



Abstract—Nowadays, C programming is essential for

university students to study various programming languages,

algorithms, and computer architecture. Previously, we have

developed Java programming learning assistant system (JPLAS)

for studying Java programming. JPLAS provides several types

of exercise problems to cover different study stages, including

the element fill-in-blank problem (EFP). An EFP instance asks

students to fill in the blank elements in the given source code.

The correctness of the answer is marked through string

matching. In this paper, we study the EFP for C programming

learning assistant system (CPLAS), by extending our works for

JPLAS. To automatically generate a feasible EFP instance, the

graph-based blank element selection algorithm is newly designed

and implemented for C programming. For evaluations, we

generate 19 EFP instances using C source codes for basic

grammar concepts, and fundamental data structures and

algorithms, and assign them to 42 students in a Myanmar

university. The solving results confirm the effectiveness of EFP

in detecting the students who may have difficulty in studying C

programming and the hard topics for them.

Index Terms—C programming, self-study, CPLAS, element

fill-in-blank problem, algorithm, graph.

I. INTRODUCTION

Nowadays, C programming has still been considered to be

the most fundamental programming language. A lot of

universities around the world are teaching C programming,

or its object-oriented extension C++, as the first computer

programming, not only in IT departments but also in other

departments such as mechanical engineering and electrical

engineering. Besides, students in IT departments should

study C programming in parallel with computer architecture

courses, because it needs, for example, to study the access to

memories or registers for efficient programming on the given

computer architecture. As a result, C is selected as the third

most popular programming language despite the age since

the appearance [1].

Previously, to assist Java programming educations in

universities, we have developed a Web-based Java

Programming Learning Assistant System (JPLAS) [2]-[4].

Java has been widely used in IT societies as the practical

object-oriented programming language. Thus, Java

programming has been educated in many IT departments.

JPLAS provides several types of exercise problems to cover

Manuscript received October 20, 2020; revised February 6, 2021.

H. H. S. Kyaw and N. Funabiki are with Okayama University, Okayama,

Japan (e-mail: pxs93q36@s.okayama-u.ac.jp, funabiki@okayama-u.ac.jp).

S. L. Aung and N. K. Dim are with University of Yangon, Yangon,

Myanmar (e-mail: shunelaeaung@gmail.com, nemkdim@gmail.com).

W.-C. Kao is with the Department of Electrical Engineering, National

Taiwan Normal University, Taipei, Taiwan (e-mail: jungkao@ntnu.edu.tw).

different study levels of Java programming studies. Then, for

any exercise problem, the answer from a student is marked

automatically using the software in JPLAS, to support

self-studies of Java programming.

For the first learning stage, JPLAS offers the element

fill-in-blank problem (EFP). The EFP is designed for novice

students to study Java grammar and basic programming skills

through code reading. In the EFP instance, a Java source

code that has several blank elements is given to students,

where the blanks are shown explicitly in the code. Then, the

students are requested to fill in the blanks by typing the

correct elements. Here, an element represents the least unit in

the code, which includes a reserved word, an identifier, and a

control symbol. The correctness of the answer from a student

is verified through string matching with the corresponding

original element in the code.

In the EFP instance, the original element in the source code

for any blank must be the unique correct answer, to avoid

confusions among novice students. Thus, we proposed the

graph-based blank element selection algorithm to select

blank elements automatically. This algorithm can select as

many blanks as possible that have grammatically correct and

unique answer elements in the source code.

JPLAS has successfully been applied to students in several

universities in Japan, Myanmar, and Indonesia, where a lot of

EFP instances have been generated to be solved. Then, it will

be a good idea to develop a C Programming Learning

Assistant System (CPLAS) by extending the works on JPLAS

to C programming in order to advance C programming

educations.

In this paper, we propose the element fill-in-blank problem

(EFP) as the first step of CPLAS. To automatically generate

an EFP instance for C, the blank element selection algorithm

is newly designed and implemented for C programming

where the conditions for selecting blank elements are

redefined. This algorithm consists of the four steps: 1) it

analyzes the C source code using the original parser, 2) it

generates a constraint graph by selecting each candidate

blank element in the code as a vertex and connecting any pair

of vertices by an edge such that their incident elements

cannot be blanked simultaneously for unique correct answers,

3) it derives the compatibility graph by taking the

complement of the constraint graph, and 4) it seeks a

maximal clique of the compatibility graph to find a maximal

set of blank elements with unique answers.

In the evaluations, we first verify the correctness of the

algorithm through applications to various C source codes.

The uniqueness of the correct answer for any blank was

manually confirmed. Then, we generate EFP instances for C

programs by applying the algorithm and assign them to

university students in Myanmar. The results confirm the

A Study of Element Fill-in-Blank Problems for C

Programming Learning Assistant System

Htoo Htoo Sandi Kyaw, Nobuo Funabiki, Shune Lae Aung, Nem Khan Dim, and Wen-Chung Kao

International Journal of Information and Education Technology, Vol. 11, No. 6, June 2021

255doi: 10.18178/ijiet.2021.11.6.1520

mailto:pxs93q36@s.okayama-u.ac.jp
mailto:shunelaeaung@gmail.com

effectiveness of the proposal in detecting the students who

may have difficulty in studying C programming and the hard

topics for them.

The rest of this paper is organized as follows: Section II

introduces various related works. Section III overviews the

element fill-in-blank problem in CPLAS. Section IV

proposed the refined blank element selection algorithm for C

programs. Section V evaluates the EFP in CPLAS. Finally,

Section VI concludes this paper with future work.

II. RELATED WORKS

A lot of work has been reported for C programming

educations. In this section, we introduce related works to the

fill-in-blank selection algorithm.

In [5], Kashihara et al. proposed a method of blanking an

important point of data or control flow in a C code using

Program Dependence Graph (PDG), to make instructive

fill-in-blank problems without considering semantic aspects.

PDG can represent the relationship of data dependency and

control flows between commands using a graph. By solving

the problem, students can improve skills of processing the

flow of the program.

In [6], Terada et al. proposed a methodology to

automatically generate fill-in-blank problems for C codes. To

automatically generate problems, two key constituents, the

selection of exemplary code and the selection of places to be

blanked, are presented. For the first one, they use k-means

clustering with silhouette analysis is used to select exemplary

code from the Aizu Online Judge system (AOJ) which has

over 3 million of source codes. For the later one, a model

based on a bidirectional Long Short-Term Memory Network

(Bi-LSTM) with a sequential Conditional Random Field

(CRF) is used. The blank selection methodology selects the

important places in the process flow of the source code and

creates blanks there. In the future, we will consider the use of

process flow of the source code in our study.

In [7], Brusilovsky et al. developed the QuizPACK system

that can generate parameterized exercises for the C language

and automatically evaluate the correctness of student answers

by comparing them to the correct ones provided by the

teacher. The fill-in-blank problem in QuizPACK asks the

values of particular variables in a source code and is similar

to the value trace problem in [3]. On the other hand, the

fill-in-blank problem in this paper requests filling in the

blank elements that are composed of reserved words,

identifiers, or control symbols for basic grammar and code

reading studies.

In [8], Kakeshita et al. developed a programming

education support tool called Pgtracer. Pgtracer utilizes

fill-in-the-blank questions composed of a source code and a

trace table. The blanks in the code and the trace table must be

filled by the students to improve the code reading while

solving the questions. In Pgtracer, they are manually selected

by the teacher. On the other hand, the blanks are

automatically selected using the blank element selection

algorithm in our proposal.

In [9], Barros et al. developed an e-learning tool called

ProPAT. This tool is implemented as an Eclipse plug-in with

two perspectives: the teacher perspective and the student

perspective. This tool allows students in the first computer

science course to learn how to program using pedagogical

patterns, which are the set of programming patterns

recommended by computer science educators. For answer

marking, the tool includes a program diagnosis system that

uses Model Based Diagnosis techniques. The difficulty of the

tool is that a teacher needs to collect the programming

patterns. In our proposal, a teacher only needs to select

source codes.

III. OVERVIEW OF ELEMENT FILL-IN-BLANK PROBLEM FOR

C

In this section, we present the element definition in EFP

for C programming, the example instance, and the parser for

the blank element selection algorithm.

A. Element Definition in EFP for C

An element in EFP for C programming is defined as the

least unit of a source code. In an EFP instance, a reserved

word, an identifier, a conditional operator, a memory

operator, a preprocessor, and a control symbol can be

blanked among the elements in the code, if it gives the unique

answer.

A reserved word signifies a fixed sequence of characters

that has been defined in C grammar to represent a specific

function. It is expected that students should master the proper

use in learning programming. An identifier is a sequence of

characters defined in the code by the author to represent a

variable or a function. A conditional operator is used in a

conditional statement to determine the state. A memory

operator is used as the pointer to a variable * or to get the

address of the variable &. A preprocessor includes #, include,

define, <, >, ., and h for a header file. A control symbol in the

paper indicates other grammar element, including ., :, ; , (),

and { }.

B. Example EFP Instance

code 1 shows an example EFP instance. This instance is

generated from code2. On the blank elements, # at _1_ is the

preprocessor directive, . at _2_ and h at _3_ are for the header

file extension, main at _4_ is the identifier, int at _5_ is the

reserved word for data type, ; at _6_ is the control symbol,

printf at _7_ is the identifier, ; at _8_ is the control symbol, &

at _9_ is the memory operator, number at _10_ is the

identifier, and return at _11_ is the reserved word.

code 1

1 _1_ include<stdio _2_ _3_ >

2 int _4_ ()

3 {

4 _5_ number _6_

5 _7_ ("Enter an integer:") _8_

6 scanf ("%d", _9_ _10_);

7 printf("You entered: %d", number);

8 _11_ 0;

9 }

code 2

1 #include<stdio.h>

2 int main()

3 {

International Journal of Information and Education Technology, Vol. 11, No. 6, June 2021

256

International Journal of Information and Education Technology, Vol. 11, No. 6, June 2021

257

4 int number;

5 printf("Enter an integer:");

6 scanf ("%d", &number);

7 printf("You entered: %d", number);

8 return 0;

9 }

C. Parser

To generate an EFP instance, the source code needs to be

separated into a collection of elements with the associated

attributes. In this study, the C parser is implemented to

achieve it.

Fig. 1 shows the interaction between the lexical analyzer

and the parser. The parser is also called the syntax analyzer.

The lexical analyzer transforms a given C source code into a

sequence of lexical units or tokens that represent the least

elements to compose the code. It can classify each element

into either a reserved word, an identifier, a symbol, or an

immediate data. The output of the lexical analyzer becomes

the input to the parser for the syntax analysis.

In this study, we originally implement the lexical analyzer

for a C source code and adopt CUP [10] for the syntax

analyzer. CUP is an open-source system for generating

LALR parsers based on the grammar for which a parser is

needed. The output of CUP includes sym.java and

parser.java classes. The sym.java class contains a series of

constant declarations for the symbol table, and the

parser.java class includes a parser itself. Table I shows the

associated information contained for each symbol in the

symbol table. In the implementation of the blank element

selection algorithm, the tokens from the lexical analyzer are

used in the vertex generation, and their associated symbol

information are used in the edge generation.

TABLE I: SYMBOL INFORMATION

item content

symbol symbol of element

line row index of element

column column index of element

count number of element appearances

order appearing order of element in the code

group statement group index partitioned by { and }

depth number of { from top

Fig. 1. Interaction between lexical analyzer and the parser.

IV. BLANK ELEMENT SELECTION ALGORITHM

In this section, we propose the blank element selection

algorithm for C programming.

A. Algorithm Overview

In the algorithm, first, the constraint graph is generated

from the given code, where a vertex represents a candidate

blank element, and an edge does the constraint such that their

incident elements cannot be blanked simultaneously for

unique correct answers. Second, the compatibility graph is

derived by taking the complement of the constraint graph.

Last, a maximal clique of the compatibility graph is sought to

obtain a maximal set of blank elements with unique answers.

B. Vertex Generation for Constraint Graph

In the constraint graph, each vertex represents a candidate

element for being blank. The candidate elements or vertices

are extracted by applying the parser to the source code.

C. Edge Generation for Constraint Graph

Each edge is generated between any pair of two vertices or

elements that should not be blanked at the same time. There

are three categories to represent the constraints in selecting

blank elements with unique answers.

1) Group Selection Category: In the group selection

category, all the elements related with each other in the code

are grouped together. There are five conditions of this

category. To elaborate, we use the following simple code.

code 3

1 #include<stdio.h>

2 float sample_method(int p1)

3 {

4 float tax = 1.08f;

5 retrun p1 * tax;

6 }

7 int main()

8 {

9 int var1 = 10;

10 float var2 = sample_method(var1);

11 printf(“indata= % d”, var1, “outdata= % d”, var2);

12 return 0;

13 }

a) Identifier appearing two or more times in the code

The multiple elements representing the same identifier that

has the same scope are grouped together. A scope indicates

the range in the code where a variable or a function is referred

using the same name or identifier [11]. If all such elements

are blanked, any student cannot answer the original identifier.

For example, in code 3, var1 appears three times with the

same scope at lines 9, 10, and 11, which belong to this

condition.

b) Pairing reserved words composed of three or more

elements

The three or more elements representing the reserved

words in pairs are grouped together. If all of them are blanked,

the unique answers may become very difficult or impossible

to answer. Besides, one of those elements could be a hint to

derive the other element for novice students such as the

following case:

 switch-case-default

c) Data type for variables in equation

The elements representing the data types for the variables

in one equation are grouped together. For example, in sum =

a + b, the data types of the three variables, sum, a, and b,

must be the same. If a variable is casted like sum = (int) a + b,

the casted data type int is also included in the group.

d) Data type for method and its returning variable

The elements representing the data type of a function and

its returning variable are grouped together. For example, in

code 3, float at lines 2 and 4 are grouped.

International Journal of Information and Education Technology, Vol. 11, No. 6, June 2021

258

e) Data type for arguments in method

The elements representing the data type of an argument in

a function and its substituting variable are grouped together.

For example, in code 3, int at lines 2 and 9 belong to this

condition through line 10.

The data type in (c) – (e) must be the same if at least one

element in these groups is overlapped. Thus, after every

group is found, the groups from (c) – (e) that contain an

overlapped element are merged into one group. In each group,

one vertex is randomly selected first. Then, edges are

generated between this vertex and the other vertices so that at

least this selected element is not selected for blank.

2) Pair Selection Category: In the pair selection

category, the elements appearing in the code in pairs are

grouped together so that at least one element from each pair is

not selected for blank. For each pair, an edge is simply

generated between the two corresponding vertices. Four

conditions of this category are illustrated as follows.

a) Elements appearing continuously in statement

The two elements appearing continuously in the same

statement in the code are paired. If both of them are blanked,

their unique correct answers may not be guaranteed, or may

become a significant challenge for novice students. For

example, in code 3, float and sample_method at line 2 are

paired. If this condition is removed, the following problem

can be generated from line 2 in code 3, which will provide

novice students with an exceedingly difficult demanding job:

2: _1_ _2_ _3_ _4_ _5_)

b) Variables in equation

The elements representing any pair of the variables in an

equation are paired. If both are blanked, the unique answers

become impossible because the reversed order is also

grammatically correct. For example, for sum = a + b, sum =

b + a is also feasible. If three or more variables are included

in an equation, any pair of combinations can be found here.

c) Pairing reserved words

The two elements are paired to represent the pairing

reserved words. If both are blanked, the unique correct

answers may not be guaranteed, or may put a heavy burden

on novice students. Besides, one of those elements can be a

hint to derive the other one, including the following two

paring reserved words:

 if-else

 do-while

d) Pairing control symbols

The two elements representing a pair of control symbols,

namely () (bracket) and { } (curly bracket), are paired. Even

if both are blanked at the same time, the code can be

grammatically correct. Furthermore, novice students are

expected to carefully check them in their codes to avoid

making mistakes. For example, in code 3, { } at lines 3 and 6

are paired.

3) Prohibition Category: In the prohibition category, an

element is prohibited from the blank selection because it does

not satisfy the uniqueness with the high probability. There

are three conditions for this category.

a) Identifier appearing only once in code

The selected element representing the identifier in this

category appears only once in the code. If it is blanked, a

student cannot answer the original identifier.

b) Operator

The element representing an operator such as the

arithmetic operator: =, +, -, *, /, the comparative operator:

<, >, <=, >=, ==, !=, and the logical operator: &, |, ^, ! is

selected to this category. If an operator is blanked, a student

cannot answer the original one unless the proper explanation

on the specification related to the operator is given. For

example, in code 3, * at line 5 is prohibited.

c) Constant

The element representing a constant is selected to this

category. If it is blanked, a student cannot answer the original

constant. For example, in code 3, 10 at line 9 is prohibited.

D. Example Constraint Graph

Fig. 2 illustrates the constraint graph for sample_method in

code3. A broken line signifies that the two incident elements

are grouped together by the group selection category, where

the associated number represents the selecting condition in

the category. For example, two p1 are connected by condition

(1) and two float are by (4). A straight line signifies that they

are grouped together by the pair selection category. For

example, float and sample_method are connected by (1), p1

and tax are by (2), (and) are by (4). Moreover, a broken

circle represents an element in the prohibition category that

must not be selected as a blank element, where = and * are

prohibited by (2), and 1.08f is by (3).

Fig. 2. Constraint graph for sample_method in code 3.

E. Compatibility Graph Generation

By taking the complement of the constraint graph, the

compatibility graph is generated to represent the pairs of

elements that can be blanked simultaneously. Fig. 3

illustrates the generated compatibility graph for

sample_method in code 3.

F. Maximal Clique Extraction for Compatibility Graph

Finally, a maximal clique of the compatibility graph is

extracted by a simple greedy algorithm to find the maximal

number of blank elements with unique answers. A clique of a

graph represents its subgraph where any pair of two vertices

is connected by an edge. The procedure for our algorithm is

described as follows:

1) Calculate the degree (= number of incident edges) of

every vertex in the compatibility graph.

2) Select one vertex among the vertices whose degree is

maximum. If two or more vertices have the same

maximum degree, select one randomly.

3) If the selected vertex is a control symbol and the number

of selected control symbols exceeds 1/3 of the total

number of selected vertices, remove this vertex from the

compatibility graph and go to (5). This step is introduced

to avoid too many blanked control symbols.

4) Add the selected vertex for blank and remove it as well as

its non-adjacent vertices from the compatibility graph.

5) If the compatibility graph becomes null, terminate the

procedure. Otherwise, go to (2).

TABLE II: EFP INSTANCES FOR BASIC GRAMMAR CONCEPT

problem ID

(PID)

basic grammar concept number of

lines

number of

blanks

1 standard I/O 8 15

2 function, while loop 28 15

3 recursion 17 18

4 file I/O 17 14

5 function 19 16

6 nested loop 23 20

7 pointer 18 17

8 function 24 20

9 conditional statement 15 14

Fig. 3. Compatibility graph for sample_method in code 3.

V. EVALUATION

In this section, we evaluate the element fill-in-blank

problem (EFP) in studying C programming by students

through applications to 42 students in a Myanmar university

who have studied C programming for at least one year.

A. EFP for Basic Grammar Concepts

First, we evaluate the EFP using source codes for basic

grammar concepts for C programming.

1) Generated EFP Instances: We generated nine EFP

instances for studying basic grammar concepts for C

programming using source codes in [12]. Table II shows the

problem ID (PID), the grammar concept, the number of lines

in the source code, and the number of blanks for each EFP

instance.

2) Student Correct Answer Rate: First, we analyze the

student performances. Table III shows the distribution of the

correct answer rates of the students. This table indicates that

38 students among 42 achieved over 90% rate, which

suggests most of the students are satisfactory in studying C

programming. On the other hand, two students did not reach

80% rate in solving the EFP instances for basic grammar

concepts. The teacher will need to care them.

TABLE III: CORRECT ANSWER RATE DISTRIBUTION FOR BASIC GRAMMAR

CONCEPTS

range of correct answer rate number of students

70% - 79% 2

80% - 89% 2

90% - 99% 6

100% 32

TABLE IV : SUBMISSION TIMES DISTRIBUTION FOR BASIC GRAMMAR

CONCEPTS

admission times range number of students

9 3

10 - 25 9

26 - 50 9

51 - 75 5

76 – 100 5

101 – 125 6

126 - 150 2

151 – 175 0

176 – 200 2

201 – 225 1

3) Student Submission Times: Table IV shows the

distribution of the number of answer submission times of the

students to mark the answers. Three students correctly solved

any instance by submitting the answer only once. They

understand C programming well, and carefully check their

answers before submissions. On the other hand, one student

submitted answers more than 200 times. Although this

student achieved 100% correct rate, he/she may not well

understand C programming. The teacher will need to follow

it.

4) Individual EFP Instances: Next, we analyze the solving

results of the individual EFP instances by the students. Table

V shows the instance ID, the number of students who did not

attempt to solve, the total number of answer submissions, and

the average correct answer rate among the 42 students.

This table indicates that all the instances achieved over

90% correct rate, which confirms that they are suitable for

novice students in studying C programming. However, two

students did not attempt to solve the instance with ID=6 for

nested loop where the correct rate is smallest. The complex

structure of the source code using nested loops may be hard

for them. We will investigate the improvement for better

understanding, which will be in future works.

TABLE V: SOLVING RESULT IN EACH EFP INSTANCE FOR BASIC GRAMMAR

CONCEPTS

instance

ID

number of

unattempted students

number of

submissions

average

correct rate

1 0 327 99%

2 0 309 98%

3 0 419 97%

4 0 182 98%

5 0 366 98%

6 2 265 93%

7 0 381 98%

8 0 258 98%

9 0 227 97%

average 0.22 303.78 97.33%

SD 0.67 77.46 1.73%

International Journal of Information and Education Technology, Vol. 11, No. 6, June 2021

259

TABLE VI : EFP INSTANCES FOR DATA STRUCTURES AND ALGORITHM

problem

ID (PID)

data structures and

algorithms

number of

lines

number of

blanks

1 Stack 54 35

2 Queue 73 46

3 Hash table 102 45

4 Heap data structure 57 32

5 Binary tree 47 15

6 Breadth first search

algorithm

98 46

7 Depth first search algorithm 61 26

8 Quick sort 38 19

9 Longest common sequence 38 23

10 Dijkstra algorithm 48 24

B. EFP for Data Structures and Algorithms

Next, we evaluate the EFP using C source codes for data

structures and algorithms.

1) Generated EFP Instances: We generated 10 EFP

instances using C programming source codes for data

structures and algorithms in [13]. [14]. Table VI shows the

problem ID, the data structure/algorithm, the number of lines

in the source code, and the number of blanks for each EFP

instance. When compared with the instances in Table II,

those in Table VI has more numbers of lines and blanks,

which suggests they are more difficult.

TABLE VII: CORRECT ANSWER RATE DISTRIBUTION FOR DATA

STRUCTURES AND ALGORITHMS

range of correct answer rate number of students

70% - 79% 1

80% - 89% 0

90% - 99% 15

100% 5

TABLE VIII : SUBMISSION TIMES DISTRIBUTION FOR DATA STRUCTURES

AND ALGORITHMS

admission times range number of students

10 0

11 - 40 9

41 - 80 4

81 – 120 3

121 – 160 2

161 – 200 0

201 – 240 0

241 – 360 3

2) Student Correct Answer Rate: Unfortunately, this time,

only 21 students among 42 solved the EFP instances for data

structures and algorithms. We need to investigate why the

remaining students did not solve them and how we encourage

them, which will be in our future works.

Table VII shows the distribution of the correct answer

rates of the students. This table indicates that 20 students

among 21 achieved over 90% correct rate. This student

percentage is almost similar to the previous result.

for data structures and algorithms. Table IX shows the

instance ID, the number of students who did not attempt to

solve, the total number of answer submissions, and the

average correct answer rate among the 21 students.

This table shows that any EFP instance achieved over 90%

correct rate and can be suitable for novice students. Only one

student did not attempt to solve the instance with ID=5 for

binary tree, where the correct rate is smallest among the 10

instances. However, these instances for data structures and

algorithms can be too difficult for the students who did not

solve them. We will follow up the students to solve them.

TABLE IX: SOLVING RESULT IN EACH EFP INSTANCE FOR DATA

STRUCTURES AND ALGORITHMS

instance

ID

number of

unattempted students

number of

submissions

average

correct rate

1 0 224 99%

2 0 493 96%

3 0 270 94%

4 0 176 95%

5 1 63 93%

6 0 131 96%

7 0 64 97%

8 0 103 96%

9 0 184 94%

10 0 114 96%

average 0.1 182.2 95.6%

SD 0.31 128.15 1.71%

VI. CONCLUSION

This paper studied the element fill-in-blank problem (EFP)}

for C programming learning assistant system (CPLAS). An

EFP instance asks students to fill in the blank elements in the

given source code, where the correctness of the answer is

marked through string matching. To automatically generate a

new EFP instance from a source code, the blank element

selection algorithm is newly designed and implemented for C

programming, by redefining the conditions for selecting

blank elements. For evaluations, 9 EFP instances of basic

grammar concepts and 10 EFP instances of data structures

and algorithms were generated and solved by 42 and 21

students, respectively. Their solving results confirmed the

effectiveness of EFP in detecting the students who may have

difficulty in studying C programming and the hard topics for

them. In future works, we will investigate improvements of

EFP for better understanding and higher motivations of

students, generate various EFP instances to cover broad

topics, and evaluate the effectiveness in studying C

programming through applications to students in different

universities.

CONFLICT OF INTEREST

"The authors declare no conflict of interest".

AUTHOR CONTRIBUTIONS

Htoo Htoo Sandi Kyaw designed and implemented the

proposal, conducted the experiments, and wrote the paper as

the main author. Nobuo Funabiki gave the idea of the

proposal and supervised the whole activities including the

experiments and the paper writing. Shune Lae Aung and

Nem Khan Dim assigned the problems to their students and

collected the data. Wen-Chung Kao advised on the

International Journal of Information and Education Technology, Vol. 11, No. 6, June 2021

260

3) Student Submission Times: Table VIII shows the

distribution of the number of answer submission times of the

students. Here, any student did not achieve 100% rate by

submitting the answer only once to each instance. One

student achieved 100% rate with the minimum submission

times of 16. Three students submitted answers more than 250

times for 10 instances. Although two students achieved 98%

correct rate and one did 92% rate, they may not well

understand C programming for data structures and

algorithms.

4) Individual EFP Instances: Finally, we analyze the

solving results of the students in the individual EFP instances

experiments and improved the paper writing. All the authors

had approved the final version.

ACKNOWLEDGMENT

We are very grateful to our laboratory members for fruitful

discussions of advancing this research. We would also like to

thank to all the students participated in the experiments.

REFERENCES

[1] Programming language. [Online]. Available:

https://www.spectrum.ieee.org/at-work/tech-careers/top-programming

-language-2020

[2] N. Funabiki, Y. Matsushima, T. Nakanishi, and N. Amano, "A Java

programming learning assistant system using test-driven development

method," IAENG Int. J. Comput. Sci., vol. 40, no.1, pp. 38-46, Feb.

2013.

[3] K. K. Zaw, N. Funabiki, and W.-C. Kao, "A proposal of value trace

problem for algorithm code reading in Java programming learning

assistant system," Inf. Eng. Express, vol. 1, no. 3, pp. 9-18, Sep. 2015.

[4] N. Funabiki, Tana, K. K. Zaw, N. Ishihara, and W.-C. Kao, "A

graph-based blank element selection algorithm for fill-in-blank

problems in Java programming learning assistant system,” IAENG Int.

J. Comput. Sci., vol. 44, no. 2, pp. 247-260, May 2017.

[5] A. Kashihara, A. Terai, and J. Toyota, "Making fill-in-blank program

problems for learning algorithm," in Proc. Int. Conf. Comput. Edu., pp.

776-783, 1999.

[6] K. Terada and Y. Watanobe, "Automatic generation of fill-in-the-blank

programming problems," in Proc. IEEE Int. Symp. Embed.

Mult./Many-core Sys.-on-Chip (MCSoC), pp. 187-193, 2019.

[7] P. Brusilovsky and S. Sosnovsky, "Individualized exercises for

self-assessment of programming knowledge: An evaluation of

QuizPACK," J. Edu. Res. Comput., vol. 5, no. 6, Sept. 2005.

[8] T. Kakeshita and M. Murata, "Application of programming education

support tool pgtracer for homework assignment," Int. J. Learn. Tech.

Learn. Environ., vol. 1, no. 1, pp. 41-60, 2018.

[9] L. N. Barros, A. P. S. Mota, K. V. Delgado, and P. M. Matsumoto, "A

tool for programming learning with pedagogical patterns," in Proc.

OOPSLA Work. Eclipse Tech. Exchange, pp. 125-129, Oct. 2005.

[10] CUP. [Online]. Available:

http://czt.sourceforge.net/dev/java-cup/manual.html

[11] M. Banahan, D. Brady, and M. Doran, The C Book, 2nd ed., GBdirect,

1991.

[12] Codebind. [Online]. Available: http://www.codebind.com/c-examples

[13] Learn DS & Algorithms. [Online]. Available:

https://www.programiz.com/dsa

[14] Pascal's Triangle. [Online]. Available:

https://brilliant.org/wiki/pascals-triangle/

Copyright © 2021 by the authors. This is an open access article distributed

under the Creative Commons Attribution License which permits unrestricted

use, distribution, and reproduction in any medium, provided the original

work is properly cited (CC BY 4.0).

Htoo Htoo Sandi Kyaw received the B. E. and M. E.

degrees in information science and technology from

University of Technology (Yatanarpon Cyber City),

Myamar, in 2015 and 2018, respectively. She is

currently a Ph.D. candidate in Graduate School of

Natural Science and Technology at Okayama

University, Japan. Her research interests include

educational technology and web application systems.

She is a member of IEICE.

Nobuo Funabiki received the B.S. and Ph.D. degrees

in mathematical engineering and information physics

from the University of Tokyo, Japan, in 1984 and

1993, respectively. He received the M.S. degree in

electrical engineering from Case Western Reserve

University, USA, in 1991. From 1984 to 1994, he was

with Sumitomo Metal Industries, Ltd., Japan. In 1994,

he joined the Department of Information and

Computer Sciences at Osaka University, Japan, as an assistant professor, and

became an associate professor in 1995. He stayed at University of Illinois,

Urbana-Champaign, in 1998, and at University of California, Santa Barbara,

in 2000-2001, as a visiting researcher. In 2001, he moved to the Department

of Communication Network Engineering (currently, Department of

Electrical and Communication Engineering) at Okayama University as a

professor. His research interests include computer networks, optimization

algorithms, educational technology, and Web technology. He is a member of

IEEE, IEICE, and IPSJ.

Shune Lae Aung received the B.S. degree in

computer science from University of Yadanabon,

Mandalay, Myanmar, in 2012, and the M.S. degree in

computer science from University of Yangon,

Myanmar, in 2015. In 2017, she joined Department of

Computer Studies at University of Yangon,

Myanmar, as a lecturer, where currently, she is also a

Ph.D. candidate. Her research interests include

educational technology, assistive technology, and human computer

interaction.

Nem Khan Dim received the B.S. and M.S. degrees

in computer science from University of Yangon,

Myanmar, in 2008 and 2011, and Ph.D. in computer

science from Kochi University of Technology, Japan,

in 2016, respectively. She is currently a lecturer in

Department of Computer Studies at University of

Yangon, Myanmar. Her research interests include

human-computer interaction and assistive technology.

Wen-Chung Kao received the M.S. and Ph.D.

degrees in electrical engineering from National

Taiwan University, Taiwan, in 1992 and 1996,

respectively. From 1996 to 2000, he was a

Department Manager at SoC Technology Center,

ERSO, ITRI, Taiwan. From 2000 to 2004, he was an

Assistant Vice President at NuCam Corporation in

Foxlink Group, Taiwan. Since 2004, he has been with

National Taiwan Normal University, Taipei, Taiwan, where he is currently a

Professor at Department of Electrical Engineering and the Dean of School of

Continuing Education. His current research interests include

system-on-a-chip (SoC), flexible electrophoretic display, machine vision

system, digital camera system, and color imaging science. He is a senior

member of IEEE.

International Journal of Information and Education Technology, Vol. 11, No. 6, June 2021

261

https://creativecommons.org/licenses/by/4.0/

