

A Proposal of Hint Function for Java Programming Learning

Assistant System

Yanhui Jing, Nobuo Funabiki*, Soe Thandar Aung, Xiqin Lu, Htoo Htoo Sandi Kyaw, and Kiyoshi Ueda

Abstract—Nowadays, Java is one of the world’s most used

object-oriented programming languages for its dependability

and portability. To assist the self-studies of novice students, we

have developed the Java programming learning assistance

system (JPLAS). JPLAS offers several types of exercise

problems for different difficulties, including the

grammar-concept understanding problem (GUP), the mistake

correction problem (MCP), the element fill-in-blank problem

(EFP), and the phrase fill-in-blank problem (PFP), where a

question asks to answer the corresponding keyword or phrase in

the given source code. Unfortunately, some students cannot solve

them well as the difficulty level is ascending. In this paper, to

help such students, we propose a hint function that will show the

first or more characters of each correct answer word in the

answer interface on a web browser for JPLAS, when requested.

The use of this function by a student can be traced by a teacher

to analyze the performance and problem difficulty. For

evaluations, we generated three instances for GUP, MCP, EFP,

and PFP respectively, and assigned them to junior students

taking the Java programming course in Okayama University,

Japan. Their answer results found that the proposal is effective

in helping students solve exercise problems in JPLAS, but the

thinking time needs to be adjusted for PFP.

Index Terms—C programming, CPLAS, mistake correction

problem, automatic generation, answer interface

I. INTRODUCTION

For decades, Java has been widely used in industries as the

dependable and portable object-oriented programming

language. Java has also been implemented in mission-critical

systems for major organizations as well as in small-sized

embedded systems. Thus, there has been a high demand

among IT firms on educations of Java programming designers.

Actually, a great number of universities and professional

schools have offered Java programming courses.

To enhance Java programming educations, we have developed a

web-based Java programming learning assistant system (JPLAS)

[1, 2], JPLAS provides a variety of exercise problems that

may be used to gradually progress the learning stages and

cover self-studies of Java programming at various levels by

novice students. In any instance of these problems, an answer

from a student is automatically marked in the system.

Therefore, a student can continue solving the given problems

Manuscript received March 27, 2023; revised April 15, 2023; accepted

May 8, 2023.

Yanhui Jing, Nobuo Funabiki*, Soe Thandar Aung, Xiqin Lu are with the

Department of Information and Communication Systems, Okayama

University, Okayama, Japan. E-mail: pf709l29@s.okayama-u.ac.jp

Htoo Htoo Sandi Kyaw is with Division of Advanced Information

Technology and Computer Science, Tokyo University of Agriculture and

Technology, Tokyo, Japan. E-mail: htoohtoosk@go.tuat.ac.jp (H.H.S.)

Kiyoshi Ueda is with the Department of of Computer Science Nihon

University, Koriyama, Japan. E-mail: ueda.kiyoshi@nihon-u.ac.jp (K.U.)

*Correspondence: funabiki@okayama-u.ac.jp (N.F.)

until all the answers become correct.

Actually, JPLAS offers the grammar-concept

understanding problem (GUP) [3], the mistake correction

problem (MCP) [4], the value trace problem (VTP) [5], the

element fill-in blank problem (EFP) [6], the code completion

problem (CCP) [7], the phrase fill-in-blank problem (PFP) [8],

and the code writing problem (CWP) [9]. In any instance of

these problems, the correctness of an answer from a student is

automatically checked in JPLAS. For GUP, MCP, VTP, EFP,

and CCP, it is checked through string matching with the

correct one stored in the system. For CWP, it is verified

through unit testing by running the test code on JUnit. Among

these problems, this paper is targeting GUP, MCP, EFP, and

PFP in JPLAS, since a new instance can be generated

automatically by running our implemented instance generator,

once the proper source code is selected.

The difficulty level will be increased as this order.

Therefore, we have found that more students cannot solve

PFP in previous implementations to them. To make them

continue solving the questions, some assistance functions will

be necessary when they meet difficulties.

In this paper, we propose and implement a hint function in

the answer interface on a web browser for the four problems

of GUP, MCP, EFP, and PFP in JPLAS. This function will

show the first character of the correct answer word for the

question where the answer of the student is not correct, when

he/she requests it by clicking the corresponding button.

Besides, it will show the correct answers to the questions in

the instance, if the student cannot reach them after a lot of

trials.

For PFP, our previous applications to students found that

the first character of the answer word is not a sufficient hint

for a student to reach the correct answer. A question in PFP

asks multiple words called the phrase at once for each

question. Therefore, we modify the hint function to make two

steps. In the first step, the first character of the correct answer

is shown. Besides, the other characters are also shown after

being replaced by * to hide them, so that a student can know

the number of characters in the answer. In the second step, * is

replaced by the corresponding character in the correct answer

randomly with 30%. Therefore, approximately, one-third of

the answer word can be noticed by the student.

To avoid a student relying on the hint function from the

beginning, the hint button can appear only after he/she clicks

the answer button five times and five minutes have passed

since the page is accessed.

To allow a teacher to know whether each student used the

hint function at each instance, its use will be recorded and be

written as the hint function flag in the answer text file that will

be submitted to a teacher for grading. By checking the flag,

the teacher can evaluate the performance of each student by

International Journal of Information and Education Technology, Vol. 13, No. 11, November 2023

1828doi: 10.18178/ijiet.2023.13.11.1995

 (Y.J.)

mailto:pf709l29@s.okayama-u.ac.jp
mailto:htoohtoosk@go.tuat.ac.jp
mailto:ueda.kiyoshi@nihon-u.ac.jp
mailto:funabiki@okayama-u.ac.jp

considering the use of the hint function. The teacher can also

estimate the difficulty level of each instance by counting the

number of students who used the hint function.

To implement the proposed hint function in the answer

interface, we extended the answer interface generator so that

the generated HTML/CSS/JavaScript files include the

necessary button, the output field, and the hint display

function. Besides, we extended the student answer analyzer,

which will make the summary of solving results from the

answer text files submitted by students, considering the use of

the hint function by the individual students.

For evaluations, we generated three instances for GUP,

MCP, EFP, and PFP individually, and assigned them to junior

students taking the Java programming course in Okayama

University, Japan. Their answer results found that the

proposal is effective in helping students solving exercise

problems in JPLAS, but the solving time needs to be adjusted

for PFP.

In addition, we present a hint function for code completion

problem (CCP) by extending the one for PFP. A question in

CCP asks to complete the given source code that has several

blank elements and incorrect ones. At the answer marking,

each whole statement is compared with the corresponding

correct one through string matching. The evaluation of the

hint function for CCP will be in future studies.

The rest of this paper is organized as follows: Section II

discusses related works in literature. Section III reviews our

preliminary works on PLAS. Section IV presents the hint

function for four problem types. Section V evaluates the hint

function. Section VI presents the hint function for CCP.

Finally, Section VII concludes this paper with future works.

II. RELATED WORKS IN LITERATURE

In this section, we discuss related works in literature on the

hint function in programming by novice students.

Yi et al. [10] implemented a new repair strategy in

automated program repair (APR), which is similar to the hint

generation policy used in the previous intelligent tutoring

system for programming (ITSP). This new policy allows

partial corrections that address a portion of failed tests.

However, novice students do not know how to effectively use

the generated repairs as hints.

Marwan et al. [11] suggested that a growing body of works

has explored how to automatically generate hints for novice

programmers. They explored the efficacy of next-step code

hints that have two complementary features: textual

explanations and self-explanation prompts. They discovered

that code hints with textual explanations dramatically

increased their immediate programming performances.

Price et al. [12] presented the QualityScore program as a

new method for automatically assessing and comparing the

quality of the next programming hints using expert ratings,

whereas few assessments directly evaluate or compare quality

of different hint generation methods. The QualityScore

program was used to compare the quality of the six

data-driven next hint generation algorithms. The results show

that although there are significant differences in quality

between the six algorithms, they are relatively consistent

across the different data sets and problems.

Rubinstein et al. [13] employed a machine learning

platform called Sense Education in the introduction CS

course. It delivers hints in real time while students work on

solutions, as well as detailed feedback on submissions. It also

gives a "bird's eye" picture of current capabilities and

misconceptions of the class, and is biased in problem-solving

approaches to train teachers how to use these technologies

successfully.

Serth et al. [14] discussed the findings from providing

contextual recommendations in a web-based development

environment used for practical programming activities. They

discovered that individuals requesting tips took substantially

longer time and used the platform's assistance features more

than the users in the control group. The findings can be used

to make more particular hints to beginners, and provide

additional and context-specific clues as part of the learning

materials.

Fein et al. [15] suggested that when learning programming,

to take the first step can be difficult. It is desirable for a

teacher to use a system that automatically generates prompts

to tell them what steps to take in the next programming task.

Catnip is the tool that generates next step prompts for Scratch

programming. Catnip uses extensive post-processing to

improve the generated prompts, and displays them directly

within the Scratch framework.

III. REVIEW OF PLAS

In this section, we review the answer platform, and the four

exercise problems of GUP, MCP, EFP, and PFP as our

preliminary works on JPLAS.

A. Overview of JPLAS Platform

The answer interface platform for JPLAS was newly

implemented using Node.js [16] as the web application server

the under the uniform design [2]. Node.js allows

implementations of the application programs for both the

server and client sides using JavaScript. Express.js [17] and

EJS [18] are adopted together. Besides, Docker [19] is used

for easy and correct distributions of the platform to students.

As programming languages for the implementation of the

MVC model-based web application system, Java is used for

the model (M) to run JUnit for testing the answer source

codes from students, EJS/CSS/JavaScript are for view (V),

and JavaScript is for controller (C), as illustrated in Fig. 1.

The file system is directly used for managing data, where no

database system is included.

Fig. 1. Answer interface platform implementation with MVC model.

International Journal of Information and Education Technology, Vol. 13, No. 11, November 2023

1829

B. Grammar-Concept Understanding Problem (GUP)

A question in a GUP instance requests to answer an

important word and a common library class/function in the

programming language as the first-step study of basic

grammar concepts. Fig. 2 illustrates the answer interface for

an example GUP instance. The source code checks if the

given year is a leap year or not by using a if else statement. A

student is requested to answer the element in the source code

whose definition is described in the question.

Fig. 2. Answer interface for GUP.

C. Mistake Correction Problem (MCP)

A question in a MCP instance requests to answer each

mistaken element and its correction in the given corrupt

source code for code debugging study. Fig. 3 shows the

answer interface for an example MCP instance. The source

code in the left column has four mistakes: byte at line 3

should be int, / at line 5 be %, == at line 9 be !=, and retrun

at line 10 should be return. In the right column, the

corresponding line number is shown with each pair of input

forms to answer the mistaken element and the correct element

respectively.

D. Element Fill-in Blank Problem (EFP)

A question in a EFP instance requests to fill in the blank

elements in the following source code with their originals by

understanding the syntax and semantics. Fig. 4 shows the

answer interface for an example EFP instance. In this source

code, the while loop is iterated until the test expression

num != 0 is evaluated to be false. Following the initial

iteration, the value of num will be 345 after being divided by

10. The count is then increased by 1. After the second

iteration, the value of num will be 34 and the count is

incremented to 2. After the third iteration, the value of num

will be 3 and the count is incremented to 3. After the fourth

iteration, the value of num will be 0 and the count is

incremented to 4. The loop ends here because the test

expression is determined to be false. A student is requested to

fill in each blank by carefully reading the source code.

Fig. 3. Answer interface for MCP.

Fig. 4. Answer interface for EFP.

E. Phrase Fill-in-Blank Problem (PFP)

A question in a PFP instance requests to answer the

corresponding phrases in the vacant part of the source code to

make it complete. Fig. 5 illustrates the answer interface for an

example PFP instance. The source code in the left column

checks if a given string or number is palindrome or not. A

string is considered to be a palindrome if both are the same

when it is read from left to right or read from right to left. The

source code first reverses the string or number. Then, it

compares the reversed ones with the original value. The string

Radar is stored in str at last. A student is requested to fill in

each blank by carefully reading the source code and the

statements in the right column.

International Journal of Information and Education Technology, Vol. 13, No. 11, November 2023

1830

Fig. 5. Answer interface for PFP.

F. Instance Generation and Solution Steps

A new instance is generated and is solved through the

following steps:

1) Collect the proper source codes of Java programming

from textbooks.

2) Read a Java programming source code file.

3) Run the generation algorithm to generate the input text

file.

4) Run the answer interface generator with the text file to

make the HTML/CSS/JavaScript files for the new

instance.

5) Upload the generated files to the web server and inform

the URL to the students.

6) A student answers to the given instances using a web

browser, where the automatic answer marking function

will check the correctness of the answers at the browser.

7) The student downloads the answer text files at the browser

and submits them to the teacher.

8) The teacher runs the student answer analyzer with the

answer text files and obtains the solving results of the

students for each instance.

Fig. 6 displays an example of solving results that is

obtained by running the student answer analyzer.

Fig. 6. Solving result for each instance.

IV. HINT FUNCTION FOR FOUR PROBLEMS TYPES

In this section, we present the hint function for GUP, MCP,

EFP and PFP of JPLAS.

A. Basic Concept

In the hint function in this paper, any hint must be generated

automatically from the input text file using the corresponding

generator. The manual generation of hints will increase the

load of a teacher. Since the file contains the correct answer for

each question, the hint function will show a part of the

characters of the answer as a hint.

Then, only the first character is displayed as the hint for

GUP, MCP, and EFP, because they are relatively easy. On the

other hand, one or more characters with the number of

characters will be displayed for PFP, because PFP is much

harder than the others. It has been found that the first character

is not sufficient as the hint to solve PFP instances. Besides, to

prevent a student from using the hint function facilely, it can

be used only after the student clicks the answer button five

times and keeps answering it for five minutes as the thinking

time.

B. Hint Function for GUP, MCP, EFP

The hint function for GUP, MCP, and EFP will display the

first character of the correct answer word for each question

where the answer of the student is not correct, when he/she

requests it by clicking the corresponding button. Besides, it

will show the correct answers to the questions in the instance,

if the student cannot reach them after a lot of trials and gives

up solving it. Fig. 7 displays the hint for one MCP instance.

Fig. 7. Hint for MCP.

C. Hint Function for PFP

The hint function for PFP has two steps. Fig. 8 shows the

first step and second step hint for the PFP instance in Fig. 5,

respectively. The first step will display the first character of

the correct answer and the other characters after replaced by *

to hide them, so that a student can know the number of

characters in the answer. The second step will replace * by the

corresponding character in the correct answer randomly with

30% and display them. Approximately, one-third of the

answer can be noticed by the student.

International Journal of Information and Education Technology, Vol. 13, No. 11, November 2023

1831

Fig. 8. First and second step hint for PFP.

V. EVALUATION

In this section, we evaluate the proposed hint function in

JPLAS through applications to 38 junior students taking Java

programming course in Okayama University. In this

application, we selected sample source codes from the course

textbook and generated three instances for each of GUP, MCP,

EFP, and PFP, and asked the students to solve each problem

type within 20min at each of the four classes as quizzes. Any

student could use the hint function if necessary.

A. Results of Individual Problem Types

First, we discuss the solution performances of the students

for individual problem types. Table I shows the number of

students who submitted answer text files, who used the hint

function, and the average correct answer rate among all the

students and instances. The average rate for the students who

did not use or used the hint function are also shown there

inside the brackets. It is noted that only one student among 38

did use the hint function for GUP.

This table shows that the hint function gives the higher

correct rate except for MCP. It also shows that as the

difficulty level increases, more students used the hint function

and the correct rate decreased. Particularly, a big gap can be

observed between EFP and PFP. One reason may come from

the short time of solving PFP instances. Besides, it may be

necessary to improve the hint function for PFP, and to provide

another exercise problem type that can reduce this gap. They

will be in future works.

TABLE I: APPLICATION RESULT SUMMARY

problem

type

number of

students

number of students
using hint

ave. correct rate (%)

(no hint, hint)

GUP 38 1 91.78 (91.55, 100.00)

MCP 37 8 96.68 (97.18, 94.89)

EFP 34 9 89.82 (89.13, 91.74)

PFP 35 15 39.83 (38.23, 41.96)

B. Results of Individual Students

Next, we discuss the solution results of individual students.

Fig. 9 shows the average correct answer rate (%) and the

number of button clicking for the hint function for GUP, MCP,

EFP, and PFP by each student. A total of 33 used the hint

function. Here, we note that this number of button clicking is

increased by one for each type when the students clicked it,

and is increased by two if he/she clicked it at the both steps for

PFP.

Fig. 9. Solution results of individual students.

In GUP, MCP and EFP, most of the students achieved over

the 90% rate. On the other hand, in PFP, more than half of

them could not reach 50%. It can be considered that many

students cannot complete solving the PFP instances within

this limited time, and may be insufficient in programming

knowledge and skills.

C. Results of Students Using Hint Function

Finally, we discuss the solution results of the students who

used the hint function. Fig. 10 shows the number of students

who used the hint function by the range of the correct answer

rate. It indicates that some students reached 100% by using

the hint function, but more students resulted in poor results

regardless of the hint function. This result may come from the

short time of solving the problems as quizzes. In the hint

function, a student can use it only after five minutes have

passed as the thinking time since he/she accesses it. Thus, the

quiz time 20min was too short for them to freely use the

function and solve the questions by referring to the given hints.

We have to remedy this undesirable situation by adjusting the

thinking time from the next application.

International Journal of Information and Education Technology, Vol. 13, No. 11, November 2023

1832

Fig. 10. The number of students by using hints and their correct answer rate.

VI. HINT FUNCTION FOR CODE COMPLETION PROBLEM

In this section, we present a hint function for code
completion problem (CCP) by extending the one for PFP.

CCP is another type of exercise problems where the

correctness of an answer is checked through string matching.

Our homework assignments of six types of exercise problems

in the Java programming course found that the solution result

for CCP is the lowest [20]. Therefore, the hint function is

important for CCP.

A. Code Completion Problem (CCP)

A question in a CCP instance requests to correct and

complete each statement in the given source code that has

several blank elements and incorrect ones. Fig. 11 illustrates

the answer interface for an example CCP instance. The source

code prompts a student to enter three numbers, reads them

from the console using a BufferedReader object, converts

them from strings to integers, calculates their sum, and prints

the result to the console.

Fig. 11. Answer interface for CCP.

B. Homework Solution Results

In this Java programming course, we generated a total of

109 instances for GUP, MCP, VTP, EFP, CCP, and PFP, and

assigned them to the students as homework. Thus, no time

limitation was imposed. Table II shows the number of

students who submitted answer files, the average correct

answer rate, and the average number of answer submission

times for each instance by the students for each problem type.

This table indicates that CCP has the lowest correct rate and

the second highest number of submissions among the six

types of problems, and is most difficult for them. Thus, the

hint function will be very important for CCP.

TABLE II: APPLICATION RESULT SUMMARY

problem
type

number of
instances

number of
submitted
students

average
correct
rate (%)

average
number of

submissions
GUP 28 46 99.83 3.47

VTP 15 45 99.70 2.25

MCP 12 46 97.93 3.01

EFP 26 45 99.76 2.93

CCP 13 45 90.46 6.32

PFP 15 45 94.61 6.55

total 109 average 97.04 4.09

C. Hint Function for CCP

The hint function for CCP consists of two steps like PFP.

Fig. 12 shows the first step hint and the second step hint for

the CCP instance in Fig. 11, respectively. The first step will

display the first character of the correct answer for each

blanked or incorrect element in the given source code, when

he/she clicks the corresponding button to request it. The

second step will display the whole statement except the

blanked or incorrect element where only the first character is

correctly shown, and the remaining characters are replaced by

*. Then, a student can determine the position of the blanked or

incorrect element in the statement as well as the number of

characters.

Fig. 12. First and second step hint for CCP.

VII. CONCLUSION

This paper proposed the hint function for the

grammar-concept understanding problem (GUP), the

mistake correction problem (MCP), the element fill-in-blank

problem (EFP), and the phrase fill-in-blank problem (PFP)

in Java programming learning assistance system (JPLAS). It

will display the first or more characters of each correct answer

word in the JPLAS answer interface. Besides, the use of this

function by a student can be traced by a teacher to analyze the

International Journal of Information and Education Technology, Vol. 13, No. 11, November 2023

1833

performance and problem difficulty. For evaluations, three

instances were generated for each of GUP, MCP, EFP, and

PFP, and were assigned to junior students taking the Java

programming course in Okayama University, Japan. Their

answer results confirmed the effectiveness in helping students

solve exercise problems in JPLAS, but the thinking time

needs to be adjusted for PFP. In future works, we will

evaluate the hint function for CCP, provide diverse hint

functions depending on students’ levels, generate new

instances on hard topics for students, and assign them in Java

programming courses.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

Y. Jing conducted the research and wrote the paper. N.

Funabiki and K. Ueda reviewed and finalized the paper. S. T.

Aung, X. Lu, and H. H. S. Kyaw collected and analyzed the

data. All the authors had approved the final version.

ACKNOWLEDGMENT

We would like to thank the students taking Java

programming course in Okayama University to answer the

quizzes instances and give us valuable comments. They are

inevitable to complete this paper.

REFERENCES

[1] N. Ishihara, N. Funabiki, M. Kuribayashi, and W. C. Kao, “A software

architecture for Java programming learning assistant system,” Int. J.

Comput. Soft. Eng., vol. 2, no. 1, 2017.

[2] S. T. Aung, N. Funabiki, L. H. Aung, H. Htet, H. H. S. Kyaw, and S.

Sugawara, “An implementation of Java programming learning

assistant system platform using Node.js,” in Proc. ICIET, pp. 47–52,

Apr. 2022.

[3] S. T. Aung, N. Funabiki, Y. W. Syaifudin, H. H. S. Kyaw, S. L. Aung, N.

K. Dim, and W.-C. Kao, “A proposal of grammar-concept

understanding problem in Java programming learning assistant

system,” J. Adv. Inform. Tech., vol. 12, no. 4, pp. 342–350, Nov. 2021.

[4] Y. Jing, N. Funabiki, S. T. Aung, X. Lu, A. A. Puspitasari, H. H. S.

Kyaw, and W.-C. Kao, “A proposal of mistake correction problem for

debugging study in C programming learning assistant system,“ Int. J.

Inf. Educ. Technol., vol. 12, no. 11, pp. 1158–1163, 2022.

[5] K. K. Zaw, N. Funabiki, and W.-C. Kao, “A proposal of value trace

problem for algorithm code reading in Java programming learning

assistant system,” Inf. Eng. Express, vol. 1, no. 3, pp. 9–18, Sep. 2015.

[6] N. Funabiki, Tana, K. K. Zaw, N. Ishihara, and W.-C. Kao, “A

graph-based blank element selection algorithm for fill-in-blank

problems in Java programming learning assistant system,” IAENG Int.

J. Comput. Sci., vol. 44, no. 2, pp. 247–260, May 2017.

[7] H. H. S. Kyaw, S. S. Wint, N. Funabiki, and W.-C. Kao, “A code

completion problem in Java programming learning assistant system,”

IAENG Int. J. Comput. Sci., vol. 47, no. 3, pp. 350–359, Aug. 2020.

[8] X. Lu, S. Chen, N. Funabiki, M. Kuribayashi, and K. Ueda, ”A

proposal of phrase fill-in-blank problem for learning recursive function

in C programming,” in Proc. LifeTech, pp. 127–128, Mar. 2022.

[9] N. Funabiki, Y. Matsushima, T. Nakanishi, and N. Amano, “A Java

programming learning assistant system using test-driven development

method,” IAENG Int. J. Comput. Sci., vol. 40, no.1, pp. 38–46, Feb.

2013.

[10] J. Yi, U. Z. Ahmed, A. Karkare, S. H. Tan, and A. Roychoudhury, “A

feasibility study of using automated program repair for introductory

programming assignments,” in Proc. J. FDN. Soft. Eng, pp. 740–751,

Aug. 2017.

[11] S. Marwan, J. Jay Williams, and T. Price, “An evaluation of the impact

of automated programming hints on performance and learning,” in

Proc. ACM. Int. Conf. Educ. Ree., pp. 61–70, Jul. 2019.

[12] T. W. Price, Y. Dong, R. Zhi, B. Paaßen, N. Lytle, V. Catete ,́ and T.

Barnes, “A comparison of the quality of data-driven programming hint

generation algorithms,” Int. J. AI. Educ., vol. 29, pp. 368–395, 2019.

[13] A. Rubinstein, N. Parzanchevski, and Y. Tamarov, “In-depth feedback

on programming assignments using pattern recognition and real-time

hints,” in Proc. ACM. Conf. Inno. Technol. Comput. Sci. Educ., pp.

243–244, Jul. 2019.

[14] S. Serth, R. Teusner, and C. Meinel, “Impact of contextual tips for

auto-gradable programming exercises in MOOCs,” in Proc. Conf.

Learn. @Scale, pp. 307–310, Jun. 2021.

[15] B. Fein, F. Obermu l̈ler, and G. Fraser, “CATNIP: an automated hint

generation tool for Scratch,” in Proc. Conf. Innov. Technol. Comput.

Sci. Edu., vol. 1, pp. 124–130, Jul. 2022.

[16] Node.js. [Online]. Available: https://nodejs.org/en

[17] Express.js. [Online]. Available: https://expressjs.com/

[18] EJS - Embedded JavaScript templates. [Online]. Available:

https://ejs.co/

[19] Docker. [Online]. Available: https://www.docker.com/

[20] X. Lu, N. Funabiki, S. T. Aung, Y. Jing, and S. Yamaguchi, ”An

implementation of Java programming learning assistant system in

university course,” in Proc. ICIET, March 2023.

Copyright © 2023 by the authors. This is an open access article distributed

under the Creative Commons Attribution License which permits unrestricted

use, distribution, and reproduction in any medium, provided the original

work is properly cited (CC BY 4.0).

International Journal of Information and Education Technology, Vol. 13, No. 11, November 2023

1834

https://creativecommons.org/licenses/by/4.0/

