
  

 

Abstract—This study uses a machine learning technique, a 

boosted tree model, to relate the student cognitive achievement 

in the 2018 data from the Programme of International Student 

Assessment (PISA) to other features related to the student 

learning process, capturing the complex and nonlinear 

relationships in the data. The SHapley Additive exPlanations 

(SHAP) approach is subsequently used to explain the 

complexity of the model. It reveals the relative importance of 

each of the features in predicting cognitive achievement. We 

find that instruction time comes out as an important predictor, 

but with a nonlinear relationship between its value and the 

contribution to the prediction. We find that a large weekly 

learning time of more than 35 hours is associated with less 

positive or even negative effect on the predicted outcome.  We 

discuss how this method can possibly be used to signal problems 

in the student population related to learning time or other 

features. 

 
Index Terms—Learning factor analysis, machine learning, 

SHAP values, PISA. 

 

I. INTRODUCTION 

K12 education systems play a key role in empowering 

young citizens with the necessary knowledge, skills, 

mindsets and competencies ready for 21st century human 

capital workforce demand. Hence, understanding how well 

K12 education systems globally work to prepare young 

citizens for the 21st century workforce is very important. 

PISA, OECD‟s Programme for International Student 

Assessment, has been invented to drive this effort in the last 

decade.  

In 2018, around 600,000 15-year old students from 79 

countries and economies participate in PISA. The 2018 PISA 

assesses student cognitive learning outcomes in reading, 

math and science, and surveys factors relevant for academic 

learning from aspects of 1) non-cognitive and metacognitive 

constructs, 2) student background (i.e. socio-economic status, 

educational pathways in early childhood, etc.), 3) teaching 

and learning processes (i.e. teaching practices and classroom 

support, out-of-school experience, etc.), 4) school policies 

and governance (i.e. school climate, parental involvement, 

assessments, etc.) [1]. These surveys, by design, are to 

investigate the “why” behind what the cognitive achievement 

outcomes say, and are designed to allow educators and policy 

makers to make evidence-based decisions. 

Given the comprehensive datasets collected by 2018 PISA 

and the promises of how such data could be utilized to drive 

data-driven education research and policies, this paper sets 
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out to investigate the potential of using two recent advances 

in Machine Learning (ML) as methodological innovation for 

education research and policy implications. First, improved 

implementations of gradient boosted tree algorithms such as 

XGBoost [2], LightGBM [3] and CatBoost [4]; second, the 

SHapley Additive exPlanation framework (SHAP) [5]–[7].  

 The purpose of this paper is to investigate and measure 

important learning factors contributing to student cognitive 

achievement, using 2018 PISA data sets and ML approaches. 

Going beyond the global feature importance, we want to gain 

a further understanding of how a single feature contributes to 

the predicted cognitive achievement even on the single 

student level, or for subpopulations of interest, an exercise 

for which SHAP provides the necessary tools. 

Other works have considered the applications of ML in the 

analysis of education data. The papers [8] and [9] advocate 

the use of simple decision trees and regression trees 

respectively. The attractiveness of these ML models in the 

context of education lies in its interpretability. 

 In [10] a regression tree, random forest model and a 

boosted regression tree model were used for estimation of the 

school added-value education production function (EPF) 

based on data from Hungary, while a similar work [11] 

focuses on Tunisia. A study applying boosted regression 

trees to estimate school added-value as well as the 

importance of school characteristics appeared in 2018 [12]. It 

uses PISA 2015 data for 9 selected countries.  Another 2018 

study [13] investigates the effect of mathematical 

dispositions on mathematical literacy, based on 2012 PISA 

data from Australia. Finally, a study [14] applied a different 

ML approach, based on Support Vector Machines, to study 

the importance of features impacting reading literacy in 

Singapore based PISA 2015 data.  

The rest of this paper is organized as follows. In Sec. II we 

discuss SHAP in further detail. Sec. III contains the 

definitions of the data and the model. In Sec IV. we present 

the results.  Finally, Sec. V provides concluding remarks.  

 

II.  SHAPLEY ADDITIVE EXPLANATIONS (SHAP) 

We use SHAP which does not suffer from issues with 

consistency in assigning feature importance faced by other 

measures of feature importance for tree models [7], [15]. 

SHAP [5]–[7] is a game-theory and a local explanation 

technique to quantify the contribution of each feature on the 

model outputs.  SHAP values determine the significance of a 

feature by contrasting what a model predicts with and 

without the feature from every conceivable blend of features 

in the dataset.  

In analyzing education data, having a black box that 
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predicts a student performance f(x) score based on some 

inputs x is of not much use. The rough idea of model 

explanation behind SHAP is to assign values to each of the 

features such that the prediction corresponds to the mean 𝜑0 

plus the contributions from each of the features 

 

 
 

such that certain natural conditions are satisfied [5]–[7], what 

the authors call additive feature attribution methods.  

To make the discussion a little less abstract, let us connect 

it back to „the game‟ of predicting student performance score. 

The best prediction without any further information about the 

student would be the mean of the data. Suppose one has 

information about the socio-economic background. This will 

change the prediction. If one then includes some information 

about the students‟ behavior, the prediction would change 

again. At any stage, forgetting or including information about 

a certain feature will lead to a difference in the prediction. 

These differences quantify the effect of the particular feature 

on the final prediction. To arrive at SHAP values, one needs 

to take a certain average over these values and use 

conditional expectation values to define them.  

As mentioned, SHAP values satisfy uniquely certain 

desirable requirements under the names, local accuracy, 

consistency and missingness [6]. Local accuracy states that 

for each input x, the prediction f(x) is equal to the mean plus 

the sum of SHAP values. Consistency is the requirement that 

if a feature is made to be less important in a model its SHAP 

value will also decrease. The latter is clearly important for a 

viable measure of feature importance. The locality of 

explanation indicates that the predicted performance of an 

individual student can be attributed to the different features. 

The missingness property is not so relevant for our purposes. 

It essentially means that when features play no role their 

SHAP value should be zero.  

We do feel that drawing policy conclusions from SHAP 

values warrants further investigation, deferred to future work, 

in which issues relating to data quality as well as the intimate 

but subtle connection with questions concerning causality 

[16], [17] should be more rigorously addressed. But we note 

that using simpler models, which on first sight may be 

thought to give better interpretable results, can in fact be 

deceivable due to artefacts introduced by the simplicity of 

relations in the model not representative of the real data. In 

[15], it is shown that a linear model can be less interpretable 

than a boosted regression tree if nonlinearity in the data 

becomes important.  

 

III. DATA AND MODEL 

Here we provide details on our methods for selecting the 

data and boosted regression tree model we use in this study. 

A. Model Inputs — Features 

For model inputs, we use student survey responses 

regarding factors related to learning within the whole 

education systems (e.g. students, parents, teachers and 

principals) from the PISA 2018 database [18]. Teacher 

response data are not included because teacher-level data 

cannot be identified with individual students. A few indices 

were excluded for reasons of being highly correlated or 

containing overlapping information, namely we excluded 

indices indicating learning time for the main subjects LMINS, 

SMINS and MMINS in favor of the total learning time 

TMINS. Similarly, we excluded indices HOMEPOS, 

PARED, HISEI that factor into the computation of the index 

for socio-economic status (ESCS), as well as other indices 

related to occupation or education of the parents. We 

constructed some simple indices straight from the 

questionnaire data, following definitions indicated in the 

OECD results reports [19]-[20]. Other features were 

excluded, for instance those with more than 50% missing 

values over the whole dataset. The complete list of 80 

features used in the analysis with the definitions of the simple 

indices is given in the appendix.   

In this study, we focus on the total learning time given by 

the variable TMINS in the PISA data. This is computed using 

the student-reported information about the average minutes 

in a class period (question ST061) in relation to information 

about the number of class periods per week attended in total 

(question ST060) [15]. For ease of interpretation, we report 

total learning time in hours per week, while TMINS in the 

data is given in minutes.  

We included all countries and economies (education 

systems) that participated in PISA 2018. In the final analysis 

we excluded Lebanon and North Macedonia which did not 

report any TMINS data. 

B. Model Output — Cognitive Achievement Score 

For the model output, we use a per-student estimate of 

cognitive achievement score for the three main subjects 

reading, mathematics and science.  

The PISA framework does not estimate a single score for 

the cognitive tests for each student, but rather estimates a 

probability distribution for the student achievement and 

draws a number of plausible values (PVs) for the student‟s 

performance from this probability distribution. In order to 

compute unbiased statistics for the performance, one has to 

take a weighted average for the subpopulation for each single 

PV before taking the average over the PVs.  

The cognitive achievement score per student that we 

define as model output corresponds to taking the mean of all 

PVs of the cognitive tests for the three main subjects. All 

averaged scores are computed by taking the weighted 

average first for each PV and then take the mean over PVs.  

C. Boosted Regression Tree Model 

The feature values for all the data points are encoded in a 

matrix X of 600821 rows corresponding to the total number 

of students that participated in PISA 2018 with the exception 

of students from Lebanon and North Macedonia and 80 

columns representing number of learning features. Together 

with the vector y of length 600821 of student cognitive 

achievement scores, this forms the input data for our model.  

We have trained a boosted-regression-tree model with data 

X and labels y using the CatBoost package in python [21]. 

Before training, we split the data into training and validation 

sets with a ratio 70/30. Next, we trained a CatBoost model 
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with 2000 estimators (regression trees) with a tree depth of 

10 and learning rate η=0.05. We chose 

root-mean-squared-error (RMSE) as the loss function. SHAP 

values were computed using the TreeExplainer from the 

SHAP package for python [22].  

 

IV. RESULTS 

In this section, we present the results obtained from the 

model and its analysis. 

A. Model Performance 

We start by examining the model‟s capabilities in correctly 

predicting student score values. In Fig. 1, several aspects of 

the model performance are presented. After training, 

applying the model on the validation set gives RMSE=47.74 

and r2=0.75 (coefficient of determination, measuring the 

correlation of predicted and actual target variable). Hair et al. 

(2011) suggested to consider r2 of 0.75 to be a substantial 

level of predictive accuracy [23]. For interpretation, the 

mean-absolute error (MAE) is more intuitive than the RMSE. 

We found MAE=37.2 on the validation set. For comparison, 

[13] reports a MAE of 51 mathematical literacy points and 

r2=0.51 in their study.  
 

 
Fig. 1. Model evaluation. Top: mean-absolute error for binned data. We use 

bins of 5 hours. Mean-absolute error of full data is indicated (dashed line). 

High learning time, larger than 30 hours, is indicated in orange. Inset shows 

error for full data and high-learning time subset. Bottom: Score per education 

system (error bars indicate ∓ one standard deviation). 

 

After performing the analysis of feature importance (see 

Sec. III A), we found learning time (TMINS) to be the most 

important feature contributing to student cognitive 

achievement. To check that there is no structural error in the 

prediction related to this variable, for instance a biased 

prediction for large learning time, we also plotted the MAE 

for data binned in terms of learning time in five-hour bins 

(Fig. 1 top) as well as the error for the full data and data with 

learning time value larger than 30 hours per week). There is 

no sign of worse performance on any specific bin compared 

to the full data.  

Finally, we have compared the country-averaged 

prediction with the actual performance score. Here we did 

find some biases. We checked whether this may be explained 

by the bias introduced when one averages over PVs first and 

then takes the country average, which the prediction emulates, 

but it is not the case as these biases were of the order of 10-13.  

B. SHAP Summary Plot of Feature Importance 

Having gained confidence in the model, we examined the 

SHAP values for all feature inputs. Fig. 2 shows the summary 

plot of top twenty features in terms of importance. Here, 

importance is measured as the mean absolute SHAP values 

[7], [15]. The feature importance is given in terms of PISA 

points. An importance of, say, 10 points tells us that the 

SHAP algorithm on average estimates a 10 point contribution, 

negatively or positively.  

As shown in Fig. 2 (inset), the feature importance does not 

decay very rapidly. The top 20 features displayed in the bar 

plot account for 51% of the total feature importance.  It is 

therefore not clear, based on this analysis, where to draw a 

line between important and not important features.  

Among the top 20 important features, four categories are 

distinguished: 1) student-related; 2) teacher-related; 3) 

parents-related; 4) school & demographics related. 

student-related factors include student metacognition of 

reading (i.e. assessing credibility, summarizing, 

understanding and remembering), awareness and 

self-efficacy of explaining and discussing global issues, 

student perceived difficulty in reading, meaning of life and 

interest in ICT. Frequency of teachers applying 

teacher-directed instruction in the classroom is the only 

feature related to teachers. As for parental involvement, 

parents‟ emotional support and parents‟ enjoyment of 

reading are top important features. Lastly, total learning time 

spent per week, school size (i.e. total enrollment of boys and 

girls in the school), discriminating school climate, school 

type (i.e. public or private), ICT resources within school, 

student socioeconomic status and gender are top features 

related to school and demographics.  
 

 
Fig. 2. SHAP summary plot of feature importance. Color indicates 

correlation coefficient with feature value. Inset shows cumulative 

importance. 
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We focus attention on the top 5 features. The most 

important feature, TMINS, indicating the total learning time, 

is assigned an importance of about 10 points in this analysis. 

Other features we find in the top 5 are TertiaryEducation (the 

student‟s self-reported estimate for finishing tertiary 

education1), ESCS (index for socio-economic status) and the 

indices for meta-cognitive skills METASPAM (ability to 

assess credibility) METASUM (summarizing).  

From the importance alone, as measured by the average 

effect on the model prediction, we cannot see whether the 

effect is positive or negative. An aggregate understanding of 

the sign of the effect can be achieved by computing the linear 

correlation between the SHAP values and the feature value. 

Fig. 2 also shows the result of this computation in the color 

coding of the bars. Most of the features with large importance 

show a correlation either close to 1 (positively correlated) or 

-1 (negatively correlated). However, the most important 

feature, TMINS, shows a small correlation of 0.15. This 

indicates a nonlinear global relation between the SHAP 

values and the learning time values.   

C. SHAP Values of TMINS with Four Education Systems 

Highlighted  

In Fig. 3, we showed the aggregated averages of the 

cognitive achievement score plotted against the averaged 

learning time to represent the position of all PISA 2018 

participating education systems. We divided figure 3 into 

four quadrants, using the OECD average value for both 

cognitive achievement score and learning time. In the high 

learning time, high score quadrant we picked B-S-J-Z (China) 

as a clear case of having very high values for both variables. 

Similarly, the Philippines appears as a clear pick for low 

cognitive score but high learning time. Vietnam and Kosovo 

are chosen to represent low learning time, with high and low 

performance respectively. 
 

 
Fig. 3. Country scores and learning time (TMINS).   

 

In Fig. 4, the dependence of the SHAP values on the 

feature values plotted for learning time. The four plots each 

show the full data with one of the selected education systems 

highlighted. We clearly see a nonlinear dependence of the 

SHAP value on the learning time value. 

 

 
1 Defined using International Standardised Classification of Education 

1997 ISCED level 5A and/or ISCED level 6 (theoretically oriented tertiary 

and post-graduate). 

 
Fig. 4. SHAP values of TMINS with four education systems highlighted.  

 

The range of learning times at which the SHAP value is 

switching between negative and positive SHAP values is 

defined as a cut-off range. As shown in Fig. 4, the cut-off 

range for the learning time is between 18 and 22 hours per 

week (presented as 20±2), below which the contribution of 

learning time is negative. When learning time is more than 33 

hours per week, the contribution of learning time can be 

either positive or negative, depending on the values of other 

learning factors. When learning time is from 22 to 33 hours 

per week, contribution is positive with a peak around 25 

hours. This is a strong evidence-based policy implication for 

education systems that 1) learning time has to reach the 

cut-off range of 20±2 hours per week; 2) more learning time 

can contribute negatively to student cognitive achievement. 

Comparing the two education systems with high cognitive 

achievement scores, Vietnam and B-S-J-Z (China), it is 

obvious that learning time for Vietnam is tightly concentrated 

in the range of 18 to 33 hours per week and within this range 

the contribution to cognitive achievement is positive (Fig. 4 

top). The distribution of learning time for B-S-J-Z (China) is 

much more spread out than that of Vietnam, and the majority 

of student learning time in B-S-J-Z (China) is reported to be 

18 hours or more per week and considerable density for the 

high reported learning time. Yet, the SHAP value attributed 

to the students with learning time above 25 hours per week is 

still positive, with a decreasing trend. 

As for the two education systems with low achievement 

scores, Kosovo and the Philippines, are characterized by a 

very broad spectrum of reported learning time values (see Fig. 

3). The SHAP values of learning time for these two examples 

are negative in two segments of learning time values, 1) less 

than 20±2 hours per week, 2) more than 33 hours per week.  

 

V. CONCLUSION 

Using ML techniques and the PISA 2018 data, we studied 

the importance of 80 selected features in relation to 

predicting the score of students on the PISA cognitive test by 

measuring the feature contribution with SHAP values. We 

found that the average effect of the features on the model 

prediction decreases quite slowly from the most important to 

the least important feature. In other words, all the aspects of 

learning measured by PISA show some relation to the 

cognitive performance score, although some features are 

more important than others. Among the most important 

features we found measures of meta-cognitive constructs, 
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student expectations to finish higher education, 

socio-economic status and learning time.  

In this analysis, we found that learning time was in fact 

attributed the largest importance as a predictor of cognitive 

achievement, and the relation is nonlinear. This corroborates 

evidence for diminishing returns of learning time and its 

complex nonlinear relation to academic performance [24]. In 

our analysis, there are even parts of the student population 

with large learning time values for which this feature value is 

associated with a negative contribution to predicted 

achievement. This is an illustration of how this type of 

analysis, based on SHAP values, can be valuable in clarifying 

the complex relations between different aspects of the 

learning process and learning outcome, in particular when 

such relations are nonlinear.   

APPENDIX 

The full list of features from the PISA 2018 student and 

school datasets used in the analysis is: ADAPTIVITY, 

ATTIMM, ATTIMMP, ATTLNACT, AUTICT, AWACOM, 

BEINGBULLIED, BELONG, BODYIMA, BSMJ, 

CHANGE, CLSIZE, COGFLEX, COMPETE, COMPICT, 

CREACTIV, CULTPOSS, CURSUPP, DIRINS, 

DISCLIMA, DISCRIM, DURECEC, EDUSHORT, 

EFFORT1, EFFORT2, EMOSUPP, EMOSUPS, ENTUSE, 

ESCS, EUDMO, FCFMLRTY, FLCONFIN, FLCONICT, 

FLFAMILY, FLSCHOOL, GCAWARE, GCAWAREP, 

GCSELFEFF, GFOFAIL, GLOBMIND, HEDRES, 

HOMESCH, ICTCLASS, ICTHOME, ICTOUTSIDE, 

ICTRES, ICTSCH, IMMIG, INFOCAR, INFOJOB1, 

INFOJOB2, INTCULT, INTCULTP, INTICT, ISCEDD, 

ISCEDL, ISCEDO, JOYREAD, JOYREADP, MASTGOAL, 

METASPAM, METASUM, PASCHPOL, PERCOMP, 

PERCOOP, PERFEED, PERSPECT, PQSCHOOL, 

PRESUPP, PRIVATESCH, PROATCE, RATCMP1, 

RATCMP2, RESILIENCE, RESPECT, SCHSIZE, 

SCMCEG, SCREADCOMP, SCREADDIFF, SOCONPA, 

SOIAICT, STAFFSHORT, STIMREAD, STRATIO, 

STUBEHA, STUBMI, SWBP, TEACHBEHA, TEACHINT, 

TEACHSUP, TMINS, UNDREM, USESCH, WEALTH, 

WORKMAST, Gender, GCLearning, Lateness, TakeAction, 

TertiaryEducation, TimeOnline, Truancy.  

ALL CAPS features are indices in the data. We refer to the 

codebook and results volumes published by the OECD for 

definitions. The CamelCase indices are simple indices 

defined in the results volumes obtained from questionnaire 

answers. For clarity we give their definitions. 

Gender: Student standardized gender, response to question 

ST004D01T (1: Female, 2: Male). 

GCLearning: Number of learning activities attended by 

students concerning global issues, sum of responses to ten 

questions (ST221).  

Lateness: Arriving late in the last two weeks prior to PISA 

test, derived from question ST062Q03TA. Value 0 if student 

reported not to have arrived late, value 1if student reported to 

have arrived late at least once. 

TakeAction: Student willingness to take action, using a 

series of eight yes-or-no statements (ST222). Actions 

concern environmental protection, gender equality and 

interest in international and social issues, such as poverty and 

human rights. 

TertiaryEducation: Indicates whether the student expects 

to complete tertiary education (from response to question 

ST225Q06HA; 0: no, 1: yes).  

TimeOnline: Time spent online outside of school based on 

questions IC006 and IC007 asked in 51 countries. Five 

categories of internet users: “low Internet user” (0-9 hours 

per week); “moderate Internet user” (10-19 hours per week); 

“average Internet user” (20-29 hours per week); “high 

Internet user” (30-39 hours per week); and “heavy Internet 

user” (more than 40 hours per week). 

Truancy: Students reported whether they had skipped days 

(ST062Q01TA) or classes (ST062Q02TA) of school in the 

two weeks prior to test? Value 0 if not, 1 if yes. 

TMINS: Total learning time (minutes per week). 

Computed using information about the average minutes in a 

<class period> (ST061) in relation to information about the 

number of class periods per week attended in total (ST060). 
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