3, pp. 230-254, 1962.

[5] D. Mehta and S. Sahni, Handbook of Data Structures and Applications,

Chapman & Hall/CRC, 2005.

International Journal of Information and Education Technology, Vol. 10, No. 7, July 2020

521

[6] X. Wang, “Analytic formulas for computing LCA and path in complete

binary trees,” International Journal of Scientific and Innovative

Mathematical Research, vol. 3, no. 4, pp. 1-8, 2015.

[7] J. Li, “A parallel probabilistic approach to factorize a semiprime,”

American Journal of Computational Mathematics, vol. 8, no. 2, pp.

175-183, 2018.

[8] X. Wang and J. Guo, “Deterministic-embedded monte carlo approach

to find out an objective item in a large number of data sets,”

International Journal of Applied Physics and Mathematics, vol. 9, no.

4, pp. 173-181, 2019.

Copyright © 2020 by the authors. This is an open access article distributed

under the Creative Commons Attribution License which permits unrestricted

use, distribution, and reproduction in any medium, provided the original

work is properly cited (CC BY 4.0).

Xingbo Wang was born in Hubei, China. He got his

master and doctor‟s degrees at National University of

Defense Technology of China and had been a staff in

charge of researching and developing CAD/CAM/NC

technologies in the university. Since 2010, he has been

a professor in Foshan University with research

interests in computer application and information

security. He is now the chief of Guangdong

engineering center of information security for intelligent manufacturing

system. Prof. WANG was in charge of more than 40 projects including

projects from the National Science Foundation Committee, published 8

books and over 100 papers related with mathematics, computer science and

mechatronic engineering, and invented 30 more patents in the related fields

Jicong Wu was born in Guangdong, China. He is a

graduate student of Foshan University with research

interests in mechatronics. Wu was in charge of 1

project from Foshan University, won the National

fourth prize, and invented 2 patents in the related

fields.

International Journal of Information and Education Technology, Vol. 10, No. 7, July 2020

522

https://creativecommons.org/licenses/by/4.0/

	1417-JR425

