



Abstract—Pair programming is by definition two-person

programming on the same computer. The technique has been

used in many higher education institutions and has been

reported in some scientific articles, usually for introductory to

programming courses.

The aim of this article is to make a situation report analyzing

the scientific production on pair programming for curricular

units of introduction to programming in higher education,

measuring the advantages and disadvantages of the strategy.

The sample was composed by 153 articles indexed in Elsevier’s

Scopus. The results obtained by bibliometric analysis showed

the publication rates, authors, in which journals they are

published, which are the organizations and countries that

publish the most, which are the most cited articles and what

their purpose. The benefits reported are generally better code,

improved programming and group skills, advantages for

women and reducing the work of instructors. The problems are

group compatibility: there are studies that randomly distribute

pairs, while other use personality tests or knowledge

self-assessment.

Index Terms—Pair programming, CS1, introduction to

programming, higher education.

I. INTRODUCTION

Pair programming is a technique that uses a computer, a

mouse and a keyboard for a group of two programmers. Their

positions change but one of them is the driver and the other is

the navigator: both work as a team in which the driver's

function is to write code, while the navigator‟s function is

correcting the errors and monitoring the process.

Programming in pairs is done synchronously but can be

carried out by a pair located in different places, maintaining

the positions of the driver and navigator (distributed

programming in pairs). Pair programming is one of the

techniques pertaining to extreme programming that is

included in agile software techniques, whose primary

objective is to write better code in the least possible time. Pair

programming initially used in the industry has often been

used as collaborative learning especially in introductory

programming courses, but not only. The benefits of this

strategy have often been defended by the academic

community, reporting improvements in the quality of the

code, faster execution of tasks, more confidence and

satisfaction of the stakeholders. Others report problems in the

groups and in the compatibility of the pairs, seeing no

advantage in the strategy. The way pairs are formed is the

concern of others, some who consider that it should be done

randomly and in a rotating way, others who study the

possibility of creating pairs based on their personalities.

Manuscript received March 3, 2020; revised October 7, 2020.

Sónia Rolland Sobral is with the REMIT – Universidade Portucalense,

Porto, 4200 Portugal (e-mail: sonia@upt.pt).

There are several studies and experiences with different

objectives: improvement quality and time, increase students'

confidence, their satisfaction in the tasks of learning to

program, decrease the work of teachers and instructors, try to

decrease the dropout rate or even gender concerns and the

rise of women in computing. All studies that are related to

education, and higher education, have a common focus:

improving teaching / learning. The literature review shows

that the results depend a lot on how the methodologies are

applied.

This study aims to verify what type of publications have

been made on the use of peer programming for introductory

courses in higher education programming. Using

bibliometric methods (and not only) we propose to

understand what the objectives and concerns of those are

who investigate this issue. Bibliometric analysis [1] is the

quantitative study of bibliographic material: it provides a

general picture of a research field that can be classified by

papers, authors, and journals. Bibliometric methods employ a

quantitative approach for the description, evaluation, and

monitoring of published research. These methods have the

potential to introduce a systematic, transparent, and

reproducible review process and thus improve the quality of

reviews [2]. Bibliometric analysis provides objective criteria

that can assess the research development in a field and act as

a valuable tool for measuring scholarship quality and

productivity [3]. Bibliometric methods offer systematization

and replication processes that can improve understanding of

the dissemination of knowledge in a field and can highlight

gaps and opportunities that may contribute to the

advancement of the discipline [4]. The sample was composed

by 153 articles indexed in Elsevier‟s Scopus. The results

obtained by bibliometric analysis showed the publication

rates, authors, in which journals they are published, which

are the organizations and countries that publish the most,

which are the most cited articles and what is the purpose of

the most cited articles

This article is divided into five sections: we start by

reviewing the literature, then we present our research

questions. The following section presents the methodology

and how the data is collected, the results are presented and at

the end the conclusions are presented.

II. LITERATURE REVIEW

Pair programming is a practice in which two programmers

work collaboratively at one computer, on the same design,

algorithm, or code [5], [6]. All programming tasks are done

in pairs at one display, keyboard, and mouse [7], [8]. The

tasks include all phases of the development process (design,

debugging, testing, etc.) not just coding [9].

One is the driver, who controls the keyboard and mouse

Is Pair Programing in Higher Education a Good Strategy?

Sónia Rolland Sobral

International Journal of Information and Education Technology, Vol. 10, No. 12, December 2020

911doi: 10.18178/ijiet.2020.10.12.1478

and is responsible for entering program code. The other is the

navigator and sits next to the driver and watches for errors,

discusses alternative design approaches, offers suggestions

[10], [11]. He continuously assuring quality, trying to

understand, asking questions, looking for alternative

approaches, helping to avoid defect alone [12]. The

programmers regularly trade roles while pairing creator

becomes quality assurer and vice versa [13]. Code written by

only one member of the pair is reviewed by both partners

together before it is officially accepted as part of the program.

The driver and navigator can brainstorm on demand at any

time, communicating at least every 45 seconds to a minute

[14]. One version is the Distributed pair programming, where

the pair is not sitting side by side on the same computer: they

synchronously collaborate on the same design or code, but

from different locations [14]. To be able to do this, they

require technological support for sharing desktops and verbal

conversation or even capability of video conferencing with

Web cams if required [14]. Pair-think refers to the pair‟s

enhanced ability to generate and evaluate alternatives and

pair relaying is the effect of having two people working to

resolve a problem together [15].

In 1995, Larry Constantine [16] reported observing

dynamic duos at Whitesmiths, Ltd. producing code faster and

more bug-free than ever before: “Two programmers in

tandem is not redundancy; it‟s a direct route to greater

efficiency and better quality”. Then in 1999, Extreme

Programming (XP), a collection of well-known software

engineering practices, was conceived and developed to

address the specific needs of software development,

producing all software in pairs, two programmers at one

screen [9]. XP is one of the agile software process paradigms.

Pair programming is one of the key practices in XP [11],

which operates on 12 core principles: the planning game,

continuous testing, on-site customer, small releases,

refactoring, a 40-h work week, system metaphor, continuous

integration, simple design, collective code ownership, coding

standards, and pair programming [17]. XP uses short

iterations with small releases and rapid feedback, close

customer participation, constant communication and

coordination, continuous refactoring, continuous integration

and testing, collective code ownership and pair programming

[18]. The first empirical study was published in 1998 by

Professor Nosek [19] from Temple University. He reported

on his study 15 programmers working for 45 minutes on a

challenging problem, important to their organization, in their

own environment, and with their own equipment. Results

showed that pair programming improved both their

performance and their enjoyment of the problem-solving

process. The groups completed the task 40% more quickly

and effectively by producing better algorithms and code in

less time. Generally, programmers are skeptical about

working in pairs: usually a programmer's job is lonely and

silent, but after trying it out they become very fond and most

programmers grow to prefer pair programming. They admit

to working harder and smarter on programs because they do

not want to let their partner down [15]. Many benefits are

described in the literature, such as increased productivity,

improved code quality, enhanced job satisfaction, confidence

[11], and less time to solve the problem than individuals [19].

Pair programming has become widely accepted as an

alternative to solo programming: when they pair off they find

solutions which none of them would have found alone [12]

and started to be used in teaching as a collaborative teaching

strategy, especially in the introduction to programming

courses, but not only. The first experiences were carried out

at North Carolina State University [5], [20], University of

Karlsruhe [7], [12] and University of California at Santa Cruz

[21], [22] among others. In these cases, the courses were

always CS1, computer science one. Findings included more

confident students, greater course completion and pass rates

[17], a more likely to persist in computer-related majors,

reduced workload for the teaching staff [22]. There are

studies that prove the speed of getting the tasks done:

assignments 40 – 50% faster than solo developers [23]. It

often benefits women and can be a solution for more women

in computer science courses [10], [24].

But there are those who hate this strategy using various

arguments, the first of which is a huge expenditure of time,

money and resources: when two people are doing the same

task, the spent effort is doubled [11], pairs spend almost

twice as much total programmer effort as solo programmers

[13]. Others doubt the benefits and say there is a need for

more rigorous studies to compare the effectiveness of pair

programming with reviewing techniques [7], [12]. Other

studies find reasons that make the findings unclear: students

with lower self-reported programming skill enjoy pair

programming more than students with higher self-reported

programming skill, work their best when the pair is at their

own level and don't like working with peers who think they

have a lower level of knowledge [25]. However, educators

cannot predict this perception, nor can pairs be formed based

on similar technical competence [20].

The most critical aspect of creating an effective pair

programming implementation is to minimize the potential

scheduling conflicts between partners [21]. Many of the

studies that have been done on pair programming are related

to compatibility like personality type, learning style, skill

level, programming self-esteem, work ethic or time

management preference [26]. The team's success depends on

how effective they work as a team, despite their skills and

abilities [27]. Students notably preferred to pair with a

partner of similar or higher skill level, pairs comprised of a

sensor and an intuited learning style seem to be compatible,

and pairs with differing work ethic are generally not

compatible [26]. Some studies investigated personality type

using the Myers-Briggs Type Indicator to measure an

individual‟s personality based on extroversion vs.

introversion, sensing vs. intuition, thinking vs. feeling and

judging vs. perceiving [9]. Other studies are based the

five-factor NEO Personality Inventory: Agreeableness,

Conscientiousness, Extraversion, Neuroticism, and

Openness to experience [27]. But there are studies that find as

a result that personality type had no effect on the results, so

these pairings can be treated as random [28].

III. THE RESEARCH QUESTION

The question, along with the purpose of the review, the

intended deliverables, and the intended audience, determines

International Journal of Information and Education Technology, Vol. 10, No. 12, December 2020

912

how the data are identified, collected, and presented [29].

The questions that we want to answer in this paper are

 How has the evolution of the publication of articles

related to pair programming in higher education been?

Where were they published? What is the focus of these

articles? Who published them?

 What are the most cited articles? Who writes them? What

is the objective of those papers?

IV. METHODOLOGY AND DATA

The term bibliometrics was first used in 1969 by Alan

Pritchard, hoping that the term would be used explicitly in all

studies which seek to quantify the processes of written

communication and would quickly gain acceptance in the

field of information science [30]. Moed mentioned the

potential of this type of study that reveals the enormous

potential of quantitative, bibliometric analyses of the

scholarly literature for a deeper understanding of scholarly

activity and performance and highlights their policy

relevance [31]. In scientific research, it is important to get a

wider perspective of research already being conducted

concerning a relevant subject matter [32] and a bibliometric

analysis profile on the research trajectory and dynamics of

the research activities across the globe [33]. This is a

bibliometric study that systematically analyses the literature

using articles indexed at Elsevier‟s Scopus (Scopus) database.

This study conducts a bibliometric analysis that we expect

provides a useful reference for future research. The search

strategy was

TITLE-ABS-KEY (“pair programing” OR “programming

in pairs” OR “paired programming”) AND

TITLE-ABS-KEY (“higher education” OR “CS1” OR

“university”).

V. RESULTS

A. Annual Evolution

A set of 153 published papers were collected. The first

article in Scopus was published in 2000. Growth does not

have a clear order, as can be seen in the following figure (Fig.

1). The year with the highest number of publications is 2008

(n=14).

Fig. 1. Annual evolution.

B. Where

66% are conference papers: 102 conference papers, 34

journal articles, 14 conference review and three journal

reviews.

There are 92 different publishing locations: 15 ACM

Technical Symposium On Computer Science Education, nine

in Lecture Notes in Computer Science, six from Americas

Conference On Information Systems, five from Proceedings

Frontiers In Education Conference, from Proceedings

International Conference On Software Engineering and

SIGCSE Bulletin Association For Computing Machinery

Special Interest Group On Computer Science Education.

C. Focus

There are 160 different keywords. The most frequent are:

Students, Pair Programming, Pair-programming, Computer

Programming, Teaching, Software Engineering, Curricula,

Engineering Education and Computer Science (Fig 2).

There are three clusters: cluster 1 with six items (Computer

Science education, distributed pair programming, empirical

software engineering, extreme programming, gender and pair

programming), cluster 2 with four items (active learning,

collaboration, collaborative learning, pair-programming) and

cluster 3 with two items (cs1 and software engineering).

D. Who

39 articles have one or three authors. There are 31 articles

written by two, 28 by four and 16 by five or more authors.

Williams, Laurie A. from Carolina A&T State University,

Carolina, United States is the author with the most articles (9).

Then Hanks, Brian F. from BFH Educational Consulting,

Seattle, United States (10 papers) and Mendes, Emilia from

Blekinge Tekniska Högskola, Karlskrona, Sweden (with six

articles). There are authors from 31 countries: 49% are from

the United States. All articles are written in English. 20

authors are from North Carolina State University. There are

three clusters: c1 (Australia, Malaysia, New Zealand and

Sweden), C2 (Canada and United States) and C3 (United

States and Taiwan) (Fig. 3).

E. The Twenty Most Cited Documents

The 20 most cited documents are mainly from the

beginning of the century (Fig 4). The first [5] was cited 201

times and the 20th [28] was cited 37 times.

Fig. 2. Network visualization keywords.

International Journal of Information and Education Technology, Vol. 10, No. 12, December 2020

913

Fig. 3. Network visualization authors.

Fig. 4. Annual evolution top20.

Six are journal articles, 13 are Conference Paper and one is

a review.

The affiliation of the authors of the four articles with more

than 100 citations is North Carolina State University [5],

International Islamic University Malaysia + University of

Auckland + Swinburne University of Technology [27],

Singapore Management University [34] and University of

California, Santa Cruz [10].

Eight of the ten most cited papers report experiments, one

is a review [27] and the other is a summary of the existing

empirical knowledge on pair programming [11].

The experiences are diverse:

[5] An experiment in an introductory Computer Science

course at North Carolina State University. In the fall 2001,

112 students were in the solo section and 87 were in the

paired section, whereas in the spring 2002, 156 students

worked solo and 346 students worked in pairs. Solo lab

sessions were quiet and appeared to be very frustrating for

the students. Alternately, paired labs were vocal and

interactive. Results indicate that pairing helped the non-CS

majors but did not cause any significant improvement among

the CS majors. Student pair programmers were more

self-sufficient, generally perform better on projects and

exams, and were more likely to complete the class with a

grade of C or better than their solo counterparts. Results

indicate that pair programming creates a laboratory

environment conducive to more advanced, active learning

than traditional labs; students and lab instructors report labs

to be more productive and less frustrating.

[34] A trial of the flipped classroom model for a

programming course with pair programming as the

predominant in-class active learning activity at Singapore

Management University, with 46 Information Systems (IS)

undergraduates during a special term in 2013. Student

feedback on this pedagogy was generally very positive with

many respondents considering it effective and helpful for

learning. One of the biggest advantages mentioned by

students is that they had the option to watch each video

lecture as many times as required to be prepared for class.

The author also observed that students were more engaged

and empowered to take on more ownership for their learning.

[10] In the 2000-2001 academic year, 555 students (141

women, 413 men, and 1 whose gender was not reported)

participated in a study on pair-programming, introductory

programming course at UCSC. They studied four sections:

three of the sections students pair-programmed; in the fourth

they worked individually. Pair-programming is shown to be

beneficial to all students, particularly beneficial for women.

The collaborative nature of pair-programming teaches

women students that software development is not the

competitive, socially isolating activity that they imagined. It

encourages women to pursue computer science as a major

and as a potential career.

[7] An experiment at University of Karlsruhe, summer of

2000: 12 participants were computer science graduate

students who needed to take a practical training course as part

of their degree requirements. Project teams consisted of six

students (three pairs). The students were asked to pair with

different partners of their own choosing for each exercise and

the project. Findings include it is unclear how to reap the

potential benefits of pair programming, although pair

programming produces high quality code. Designing in small

increments appears problematic but ensures rapid feedback

about the code. Writing test cases before coding is a

challenge. It is difficult to implement XP without coaching.

[35] Experiment in UC San Diego, 1011 students, fall

2008, CS1, incorporating a trio of best practices: Media

Computation, Pair Programming and Peer Instruction.

Results: fewer students dropping, more students passing, and

more passing students retained.

[22] Compares two experiments: 1200 students, two US

universities, North Carolina State University and University

of California Santa Cruz, to assess the efficacy of pair

programming as an alternative learning technique in

introductory programming courses. Students who used the

pair programming technique were at least as likely to

complete the introductory course with a grade of C or better

when compared with students who used the solo

programming technique. Paired students earned exam and

project scores equal to or better than solo students. Paired

students had a positive attitude toward collaboration and

were significantly more likely to be registered as computer

science-related majors one year later. Students in paired

classes continue to be successful in subsequent programming

International Journal of Information and Education Technology, Vol. 10, No. 12, December 2020

914

classes continue to be successful in subsequent programming

classes that require solo programming.

[36] A web programming course taught at the University

of Utah in Summer Semester 1999. 20 students worked in

pairs, continuously collaborating on all programming

assignments. It proved beneficial to the quality of their work

products, allowed them to learn new languages faster and

better than they had experienced with solitary learning.

'Pair-learning' also reduced the workload of the teaching

because the students no longer relied primarily on them for

technical support and advise.

[25] University of Wales, 60 students. Three groups by the

self-placement of the students as expressed on the

„Programming Attitude Questionnaire‟. Students with less

self-confidence seem to enjoy pair programming the most.

There is some evidence that warriors like pair programming

even less when they are paired with phoebes and that

student‟s produce their best work when paired with students

of similar, or not very different, levels of confidence.

The systematic literature review of seventy-four papers of

empirical studies that investigated factors affecting the

effectiveness of PP for CS/SE students and studies that

measured the effectiveness of PP for CS/SE students [27]

suggest that PP was rarely employed in courses where

students were exposed to software design/modeling tasks;

paired students achieve productivity similar or better than

solo students; and indicate that implementing PP in the

classroom or lab does not lead to any detrimental effect on

students‟ academic performance.

VI. CONCLUSIONS

Pair programming is by definition two-person

programming on the same computer. The technique has been

used in many higher education institutions and has been

reported in some scientific articles, usually for introductory

to programming courses. In this article, we reviewed the

existing literature in this area, analyzing all publications in

the Scopus database, a set of 153 published papers published

from 2000.

The results show that there is no continuous evolution of

publications, and the year in which most articles were

published was 2008 (n = 14). 66% are conference papers. The

location is different: there is no journal or conference where

most articles are published. There are three keyword clusters

and the focus is clearly students, Pair Programming and

computer programming. Almost half of the authors (49%)

have affiliation in the United States. Laurie A. Williams,

from Carolina A&T State University, Carolina, United States

is the author with the most articles (9). All articles are written

in English. Regarding the most cited articles: there are four

articles that have more than 100 citations and the 20th article

in this list has been cited 37 times. Eight of the 10 most cited

articles report experiences using pair programming. The

results of the experiments show the benefits of using peer

programming, showing that the compatibility of the two

members is important as it may or may not dictate the success

of the strategy.

Most articles show the benefits of pair programing

reporting experiments for introductory programming courses.

The benefits are generally better code, improved

programming and group skills, advantages for women (and

consequently a way of increasing the number of women in

the IT area) and reducing the work of instructors. The

reported problems are group compatibility: there are studies

that randomly distribute pairs, while other studies use

personality tests or knowledge self-assessment. Very

important: almost all publications report that students

enjoyed the experience, which makes it a good strategy for

teaching programming to higher education students.

CONFLICT OF INTEREST

This study was carried out without a conflict of interest.

AUTHOR CONTRIBUTIONS

The author did a literature review, defined the

methodology, research and data treatment, data analysis and

conclusions, having written the entire document.

REFERENCES

[1] J. Merigo and J. Yang, “A bibliometric analysis of operations research

and management science,” Omega, vol. 73, pp. 37-48, 2017.

[2] I. Zupic and T. Čater, “Bibliometric methods in management and

organization,” Organizational Research Methods, vol. 8, no. 3, 2015.

[3] M. Cobo, A. López-Herrera, and E. Herrera-Viedma, “SciMAT: A new

science mapping analysis software tool,” Journal of the American

Society for Information Science, vol. 3, no. 8, pp. 1609-1630, 2012.

[4] G. Aparicio, T. Iturralde, and A. Maseda, “Conceptual structure and

perspectives on entrepreneurship education research: A bibliometric

review,” European Research on Management and Business Economics,

vol. 5, no. 3, pp. 105-113, 2019.

[5] N. Nagappan et al., “Improving the CS1 experience with pair

programming,” ACM SIGCSE Bulletin, vol. 35, no. 1, pp. 359-362,

2003.

[6] S. Berenson et al., “Voices of women in a software engineering course:

Reflections on collaboration,” Educational Resources in Computing,

vol. 4, 2004.

[7] M. Muller and W. Tichy, “Case study: Extreme programming in a

university environment,” presented at International Conference on

Software Engineering, 2001.

[8] K. Beck, Extreme Programming Explained: Embrace Change,

Addison-Wesley , 1999.

[9] K. D. F. I. I. Choi, “Exploring the underlying aspects of pair

programming: The impact of personality,” Information and Software

Technology, vol. 50, no. 11, pp. 1114-1126, 2008.

[10] L. Werner, C. McDowell, and B. Hanks, “Pair-programming helps

female computer science students,” ACM Journal on Educational

Resources in Computing, vol. 11, no. 4, p. 4, 2004.

[11] H. Hulkko and P. Abrahamsson, “A multiple case study on the impact

of pair programming on product quality,” presented at International

Conference on Software Engineering, 2005.

[12] M. Muller, “Two controlled experiments concerning the comparison of

pair programming to peer review,” Journal of Systems and Software,

vol. 78, no. 2, pp. 166-179, 2005.

[13] J. Nawrocki and A. Wojciechowski, “Experimental evaluation of pair

programming,” European Software Control and Metrics, 2001.

[14] P. G. E. S. D. Baheti, “Exploring the efficacy of distributed pair

programming,” Lecture Notes in Computer Science, pp. 208-220, 2002.

[15] L. Williams, “Integrating pair programming into a software

development process,” presented at Conference on Software

Engineering Education and Training, in Search of a Software

Engineering Profession, Charlotte, 2001.

[16] L. Constantine, Constantine on Peopleware, Prentice Hall, 1995.

[17] C. McDowell, L. Werner, H. Bullock, and J. Fernald, “Pair

programming improves student retention, confidence, and program

quality,” Communications of the ACM, vol. 49, no. 8, pp. 90-95, 2006.

[18] P. Abrahamssona, J. Warstab, M. Siponenb, and J. Ronkainen, “New

directions on agile methods: A comparative analysis,” presented at

International Conference on Software Engineering, 2003.

[19] J. Nosek, “The case for collaborative programming,” Communications

of the ACM, vol. 41, no. 3, 1998.

International Journal of Information and Education Technology, Vol. 10, No. 12, December 2020

915

[20] N. Katira, L. Williams, E. Wiebe, S. Balik, and E. Gehringer, “On

understanding compatibility of student pair programmers,” SIGCSE,

2004.

[21] J. W. L. M. C. Bevan, “Guidelines for the use of pair programming in a

freshman programming class,” presented at Software Engineering

Education Conference, 2002.

[22] L. Williams, C. McDowell, N. Nagappan, J. Fernald, and L. Werner,

“Building pair programming knowledge through a family of

experiments,” presented at International Symposium on Empirical

Software Engineering, 2003.

[23] L. Williams, R. Kessler, W. Cunningham, and R. Jeffries,

“Strengthening the case for pair programming,” IEEE Software, vol. 17,

pp. 19-25, 2000.

[24] S. S. K. W. L. H. C.-W. Berenson, “Voices of women in a software

engineering course: Reflections on collaboration,” Journal on

Educational Resources in Computing, vol. 4, no. 1, 2004.

[25] L. Thomas, M. Ratcliffe, and A. Robertson, “Code warriors and

code-a-phobes: a study in attitude and pair programming,” SIGCSE,

2003.

[26] L. L. L. O. J. K. N. Williams, “Examining the compatibility of student

pair programmers,” presented at AGILE Conference, 2006.

[27] N. M. E. G. J. B. G. Salleh, “An empirical study of the effects of

personality in pair programming using the five-factor model,”

presented at International Symposium on Empirical Software

Engineering and Measurement, 2009.

[28] J. H. L. H. L. H. J. R. D. Carver, “Increased retention of early computer

science and software engineering students using pair programming,”

presented at Software Engineering Education Conference, 2007.

[29] A. Booth, A. Sutton, and D. Papaioannou, Systematic Approaches to a

Successful Literature Review, 2md ed, SAGE Publications Ltd, 2016.

[30] A. Pritchard, “Statistical bibliography or bibliometrics,” Journal of

Documentation, vol. 25, pp. 348-349, 1969.

[31] H. F. Moed, Citation Analysis in Research Evaluation, vol. 9, Springer,

2005, p. 348.

[32] S. M. R. P. Z. E. A. Bojović, “An overview of forestry journals in the

period 2006–2010 as basis for ascertaining research trends,”

Scientometrics, vol. 8, pp. 1331–1346, 2014.

[33] W. G. M. H. G. E. A. Liu, “Profile of developments in biomass-based

bioenergy research: A 20-year perspective,” Scientometrics, vol. 99, pp.

507–521, 2014.

[34] H. Mok, “Teaching tip: The flipped classroom,” Journal of Information

Systems Education, vol. 25, no. 1, pp. 7-11, 2014.

[35] L. Porter and B. Simon, “Retaining nearly one-third more majors with a

trio of instructional best practices in CS1,” presented at ACM

Technical Symposium on Computer Science Education, Denver, 2013.

[36] L. Williams and R. Kessler, “Effects of 'pair-pressure' and

'pair-learning' on software engineering education,” presented at

Conference on Software Engineering Education, Austin, 2000.

Copyright © 2020 by the authors. This is an open access article distributed

under the Creative Commons Attribution License which permits unrestricted

use, distribution, and reproduction in any medium, provided the original

work is properly cited (CC BY 4.0).

Sónia Rolland Sobral is a professor at Universidade

Portucalense since 1993 and currently she is a

researcher at REMIT. Her research is in economics,

management, and information technologies. She is an

aggregate (Dr. Habil) in information sciences,

doctorate (PhD) in information systems and

technologies, the master (MSc) in electrical and

computer engineering and degree in management

informatics. She has more than 100 scientific publications and her focus is

the distance education, serious games, computer programming and higher

education policies. She is addicted to sports, and seriously passionate about

technology and travel.

International Journal of Information and Education Technology, Vol. 10, No. 12, December 2020

916

https://creativecommons.org/licenses/by/4.0/

