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Abstract—Tensor decomposition is used in a wide range of 

research fields; however, its theory is difficult to understand. 

Therefore, basic education is essential when using it in 

programming. Currently, there are few Japanese universities 

that provide education on tensor decomposition; however, some 

overseas universities have already conducted it, and online 

learning materials are also substantial. Therefore, in this paper, 

we have developed online learning materials for basics and 

programming exercises of higher-order singular value 

decomposition (HOSVD), which is one of tensor decomposition, 

for the purpose of increasing the learning materials for tensor 

decomposition education. Our learning material is created on 

Microsoft Teams, and students can access this material channel 

and work on exercises on demand while watching explanatory 

videos including CG animation. As a result of the trial of this 

learning material, it was found that the students who used it can 

generally understand the processes related to tensor 

decomposition and can perform basic programming of them. 

 
Index Terms—Tensor decomposition, online learning 

materials, HOSVD, 3D puzzle, R language.  

 

I. INTRODUCTION 

Tensors are one of the important data structures used as 

multidimensional arrays in data processing. Tensor 

decomposition, which is one of the tensor data processing, is 

applied in a wide range of research fields such as signal 

processing, numerical linear algebra, computer vision, 

numerical analysis, data mining, graph analysis, and 

neuroscience [1]. In order for undergraduate students to 

apply this tensor decomposition in their graduation research 

project, it will be important to educate them on the basics and 

application of the decomposition. 

In Japan, tensor decomposition education is conducted at 

several higher education institutions. For example, at Rikkyo 

University Graduate School of Artificial Intelligence and 

Science, lectures on application cases of tensor 

decomposition such as recommender systems and location 

information are given in a course of Special Seminar on 

Artificial Intelligence [2]. In subjects of Physics Special 

Treatise Training I to VI conducted at Chuo University 

Graduate School of Science and Engineering, students read 
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texts and resumes on variable selection by unsupervised 

learning using tensor decomposition and aim to apply it to 

bioinformatics by understanding the contents [3]. At Kyoto 

University Graduate School of Informatics, a lecture on the 

basics of tensor decomposition and tensor networks is given 

in the subject of Nonlinear Physics Special Lecture II [4]. As 

in these examples, in Japan, lectures on tensor decomposition 

are conducted at graduate schools of science and engineering. 

Education on tensor decomposition in other countries is 

more common than in Japan, and online learning materials 

are also substantial. For example, at the University of Illinois, 

a detailed lecture on tensor decomposition and tensor 

network theory, algorithms, etc. is given in a subject called 

Tensor Computations [5]. Homework and quizzes are also 

provided online in this subject, and students can deepen their 

understanding by implementing algorithms using Python and 

answering quizzes. MIT OpenCourseWare of the 

Massachusetts Institute of Technology offers a course called 

Algorithmic Aspects of Machine Learning [6]. This course 

focuses on the design of basic machine learning algorithms 

such as non-negative matrix factorization and tensor 

decomposition, and lecture notes, assignments, and 

references are available online. Both the subjects described 

here are offered at the graduate level of each university. As 

shown in the example above, our survey revealed that most of 

the subjects dealing with tensor decomposition are offered at 

the graduate level, both in Japan and abroad. 

We have been developing learning materials that are useful 

for understanding the concept of tensors and how to handle 

them. One of the developed learning materials is a set of R 

language scripts that express several types of 3D puzzles in 

tensors and solve them by matrix unfolding used in tensor 

decomposition [7]. Another learning material deals with 3D 

puzzles composed of MacMahon’s cubes and is useful for 

understanding matrix unfolding and folding used in tensor 

decomposition [8]. The latter learning material was tried for 

junior high school students and technical college students, 

and the difficulty level, visibility, and required time were 

evaluated. Recently, we have developed online learning 

materials based on the results of our research so far [9]. This 

learning material expresses a 3D Puzzle called “Light Bulb 

Placement Puzzle” in tensors, and teaches its basic 

programming techniques, partial tensor sum, matrix 

unfolding, and folding, online with exercises. 

In this paper, we added an explanation of the product of 

tensors and matrices called n-mode product to this latest 

learning material shown in ref. [9] so that we can teach tensor 

decomposition and made it available online. The points that 

have been changed or added in the new learning materials are 

as follows. 
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1) Explanations and exercises for n-mode product and 

tensor decomposition were introduced. 

2) MacMahon’s cube is mainly treated as a material to be 

expressed by tensor. Since there are many exercises for 

online learning in the new materials, a simpler puzzle 

was selected compared to the light bulb puzzle. 

3) CG animations have been added to the video explanation 

of the slides to make process of tensor operation easier to 

understand visually.  

4) Applied exercises that were previously given at the end 

of the material are now done at the end of each exercise. 

The order of the chapters in this paper is as follows. 

Chapter 2 explains the theory related to tensors and tensor 

decomposition and the materials used in the learning 

materials. Chapter 3 describes the system configuration of the 

learning materials and detailed explanations of each exercise 

include in it. Furthermore, specific status of the exercises by 

students is explained. In Chapter 4, the results of the trial use 

of these materials by the students are concluded, and the 

consideration is given at the end. 

 

II. THEORY OF TENSOR DATA PROCESSING, TENSOR 

EXAMPLES, AND PROGRAMING LANGUAGE USED FOR 

EXERCISES 

In this chapter, we describe tensor and its operations and 

theory of tensor decomposition. Furthermore, we explain 

tensor examples used in learning material developed in this 

study and programming language used in exercises. 

A. Theory of Tensor and Its Operations 

In this study, the tensor means a multidimensional array, 

and its elements are real values. Now, a definition of an Nth 

order tensor is shown below. 

[(Definition 1) Nth Order Tensor] 

Let Nn IIII ×××××∈ 21RA  be an Nth order tensor of size 

Nn IIII ××××× 21  with real numbers. Then, let 

Nn iiiia 21
 be an )( 21 Nn iiii ,,,,,   element of A , the 

tensor is defined by the following equation. 
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(End of Definition) 

From this definition, a 1st order tensor )(
1i

a  and a 2nd 

order tensor )(
21iia  correspond to a vector and a matrix, 

respectively. A 3rd order or higher tensor is a 3-dimensional 

or higher multidimensional array. 

The subscripts ),,,(,  Nnin 21  in (1) represent 

directions of the tensor and are called modes. In an example 

of a 3rd order tensor, there are three subscripts, 31 ,, iii 2 , 

which are called 1-mode, 2-mode, and 3-mode, respectively. 

We use a 3rd order tensor that correspond to the 1-mode, the 

2-mode, and the 3-mode in vertical, horizontal, and depth 

directions of the tensor, respectively. 

Next, we describe important operations of tensors, such as 

n-mode matrix unfolding, folding, and n-mode product. 

Firstly, the n-mode matrix unfolding is an operation to 

rearrange a tensor into a matrix, and the definition for an Nth 

order tensor A  is shown below [10]. 

[(Definition 2) n-Mode Matrix Unfolding] 

Moving an 
Nn iiiia 21

 element of the Nth order tensor A  

shown in Definition 1 to an ),( nn ji  element of a matrix 

1221 --A nnNnnn IIIIIII×I

n

2+1+∈)( R , ),,,(  Nn 21  is called 

n-mode matrix unfolding. Where nj  is given by the 

following equation. 
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The above operation is performed by changing all 

subscripts ),,,(,  Nnin 21 . 

(End of Definition) 

From this definition, the matrix unfolding of a 3rd order 

tensor A  is as follows. 

1-Mode Matrix Unfolding: An 
321 iiia  element of A  is 

moved to an })( 21 331){(, iIii   element of (1)A . 

2-Mode Matrix Unfolding: An 
321 iiia  element of A  is 

moved to an })( 32 111){(, iIii   element of (2)A . 

3-Mode Matrix Unfolding: An 
321 iiia  element of A  is 

moved to an })( 13 221){(, iIii   element of (3)A . 

That is, this unfolding is the operation to move n-mode of 

A  to the row of )(nA  and remaining modes of A  to the 

column of )(nA . In this learning material, implementation of 

matrix unfolding of a 3rd order tensor based on Definition 2 

is given as an applied task of an exercise. 

Secondly, folding is a reverse operation of matrix 

unfolding, which is the operation of converting an unfolded 

matrix into a tensor. This definition is shown below. 

[(Definition 3) Folding] 

Returning an ),( nn ji  element of )(nA , ),,,(  Nn 21  in 

Definition 2 to an 
Nn iiiia 21

 element of an Nth order tensor 

A  is called folding. Where nj  is given by (2). 

The above operation is applied while changing all 

subscripts of A . 

(End of Definition) 

Thirdly, this learning material introduces an exercise of 

n-mode product, which is essential for calculation of tensor 

decomposition described in the next section. As for n-mode, 

it is represented an nth subscript ni  of a tensor. The n-mode 

product is an operation of a product of a tensor and a matrix 

for ni . A definition of this product operation is shown below 

[10]. 

[(Definition 4) n-Mode Product] 

The n-mode product of an Nth order tensor A  shown in 

Definition 1 and a size nn IJ   matrix nn IJn R∈)(
U  is 

defined by the following equation. 

International Journal of Information and Education Technology, Vol. 12, No. 3, March 2022

195



  

 

.
,,,;,,,;

;,,,;;,,,;,,,

,)(
2121

)(














 


nnNN

nn

I

i

ijiiiiijii

n

n

JjIi

IiIiIi

ua
n

n

nnNnNn







2121

2121 21 2211

1

UA

 (3) 

Where 
Nn ijii

n

n 21
)( )(

UA  is an )( 21 Nn ijii ,,,,,   element 

of a size Nn IJII  21  Nth order tensor 

Nn IJIIn

n




21R∈)(
UA , and 

nniju  denotes a )( nn ij ,  

element of 
)(n

U . 

(End of Definition) 

As shown in (3), tensor operations are generally 

complicated in this way. In this learning material, 

implementation of the n-mode product using Definition 4 is 

an applied task of an exercise. 

According to Definition 4, n-mode product can be 

calculated; however, it is difficult to understand it. Therefore, 

in order for learners to understand processing of this 

operation, implementation by algorithm shown below is also 

introduced in the exercise [11]. 

[(Algorithm 1) n-Mode Product] 

Input: Size Nn IIII  21  Nth order tensor A , size 

nn IJ   matrix 
)(n

U . 

Output: Size Nn IJII  21  Nth order tensor 

)(n

n UA . 

(Step 1) Apply n-mode matrix unfolding to A  and unfold 

A  to a matrix )(nA . 

(Step 2) Calculate a matrix product )(

)(

n

n
AU  of 

)(n
U  and 

)(nA  obtained in Step 1. 

(Step 3) )(n

n UA  is obtained by folding )(

)(

n

n
AU  calculated 

in Step 2 into an Nth order tensor for n-mode. 

(Step 4) Return )(n

n UA  obtained in Step 3. 

(End of Algorithm) 

In addition, the following property is important in an 

operation of n-mode product [11]. 

[(Property 1) n-Mode Product] 

Now A  denotes an Nth order tensor, and 
)(o

U  and 
)( p

U  

are matrices. If po  , then the following equation holds for 

operations of o-mode product and p-mode product. 
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p
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o

UU

UUUU





A

AA
. (4) 

(End of Property) 

B. Theory of Tensor Decomposition 

Tensor decomposition is important operation in tensor data 

processing. This is used to express high-dimensional tensor 

data as products or sums of lower-dimensional tensors. 

Higher Order Singular Value Decomposition (HOSVD) [10] 

is one of the tensor decompositions and can be practiced in 

this learning material. Furthermore, HOSVD is an extension 

of Singular Value Decomposition (SVD) of a matrix to the 

decomposition of the third or higher order tensors. HOSVD 

definition for an Nth order tensor and its algorithm are shown 

below [10]. 

[(Definition 5) HOSVD] 

Now consider an Nth order tensor A  of Definition 1. The 

tensor A  is decomposed as the following equation by 

n-mode product of size nn II   orthonormal matrices 

nn IIn R∈)(
U , ),,,(  Nn 21  and a core tensor 

Nn IIII  21R∈C  of the same size as A , and this is called 

HOSVD of the Nth order tensor. 

 )((2)

2

(1)

1

N

N UUU  CA . (5) 

Where operators n , ),,,(  Nn 21  represent n-mode 

product. 

(End of Definition) 

[(Algorithm 2) HOSVD] 

Input: Size NIII  21  Nth order tensor A . 

Output: Size nn II   orthonormal matrices 
)(n

U , 

),,,(  Nn 21 , size NIII  21  core tensor C . 

(Step 1) Apply n-mode matrix unfolding to the input 

tensor A  in order to unfold it into N matrices 

1221 --A nnNnnn IIIIIII×I

n

2+1+∈)( R , ),,,(  Nn 21  of the size 

)( 1221  nnNnnn IIIIIIII 21 . 

(Step 2) Applying SVD to each of )(nA  obtained in Step 1, 

the matrices are decomposed as follows. 

 ),1,2,( ,
T)()()(

)( Nnnnn

n  VUA  . (6) 

Where 
)(n

U  and 
)(n

V  represent left and right singular 

matrices, respectively, and )(n  is a diagonal matrix with 

singular values in the diagonal elements. The operator T 

means a transpose of a matrix. 

(Step 3) A core tensor C  can be calculated by the following 

equation from n-mode product of A  and 
)(n

U  obtained in 

Step 2. 

 
T)(T(2)

2

T(1)

1

N

N UUU  AC . (7) 

(Step 4) Return 
)(n

U , ),,,(  Nn 21  and C  calculated in 

Step 2 and 3, respectively. 

(End of Algorithm) 

Regarding exercises in HOSVD, a basic task using its 

function prepared in a library and an applied task to 

implement it following Algorithm 2 are assigned. 

C. Material Used for Tensor Examples 

In this learning material, from a viewpoint of making 

learners more interested in tensor data processing, in addition 

to a tensor example composed of simple numerical values, a 

3D puzzle and a colored cube are also used as material for the 

examples. 

As the 3D puzzle, Light Bulb Placement Puzzle introduced 

in ref. [9] is used. Fig. 1 shows an image of this puzzle 

expressed in a tensor. In this figure, light bulbs are placed on 

each element of a 333   cube. Then, in this puzzle, 923  

out of 2733  light bulbs are lit well so that all the elements 

appear to be lit when viewed from 3 directions. In Fig. 1, 
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elements colored in red represent lighting of light bulbs, and 

a solution of this puzzle can be confirmed by taking a partial 

tensor sum of matrices sliced along each mode. Therefore, 

this is a basic task for practicing the sum. 
 

 
Fig. 1. Tensor representation of 3D puzzle. 

 

Another material is a MacMahon’s cube [12] as shown in 

Fig. 2. This cube is painted in 6 different colors on each side, 

and the colors used here are red(1), white(2), blue(3), 

green(4), yellow(5), and black(6). Note that the numbers in 

parentheses denote the numbers for each color. 
 

 
Fig. 2. Example of MacMahon’s cube. 

 

Fig. 3 shows a tensor representation devised by extending 

the cube. This extends the cube in Fig. 2 to a 3rd order tensor 
333∈ RA  of the size 333  , and the color number of each 

face shown in Fig. 2 is stored in central element of each side 

of A . Note that the other elements of A  are zero. 

The tensor example shown in Fig. 3 appears in most of the 

exercises in this learning material. Specifically, it is used for 

the exercises of n-mode matrix unfolding, folding, n-mode 

product, and tensor decomposition. 
 

 
Fig. 3. Tensor representation of MacMahon’s cube. 

 

D. Programming Language and Package Used for 

Exercises 

As programing language, R [13] is used, and rTensor [14] 

is installed and used in a package for tensor operation. In 

each exercise of this learning material, the following 

functions of rTensor are used. 

as.tensor function: Function to create a tensor object that 

can be used with rTensor. 

modeSum function: Function to calculate a partial tensor 

sum. 

unfold function: Function to convert from a tensor to 

n-mode matrix unfolding. 

fold function: Function to fold n-mode matrix unfolding into 

a tensor. 

ttm function: Function to calculate n-mode product of a 

tensor and a matrix. 

hosvd function: Function to calculate HOSVD of a tensor. 

fnorm function: Function to calculate Frobenius norm of a 

tensor. 

However, for implementation of n-mode matrix unfolding, 

folding, n-mode product, and HOSVD, there are also 

application tasks such as programming based on definitions 

and algorithms without directly using the above functions. 

 

III. CONTENTS OF DEVELOPED LEARNING MATERIAL AND 

TRIAL RESULTS 

A. System Configuration of Learning Material 

In this study, we develop learning material for 

understanding the contents of tensor data processing 

described in Chapter 2 through programming in R language. 

Fig. 4 shows overall structure of the learning material. 

Students who are learners can watch explanation videos on 

Microsoft (MS) Teams, perform exercises, and submit 

assignments from Google Form. Exercises are basically 

performed in R environment, and some exercises are 

answered in MS Word files. The submitted assignments can 

be reviewed by teachers. 

This learning material is created on a MS Teams channel. 

Fig. 5 shows an overview of the learning material that 

consists of each thread on that channel. The configuration is 

described below. 

Firstly, Fig.6 shows a thread corresponding to the part (A) 

in Fig. 5. The first thread describes recommended 

environment in which the learning material can be properly 

executed. The second one gives preparations and precautions 

before using the learning material. 
 

 
Fig. 4. Overall structure of the learning material. 

 

 
Fig. 5. Thread structure of the learning material. 
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Fig. 6. Thread in part (A) of Fig. 5. 

 

 
Fig. 7. Thread example of Exercise III. 

 

 
Fig. 8. Thread of comprehension questionnaire. 

 

Secondly, the threads (B) in Fig. 5 are the part where 

exercises are performed, and six exercises are provided. As 

an example of this, a thread of Exercise III is shown in Fig. 7. 

This thread has shared links for an explanatory video, a Word 

file for answers, and Google Form for submitting 

assignments. As a supplement, some exercises have sample 

answers on the File tab. Therefore, to grasp the learner’s 

practice situation, we asked them to check a questionnaire 

item on the submission form if they referred to the sample 

answers. 

Thirdly, Fig. 8 shows the thread in the part (C) of Fig. 5. 

This thread contains comprehension questionnaires that 

learners answer after completing each exercise. The 

questionnaires are conducted to measure how well they 

understand important contents of each exercise. They 

perform a self-assessment on a five-point scale. 

B. Contents of Learning Material and Results of Each 

Exercise 

This learning material have been tried to use by five 

students. They were four 5th grade students (correspond to 

second-year university students) and one advanced course 

student (correspond to a third-year university student) 

belonging to the departments related information engineering 

in our college. All of them have an experience using R 

language, and one of formers has also used the rTensor 

package. 

In the following sections, regarding (B) in Fig.5 explained 

in the previous section, the contents of each exercise and its 

trial results (exercise tasks and comprehension 

questionnaires) are shown in order from Exercise I. 

1) R programming Exercise I 

At first, we provide an exercise for learning the outline of 

tensors and how to install the rTensor package required to 

handle tensors in R language. The task in this exercise is to 

install the rTensor while watching a video explaining it.  

Here, the result of the comprehension questionnaire in this 

exercise are shown in Fig. 9. As the result of this 

questionnaire, it was confirmed that the students had a good 

understanding of the tensor and its mode, because 80% of 

them answered 4 for each question. 
 

 
Fig. 9. Questionnaire results in Exercise I. 

 

2) R programming Exercise II 

In Exercise II, students can learn about the generation of 

tensors using the rTensor and the sum of partial tensors. From 

this exercise onward, they proceed with learning by 

implementing themselves the presented tasks. We used the 

Light Bulb Placement Puzzle described in Chapter 2 as the 

material of this example exercise. The task of this exercise is 

to implement the example exercise following the explaining 

video.  

Regarding the performance of the exercise, it was 

confirmed that all the students could implement it from the 

review of submitted source codes. In addition, Fig. 10 shows 

the results of the comprehension questionnaire in this 

exercise. As a result, over 80% of them rated the 

comprehension level as 4 or higher in each item. From the 

above, it is considered that the meaning of the partial tensor 

sum and its implementation were well understood. 
 

 
Fig. 10. Questionnaire results in Exercise II. 

 

3) R programming Exercise III 

Next, the learning content in this exercise is n-mode matrix 

unfolding. Fig. 11 shows a video explaining the 

implementation of the matrix unfolding on a 3rd order tensor 
using the unfold function. 

In this learning material, as described in Chapter 1, 

students’ understanding is improved by using CG animations 

for explaining the tensor operation which is difficult for the 

students to understand. For example, since it is difficult to 

understand the process of n-mode matrix unfolding, we 

created an animation as shown in Fig. 12 using Blender [15], 

which is 3DCG modeling software. The process of 2-mode 

matrix unfolding is shown in this figure. Furthermore, also in 

Exercises IV to VI below, process of tensor operations is 
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explained using CG animation. 
 

 
Fig. 11. Explanation of matrix unfolding calculation. 

 

 
Fig. 12. CG animation of 2-mode matrix unfolding process. 

 

Figs. 13 and 14 are parts of the exercise tasks in this 

material. Fig. 13 is a task that fills in elements and modes 

when matrix unfolding is applied to the presented 3rd order 

tensor. Here, the modified MacMahon’s cube in Fig. 3 is used 

as the material of the tensor. In this task, a Word file for 

answering is attached with this thread, and students can 

download the file, put the answer, and submit it. Fig. 14 

shows a task of implementing n-mode matrix unfolding from 

the definition without using the unfold function. As for 

exercises, there are a basic task and an applied task. Figs. 13 

and 14 correspond to the basic one and the applied one, 

respectively. For the applied tasks, hints are provided below 

the question text as shown in Fig. 14. 
 

 
Fig. 13. Basic task of Exercise III. 

 

 
Fig. 14. Applied task of Exercise III. 

 

Next, the results of this exercise are described. For the task 

in Fig. 13, all the students could correctly answer the 

elements and modes without reference to the answer example. 

In addition, four students implemented the task in Fig. 14 

without viewing the answer example, however one student 

did the task with doing it. Furthermore, Fig. 15 shows the 

results of the comprehension questionnaire in this exercise. 

In this questionnaire, 80% of students answered that their 

understanding of each question was 4 or higher. From the 

above exercise results on matrix unfolding, it is considered 

that students had a good understanding of the definition and 

algorithm and the implementation using the unfold function. 
 

 
Fig. 15. Questionnaire results in Exercise III. 

 

4) R programming Exercise IV 

After learning the unfolding, students learn about folding 

operation. Firstly, they perform a basic task of folding 

matrices into tensors using the fold function, and then submit 

the result. It is confirmed from the submitted files that all of 

them could implement the task. Next, they work on a task 

folding a matrix of an unfolded MacMahon’s cube into a 3rd 

order tensor. In this task, everyone could correctly answer 

how the elements of the matrix were arranged on the tensor 

by folding without viewing the example solution. 

Furthermore, we gave them an applied task of 

implementation based on the definition without using the fold 

function. As a result, three students could implement it 

without viewing the answer example, and the remaining two 

could do it with reference to the example. 

The results of comprehension questionnaire of this 

exercise are shown in Fig. 16. For each question, more than 

80% of students answered that their understanding level was 

4 or higher. Therefore, from the above results, it is considered 

that they well understood about the folding algorithm and its 

implementation. 
 

 
Fig. 16. Questionnaire results in Exercise IV. 

 

5) R programming Exercise V 

This exercise is for learning about n-mode product. At a 

beginning of this exercise, the definition and the property of 

the n-mode product are explained. Fig. 17 is part of a video 

describing the definition of 1-mode product of a 3rd order 

tensor. 

However, it is considered difficult for first-time learners to 

calculate the n-mode product from the definition formula 

shown in Fig. 17. Therefore, as shown in Fig. 18, a method of 

calculating the n-mode product is described using Algorithm 
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1 in Chapter 2, which is considered easier for them to 

understand. 
 

 
Fig. 17. Explanation of the definition of 1-mode product. 

 

Fig. 19 shows a basic task of calculating the n-mode 

product of a 3rd order tensor and a matrix. As an example of 

the tensor, the MacMahon’s cube is used. Furthermore, Fig. 

20 shows an applied task of implementing the n-mode 

product from the definition without using ttm function. 

Next, results of this exercise are described below. 

Regarding the task in Fig. 19, there were three students who 

implemented it without referring to the answer example, 

however one of them was incorrect due to a minor mistake. 

Remaining two students did the task with reference to it. For 

the task in Fig. 20, two students could implement it without 

referring to the answer example, and three students did it by 

referring to it. From this, it is found that difficulty of this task 

tends to be relatively high. 
 

 
Fig. 18. Explanation of another calculation method of n-mode product. 

 

 
Fig. 19. Basic task of Exercise V. 

 

 
Fig. 20. Applied task of Exercise V. 

 

Fig. 21 shows some of results of the comprehension 

questionnaire in this exercise. In each questionnaire, it is 

found that more than 60% of students evaluate their 

understanding as 3 points or more. 

 

 
Fig. 21. Questionnaire results in Exercise V. 

 

From these things, it is considered that they generally 

understand the definition of the n-mode product, its 

algorithm, and the implementation using the function. 

1) R Programming Exercise VI 

In this thread, the exercise on HOSVD is conducted. This 

exercise first provides an overview and a definition of 

HOSVD. Fig. 22 shows a portion of the video explaining the 

definition. 

In this exercise, how to calculate with and without the 

hosvd function can be also learned. The method without it is 

based on the algorithm shown in Fig. 23 using the operations 

learned in the previous exercises III to V. 
 

 
Fig. 22. Explanation of HOSVD definition. 

 

 
Fig. 23. Explanation of HOSVD algorithm of a 3rd order tensor. 

 

 
Fig. 24. Basic task of Exercise VI. 

 

Fig. 24 is the basic task of calculating HOSVD, a 

reconstructed tensor, and residual norms of tensors using the 

hosvd and fnorm functions. In this task as well, the 

MacMahon’s cube is used. Moreover, the problem shown in 
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Fig. 25 is the applied task of calculating HOSVD without 

using the function. This is implemented with reference to the 

algorithm described in Fig. 23. 
 

 
Fig. 25. Applied task of Exercise VI. 

 

Next, status of implementation of this exercise is described. 

For the problem in Fig. 24, one student implemented it with 

reference to the answer example, however the other students 

could implement it without reference to it. 

As for the problem in Fig. 25, two students could complete 

it without referring to the answer example, however 

remaining students performed it with reference to it. 

Therefore, it was found that the difficulty level of this 

problem was relatively high. 

Fig. 26 shows results of the comprehension questionnaire 

of Exercise VI. In each questionnaire, 60% of students rated 

their comprehension as 3 or higher. 

From the above situation and results, it is considered that 

the outline of HOSVD and the implementation using the 

function are generally understood. 
 

 
Fig. 26. Questionnaire results in Exercise VI. 

 

C. Summary of Exercise Implementation Status 

In this section, a summary of implementation status of 

each exercise is described. As shown in Fig. 27, 14 problems 

from Ex.1-1 to Ex.6-3 are given in this learning material. 

These results are summarized on a three-point scale based on 

A to C described in Fig. 27. 
 

 
Fig. 27. Results of exercise status. 

From the results, as for the basic problems, most of the 

students are rated A. Therefore, it can be found that they can 

solve them well. On the other hand, regarding advanced 

problems, many students are evaluated as B especially for 

Ex.5-3 and Ex.6-3. Thus, these are considered difficult for 

students because these are implemented based on the 

definitions and algorithm of n-mode product and HOSVD. 

 

IV. CONCLUSIONS 

This paper described the online learning materials 

developed for students to understand the theory and 

programming of HOSVD, which is one of the tensor 

decompositions. These learning materials are organized on 

Microsoft Teams, and students can proceed with learning and 

programming exercises on demand while watching videos. 

We used the 3D puzzle and MacMahon’s cube for the 

exercises and expressed them in tensors so that the students 

could study with interest. Furthermore, in order to have a 

detailed understanding of the data processing process, we 

also created and used CG animations for explanation using 

Blender. 

The following is a list of what we founded from the results 

of having our undergraduate students try these materials. 

(1) Looking at the results of the exercises, about 60-100% of 

the students were able to perform the basic tasks of each 

exercise without referring to the answer examples. These 

tasks use the functions provided in the rTensor package, 

and it can be said that most students have mastered the 

use of those functions. 

(2) On the other hand, about 40 to 80% of the students were 

able to perform the applied tasks without viewing the 

answer examples. These tasks are more difficult than the 

basic ones because they must be implemented without 

using packaged functions. Therefore, they should be 

optionally performed by students who want to solve 

more advanced tasks. 

(3) It was found that it took about 3 to 6 hours from 

watching the explanation video to performing the 

exercises and finally answering the questionnaire. 

(4) There were some students who practiced using R Studio 

Cloud [16], which is a cloud environment. From this, it 

was found that using a browser allows students to 

practice independently of the specifications of the 

machine. 

(5) Several students commented that the explanation by CG 

animation was easy to understand. From this, it is 

considered that the animation created by Blender is 

useful for understanding the contents. 

Based on these findings, we plan to continue improving 

the learning materials. In particular, we will immediately 

address the following points. 

 Encourage many students to use this material and learn 

tensor decomposition. 

 Motivate students to learn tensor decomposition by 

adding an explanation of the necessity and significance 

of it to our learning materials. 

 Expand this learning materials so that programming 

exercises using application software libraries such as 

TensorFlow [17] can be performed. 
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Tensor decomposition is an important topic in fields such 

as big data processing and machine learning, and we think 

that it should be taught to undergraduate level students 

studying computer and data science. As mentioned in this 

paper, it is at a level that can be fully understood by 

undergraduate students. Therefore, we would like to improve 

our learning materials so that it can be widely used for that 

purpose. 
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