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Abstract—Collaborative and competitive learning is essential 
in educational development, enhancing students’ social and 
emotional competencies critical for academic and personal 
success. This study explores the integration of the Gale-Shapley 
algorithm, initially designed for the stable marriage problem, to 
optimize student pairings in collaborative and competitive 
learning environments. The objective is to maximize the 
effectiveness of Social and Emotional Learning (SEL) 
interventions by fostering productive social interactions and 
essential skill development. We propose a modified version of 
the Gale-Shapley algorithm to handle a single list of students, 
utilizing compatibility scores based on inverse Euclidean 
distance, Jaccard similarity, and cosine similarity. Our 
methodology includes generating synthetic datasets to simulate 
various educational contexts and evaluate the algorithm’s 
performance. Results demonstrate the algorithm’s efficiency in 
forming stable and effective pairs, significantly enhancing the 
learning experience. This innovative approach aligns with SEL 
guidelines and contemporary educational requirements, 
offering a robust, personalized, and dynamic learning 
framework. Future research should focus on empirical 
validations in diverse educational settings to confirm the 
algorithm’s effectiveness and scalability. 

Keywords—collaborative learning, competitive learning, 
Gale-Shapley algorithm, social and emotional learning, student 
pairing, educational optimization 

I. INTRODUCTION

Collaborative and competitive learning is pivotal in 
modern education, fostering social and emotional 
competencies critical to academic achievement and personal 
growth. Social and Emotional Learning (SEL) interventions 
in schools have been extensively studied, with evidence 
supporting their positive impact on students’ overall 
development, including academic performance, emotional 
regulation, and interpersonal skills [1, 2]. These interventions 
enhance students’ resilience, empathy, and conflict-
resolution abilities, essential for long-term success [3, 4]. 
Incorporating collaborative and adaptive learning methods 
has increased student engagement by creating dynamic, 
interactive environments that cater to individual needs [5]. 
Collaborative learning improves academic outcomes and 
fosters critical thinking, effective communication, and 
teamwork skills [6]. On the other hand, competitive learning 
scenarios boost student motivation and engagement, often 
driving higher levels of performance and personal 
achievement [7]. Both approaches offer distinct benefits, such 
as improved social skills and increased individual motivation 
[8]. Moreover, integrating technology in adaptive learning 

environments further enhances educational experiences by 
offering personalized, interactive opportunities that deepen 
learning [5]. The growing body of research also underscores 
the broader benefits of SEL programs, which include 
reductions in behavioral issues and improvements in students’ 
mental health. These findings are corroborated by 
longitudinal studies indicating that SEL interventions lead to 
higher academic success and better socio-emotional 
adaptation in later life [3, 4]. Such outcomes emphasize the 
need for educational systems to prioritize interpersonal skill 
development alongside traditional academic instruction, 
focusing on preparing students for the complexities of the 
21st-century workforce [1, 6].  

As we navigate this evolving educational landscape, 
integrating collaborative and competitive learning within 
curricula emerges as a strategy to equip students with 
essential skills such as teamwork, leadership, and adaptability 
[9]. Through group projects and peer assessments, students 
develop a sense of responsibility. They are better prepared to 
work in diverse, interdisciplinary teams—skills highly valued 
in fast-changing sectors like technology [10]. Central to these 
activities is forming student pairs or groups, a process that 
can significantly influence learning outcomes. One 
established method for pair formation is the Gale-Shapley 
algorithm, initially designed to solve the Stable Marriage 
Problem (SMP) [11]. This algorithm has been successfully 
adapted for various applications, ranging from kidney 
exchange programs [12] to e-commerce systems [13] and 
school choice mechanisms [14], as well as allocating students 
to industry placements [15]. However, when applied to 
educational contexts, particularly in SEL, the Gale-Shapley 
algorithm presents certain limitations. For example, it 
assumes equal group sizes and fixed preferences—
assumptions that may not hold in dynamic classroom 
environments [16, 17]. Given these challenges, this paper 
proposes modifying the Gale-Shapley algorithm, explicitly 
tailored for optimizing student pairings in collaborative and 
competitive learning activities. Our goal is to enhance the 
effectiveness of SEL interventions by promoting meaningful 
social interactions and fostering the development of vital 
interpersonal skills. This modification draws upon recent 
studies that emphasize the need for flexible, context-sensitive 
approaches to student grouping [16, 17]. The remainder of 
this paper is structured as follows: Section II outlines the 
theoretical foundation for our proposed modification of the 
Gale-Shapley algorithm. Section III presents the 
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methodology. Section IV analyzes the algorithm’s 
effectiveness and discusses this approach’s practical 
implications. Section V conclusions and suggests future 
research directions. 

II. LITERATURE REVIEW 

Integrating collaborative and competitive learning has 
been crucial in advancing educational practices, with a 
notable impact on student’s social and emotional 
competencies. These competencies are of paramount 
importance for students’ academic and personal success. 
Studies have indicated that SEL interventions within school 
settings yield favorable outcomes in students’ comprehensive 
development, thereby establishing the potential of 
collaborative and adaptive methodologies as a promising 
approach in primary education. SEL is a crucial aspect of 
contemporary education, emphasizing the development of 
self-awareness, self-management, social awareness, 
relationship skills, and responsible decision-making [3]. SEL 
programs can significantly enhance students’ social 
behaviors, reduce emotional stress, and improve academic 
performance [2]. Educators can facilitate holistic student 
development by integrating SEL into collaborative and 
competitive learning environments. 

Collaborative learning involves students working together 
to achieve shared academic goals, promoting 
interdependence and mutual support [18, 19]. This approach 
encourages the development of critical thinking and 
communication skills and increases student engagement and 
achievement [19]. In contrast, competitive learning uses 
rivalry to motivate students to excel individually, promoting 
a drive for personal fulfillment and resilience [18]. Both 
methodologies have distinct advantages, and their combined 
application can cater to different preferences and learning 
objectives [18–20]. 

The Gale-Shapley algorithm, developed by David Gale and 
Lloyd Shapley in 1962, addresses the stable marriage 
problem, which seeks to identify a stable pairing between two 
sets of elements of equal size, given an order of preference 
for each component [11]. Consider a pairing stable if no two 
elements prefer each other over their current partners. 
Researchers have successfully adapted the Gale-Shapley 
algorithm for several real-world applications, including 
university admissions [21], medical resident placements [22], 
and kidney exchange programs [12]. Furthermore, the work 
by Fenoaltea et al. [23] provides an interdisciplinary review 
of the stable marriage problem, emphasizing its applications 
in various scientific fields, including statistical physics, 
economics, and game theory. The authors employ tools from 
statistical mechanics to investigate both the search for stable 
solutions that guarantee the system’s stability and the search 
for global optimal solutions that maximize the total happiness 
of the agents involved. Also, this review serves to reinforce 
the importance of SMP in the modeling of two-sided markets 
and its relevance to the understanding of complex systems.  

In the educational domain, algorithmic pairing has 
demonstrated significant benefits. For example, Girard et al. 
[16] developed a collaborative e-learning platform for 
privacy education that leverages a personalized stable pairing 
algorithm. This system enhances interaction by pairing 
students based on academic and behavioral profiles, fostering 

a more efficient and satisfying learning environment. 
Similarly, Yusri, Abusitta, and Aïmeur [17] introduced the 
"Teens-Online" platform, which employs game theory and 
stable pairing algorithms to create a collaborative privacy 
education space for teenagers. Considering academic and 
behavioral factors, these platforms ensure optimal student 
pairings, leading to improved educational outcomes and 
enhanced social skills development. 

Traditional implementations of the Gale-Shapley 
algorithm require two distinct lists of participants, which can 
introduce challenges in classroom pairing, where all 
individuals belong to the same group [21, 22]. Roth [22] 
highlighted the limitations of this approach, particularly in 
cases where preferences are poorly defined, leading to 
imbalances and suboptimal pairings. 

A. Proposed Modifications to the Gale-Shapley Algorithm 

This study modifies the Gale-Shapley algorithm that 
adapts it for a single list of participants, a more realistic 
reflection of classroom dynamics where students are all part 
of the same cohort. The proposed single-list approach 
eliminates the need to divide individuals into two distinct sets, 
simplifying the pairing process and addressing the 
imbalances in traditional methods. 

This one-list framework forms pairs based on objective 
compatibility metrics, such as the Jaccard coefficient, inverse 
Euclidean distance, and Cosine similarity. These metrics 
replace subjective preference rankings, providing a more 
precise compatibility assessment. The result is a more stable 
and efficient pairing process that promotes effective 
interaction and enhances educational outcomes. 

B. Comparison with Existing Methods 

While studies like those by Yusri et al. [16] and Girard et 
al. [17] utilize pairing algorithms grounded in game theory to 
facilitate stable matches, they rely on two preference lists. 
The approach leveraging a single-list model and objective 
compatibility metrics proposed in this study offers a more 
practical solution for classroom environments where 
separating students into two sets may not reflect the actual 
educational setting. 

K-Means clustering is computationally efficient and well-
suited for large datasets, making it a popular choice in data-
driven educational contexts. However, it groups students 
based on immediate similarities without considering long-
term pairing compatibility. As a result, while it can quickly 
categorize students, it often leads to unstable group 
formations over time, which may disrupt the learning process 
[24, 25]. Studies have shown that K-Means lacks the 
mechanisms needed to maintain the long-term stability of 
groupings, as it only optimizes for short-term academic or 
behavioral similarities [25, 26]. 

Thus, while K-Means is fast and efficient, it is less 
effective in educational scenarios that require lasting 
engagement. Gale-Shapley’s strength lies in its ability to 
guarantee stability, although it may require more processing 
time, particularly with larger groups of students. In contrast, 
while effective at grouping based on similarity, clustering 
techniques cannot ensure the long-term stability of pairs, a 
critical factor in sustaining engagement in educational 
environments. 

The proposed modification to the Gale-Shapley 
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algorithm—incorporating a single list and objective 
compatibility metrics—offers a robust, efficient, and scalable 
solution for educational pairing. The modified algorithm 
ensures stable, compatible pairings that enhance academic 
and social outcomes by eliminating the need for two distinct 
lists and integrating metrics such as Jaccard, Cosine, and 
inverse Euclidean distance. This approach aligns more 
closely with the natural dynamics of a classroom, offering a 
practical solution for modern educational environments that 
balances computational efficiency with the need for stable, 
meaningful student interactions. 

III. METHODOLOGY 

The proposed pairing model adapts the Gale-Shapley 
algorithm to operate with a single list of individuals, which is 
particularly suitable for educational environments with only 
one list of students. This adaptation responds to the need to 
develop pairing systems that reflect the specific complexities 
and dynamics of the academic context. The main innovation 
lies in modifying the algorithm to deal efficiently with a 
single list of individuals, finding the pairing based on 
calculating the compatibility scores between the participants. 

The first stage of implementing this system involves 
calculating compatibility scores. The system determines 
preferences using these scores, making it suitable for pairing 
in educational environments with only one list of students. 
Compatibility scores are calculated based on inverse 
Euclidean distance, Jaccard similarity, and cosine similarity. 

Inverse Euclidean Distance: Measures the inverse 
distance between two points in multidimensional space, 
identifying the proximity between students’ preferences. 

Jaccard Similarity: Compares the similarity and diversity 
of sample sets, defined as the intersection size divided by the 
size of the union of the sets. 

Cosine Similarity: Measures the cosine of the angle 
between two vectors, used to calculate similarity regardless 
of vector magnitude. 

These metrics provide different perspectives on similarity 
or compatibility and are fundamental for calculating 
compatibility scores in pairing systems, such as the one 
proposed for educational games. 

A. Modification of the Gale-Shapley algorithm 

With the compatibility scores calculated, the next step is to 
run a modified pairing algorithm. The main challenge is 
adapting the Gale-Shapley algorithm to work with a single 
list. This modification involves adjusting the algorithm to 
create stable pairs based on maximizing overall compatibility 
rather than sticking to bilateral preferences.  

Moreover, the adaptation involves running a modified 
pairing algorithm using the calculated compatibility scores. 
Traditionally, the Gale-Shapley algorithm deals with two 
groups and their preference lists [11]. Here, compatibility 
scores replace bilateral preferences for a single list, creating 
stable pairs based on overall compatibility. The modified 
algorithm involves sorting preferences based on 
compatibility scores, iterating over individuals to form pairs, 
and ending when no more partnerships exist. This adaptation 
promotes balanced and efficient pairings, essential for 
optimizing the learning experience in competitive and 
collaborative applications.  

Our proposal differs from the work presented in Chapter II 
[16, 17], which use two lists according to the original 
application of the Gale-Shapley algorithm. In this article, we 
will modify the algorithm to work with just one list, more 
accurately reflecting the reality observed in many 
collaborative and competitive applications in the educational 
process. 

 
Algorithm 1: Modified Gale-Shapley Matching within a Single 
Group 

Input: A set of individuals 𝑃 = {𝑝ଵ, 𝑝ଶ, … , 𝑝}, Compatibility scores 
C 
Output: A set of pairs S 
1: function MODIFIED_GALE_SHAPLEY(P,C) 
2:  Initialize: S ← ∅, FreePeople ← P 
3:  for each 𝑝 ∈ P do 
4:   Preferences[𝑝]← SORT_BY_PREFERENCE(𝑝,C) 
5:  end for 
6:  while FreePeople ≠∅ do 
7:   p← CHOOSE(FreePeople) 
8:   for each preferred ∈ Preferences[p] do 
9:    if preferred is free or prefers p over current match then 
10:     if preferred in S then 
11:      ADD_TO_FREE(S[preferred]) 
12:     end if 
13:     S[preferred]←p 
14:     REMOVE_FROM_FREE(p) 
15:     break 
16:    end if 
17:   end for 
18:  end while 
19:  return S 
20: end function 

 
Algorithm 1 has adapted its goal to work with these 

compatibility scores and a single list. 

B. Execution and Assessment 

This study uses a rigorous methodology to simulate 
educational environments with synthetic data, reflecting their 
diversity. The methodology includes numerical and 
categorical attributes, facilitating detailed comparative 
analyses to evaluate the impact of different data types on the 
effectiveness of pairings. Data normalization ensures 
comparability and accuracy of compatibility metrics, 
allowing a fair assessment of similarities and differences 
between student profiles. The methodology integrates 
compatibility metrics to calculate participant scores, forming 
a solid basis for meaningful pairings. 

We conduct detailed simulations using synthetic data sets 
representing student profiles and compatibility metrics to 
evaluate the algorithm’s robustness and adaptability under 
different conditions. Key metrics such as execution time and 
success rate measure the algorithm’s effectiveness in forming 
stable pairs and maximizing participant satisfaction. 
Simulations were conducted for 10, 100, 1,000, and 10,000 
individuals to evaluate the algorithm’s performance at 
different scales. This scalable test is crucial for understanding 
the algorithm’s adaptability and efficiency, enabling us to 
identify performance on varying sizes of datasets.   

IV. RESULTS AND DISCUSSION 

This section analyzes the results of implementing and 
comparing the modified Gale-Shapley pairing algorithm. We 
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evaluated the algorithm’s efficiency and effectiveness using 
datasets of varying sizes and compositions generated through 
the Synthetic Data Vault1 (SDV) package and NumPy2. We 
aimed to explore how different numerical and categorical 
attributes influence pair formation based on compatibility 
scores. We used visualizations such as boxplots, bar graphs, 
and line graphs to examine compatibility distribution, dataset 
size impact, and interactions among various compatibility 
metrics. 

A. Data Generation 

Generating synthetic data is crucial for modeling and 
analyzing algorithms when accurate data is unavailable, 
confidential, or incomplete. This section details the 
methodologies used. The SDV package simulated data with 
numerical and categorical attributes, while NumPy generated 
purely numerical data. These approaches allowed us to 
evaluate the matching algorithms under various conditions, 
providing insights into their effectiveness and adaptability. 

The SDV generates complex synthetic data, simulating 
multidimensional datasets that reflect real-world diversity. 
An example of a real dataset can be seen in the work [27]. We 
used SDV to create datasets with various attributes. This 
involved normalization and one-hot encoding, converting 
categorical data into binary matrices for inclusion in 
compatibility calculations. Min-Max normalization adjusted 
numerical data values to a standard scale of 0 to 1, ensuring 
each attribute contributed equally to the compatibility metrics. 

In addition to the SDV approach, we used the NumPy 
library to generate a second dataset focusing exclusively on 
numerical attributes. This protocol ensured reproducibility 
and consistency, enabling a direct comparison of the pairing 
algorithms’ performance in a controlled environment. 

Table 1 shows a sample of the data before normalization, 
including numerical and categorical data in text format. 

Table 2 displays the normalized data, with numerical data 
scaled from 0 to 1 and categorical data transformed into 
Boolean value columns. 

 
Table 1. Sample data generated by SDV before normalization 

Interests Learning Style 
Study 

Preference 
Math 

Proficiency 
Reading 

Proficiency 
Science 

Proficiency 
Writing 

Proficiency 

Problem 
Solving 
Skills 

Social 
Skills 

Arts Auditory Group 60.14 29.48 88.61 46.95 17.07 66.94 

Literature Kinesthetic Group 37.29 87.42 6.38 52.95 8.26 28.33 

Arts Auditory Individual 36.53 32.82 40.49 40.36 82.33 55.02 

Sports Auditory Individual 51.51 27.31 85.49 67.81 75.97 85.09 

Sciences Kinesthetic Individual 38.06 2.52 6.29 58.50 12.88 49.91 

Arts Visual Group 58.34 16.63 97.60 45.32 24.97 70.70 

Sports 
Reading / 
Writing 

Group 37.14 66.91 72.74 66.40 7.72 8.13 

 
Table 2. Sample data after normalization and one-hot encoding 

Math 
Proficiency 

Reading 
Proficiency 

Science 
Proficiency 

Interests 
Arts 

Interests 
Literature 

Interests 
Sciences 

Interests 
Sports 

Study 
Preference 

Group 

Study 
Preference 
Individual 

0.4801 0.2889 0.8911 1 0 0 0 1 0 

0.0617 0.8940 0.0539 0 1 0 0 1 0 

0.0478 0.3238 0.4013 1 0 0 0 0 1 

0.4719 0.3802 0.7282 0 1 0 0 0 1 

0.3220 0.2663 0.8594 0 0 0 1 0 1 

0.2875 0.6999 0.3815 0 1 0 0 1 0 

0.0757 0.0074 0.0530 0 0 1 0 0 1 

 

B. Calculating Compatibility Scores (Compatibility 
Metric) 

We analyzed metric calculation results and the Gale-
Shapley algorithm’s application of various compatibility 
metrics, including inverse Euclidean distance, Jaccard 
similarity, and cosine similarity. These metrics assessed 
pairing quality and execution time. The choice of 
compatibility metric also affects the pairing algorithm’s 
runtime, with computational complexity varying for each 
metric. Therefore, selecting the most appropriate metric 
based on the dataset and application requirements is crucial 
for balancing compatibility accuracy and computational 
efficiency. 

 
1 https://sdv.dev/ 
2 https://numpy.org/ 

 
Fig. 1. Graph of execution time for compatibility scoring (numerical data). 
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Fig. 1 compares execution times for calculating 
compatibility metrics with 10,000 individuals using 
normalized numerical data. 

 

 
Fig. 2. Graph showing the time it takes to calculate the compatibility score 

(numerical and categorical data). 
 

Fig. 2 compares execution times for calculating 
compatibility metrics with 10,000 individuals using 
numerical and categorical data. Inverse Euclidean 
compatibility was the fastest in both cases, followed by 
Jaccard and cosine similarities. 

They are implementing different compatibility metrics, 
which provide insights into how evaluation methods 
influence matching algorithms. An appropriate metric is 
critical to achieving high-quality pairings while maintaining 
computational efficiency. 

 

 
Fig. 3. Heatmap inverse Euclidean compatibility scores. 

 
The heatmap of Fig. 3 displays Inverse Euclidean 

Normalized Compatibility Scores among students to identify 
optimal pairings for collaborative learning. High 
compatibility pairs, indicated by lighter cells, suggest 
students who are more likely to form stable matches, as they 
have a higher mutual preference. Conversely, darker cells 
represent lower compatibility pairs, indicating less optimal 
matches.  

 
Fig. 4. Heatmap Jaccard compatibility scores. 

 
Similarly, the heatmap of Fig. 4 illustrates Jaccard 

Normalized Compatibility Scores among students, aimed at 
identifying optimal pairings for collaborative learning. High 
compatibility pairs, represented by lighter cells, indicate 
students with a higher mutual preference, suggesting stable 
matches. In contrast, darker cells denote lower compatibility, 
indicating less favorable pairings. 

Finally, the heatmap of Fig. 5 shows the pairwise similarity 
among students based on the cosine similarity metric. The 
pattern displays distinct horizontal and vertical bands, 
indicating consistent compatibility clusters where specific 
groups of students exhibit higher or lower compatibility 
relative to others. This clustering suggests that certain student 
groups share similar compatibility profiles, making the cosine 
metric particularly effective for identifying and forming 
cohesive groups for collaborative learning. The uniform 
diagonal line confirms maximal self-similarity, reinforcing 
the normalization consistency across the dataset. 

 

 
Fig. 5. Heatmap cosine compatibility scores. 

 
The comparison of heatmaps for Inverse Euclidean, 

Jaccard, and Cosine Normalized Compatibility Scores 
reveals distinct patterns in student compatibility for 
collaborative learning. The Inverse Euclidean heatmap shows 
a diverse compatibility distribution, indicating significant 
variation in pairwise similarity. The Jaccard heatmap presents 
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a more uniform distribution, suggesting moderate 
compatibility levels across most pairs, suitable for binary or 
categorical data. The Cosine heatmap displays clear 
horizontal and vertical bands, indicating consistent 
compatibility clusters among specific student groups. These 
differences highlight the importance of selecting appropriate 
metrics based on data characteristics and pairing objectives, 
with each metric providing unique insights into student 
compatibility. 

C. Evaluation of Compatibility Metrics in Matching 
Algorithms with Numerical Data 

We analyzed the results of applying various compatibility 
metrics—Inverse Euclidean Distance, Jaccard similarity, and 
Cosine similarity—to the modified Gale-Shapley algorithm 
using numerical data sets. This analysis provided insights into 
the nature and interpretation of compatibility scores, 
especially compared to a random pairing model, from the 
viewpoint of efficiency (the stability of matched pairs) and 
efficacy (the computational cost of pairing).  

Fig. 6 displays a boxplot comparing pairings generated by 
the modified Gale-Shapley algorithm using Inverse 
Euclidean compatibility scores. Groups range from 10 to 
10,000 individuals, including a randomly generated group of 
10,000. Each box represents the interquartile range (IQR) of 
compatibility scores, with the median denoted by the line 
inside the box. Whiskers extend to the most extreme data 
points not considered outliers.  

 
Fig. 6. The boxplot graph illustrates the pairing distributions using inverse 

Euclidean compatibility scores on the numerical dataset.  
 

Table 3 shows the data used to generate Fig. 6. It indicates 
that GSM 10 has the lowest average compatibility score 
(0.4467) with a standard deviation 0.0498. GSM 10000 had 
the highest average score (0.5724) with a slightly lower 
standard deviation (0.0418). The randomly generated group 
had the lowest average score (0.3863) with a similar standard 
deviation to GSM 10000. Execution time and iterations 
varied significantly, with GSM 10000 requiring the longest 
execution time (167.9475 seconds) and iterations (14,579), 
while GSM 10 had the shortest execution time (0.0002 
seconds) and iterations (13). 

 
Table 3. Data of pairing using inverse Euclidean compatibility scores on numerical datasets 

 mean min 25% median 75% max execution time iterations 

GSM 10 0.4467 0.3585 0.4329 0.4559 0.4902 0.4961 0.0002 13 

GSM 100 0.4734 0.3649 0.4458 0.4733 0.4965 0.5585 0.0141 141 

GSM 1000 0.5268 0.3152 0.5007 0.5286 0.5577 0.6394 1.3406 1,448 

GSM 10000 0.5724 0.3740 0.5490 0.5762 0.6000 0.7010 167.9475 14,579 

Random 0.3863 0.2973 0.3591 0.3831 0.4085 0.6695 0.0037  

 
Table 4. Data of pairing using Jaccard compatibility scores on numerical datasets 

 mean min 25% median 75% max execution time iterations 

GSM 10 0.4444 0.2500 0.2500 0.4375 0.5625 0.6250 0.0002 13 

GSM 100 0.4306 0.1250 0.3750 0.4375 0.5000 0.6250 0.0146 122 

GSM 1000 0.5257 0.1250 0.5000 0.5000 0.5625 0.6875 1.2894 1,259 

GSM 10000 0.6032 0.1875 0.5625 0.6250 0.6250 0.8125 145.2004 12,203 

Random 0.1900 0.0000 0.1250 0.1875 0.2500 0.5625 0.0037  

 
Fig. 7 displays a boxplot of pair distributions using Jaccard 

index compatibility scores. Like Fig. 6, the graph examines 
groups from GSM 10 to GSM 10000 and includes a random 
group of 10,000 individuals.  

Table 4 shows that GSM 10 had an average compatibility 
score of 0.4444 with a high standard deviation of 0.1515. 
GSM 100 had a slightly lower average of 0.4306 with a 
standard deviation of 0.0779. GSM 1000 exhibited a higher 
mean of 0.5257 with a standard deviation of 0.0702. GSM 
10000 had the highest average score of 0.6032 with a standard 
deviation of 0.0600. The random group had a significantly 
lower average (0.1900) with a broad standard deviation 
(0.0985). Execution time and iterations varied, with GSM 
10000 requiring 145.2004 seconds and 12,203 iterations, 
while GSM 10 required only 0.0002 seconds and 13 iterations. 

 
Fig. 7. The boxplot graph displays the pairing distributions using Jaccard 

compatibility scores on the numerical dataset.  
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Fig. 8 displays a boxplot of pair distributions using Cosine 
similarity scores. Groups range from GSM 10 to GSM 10000 
and include a random group of 10,000 individuals.  

 

 
Fig. 8. Boxplot pairing distributions graph using Cosine compatibility 

scores on the numerical dataset.  
 

Table 5 shows that GSM 10 had an average compatibility 
score of 0.8398 with a standard deviation of 0.0774. GSM 
100 had an average of 0.8682 with a standard deviation of 
0.0823. GSM 1000 had an average of 0.9214 with a standard 
deviation of 0.0408. GSM 10000 had the highest average of 
0.9476 with the lowest standard deviation (0.0243). The 
random group had a lower average (0.7534) with a standard 
deviation 0.0790. Execution time and iterations increased 
with group size, with GSM 10000 requiring 152.3835 
seconds and 15,004 iterations, while GSM 10 required only 
0.0016 seconds and 12 iterations. 

Despite numerical differences between metrics, comparing 
compatibility metrics with random pairing indicates the need 
to reassess perceived effectiveness. High compatibility scores, 
mainly with Cosine similarity, do not necessarily imply more 
efficient pairings. For instance, Cosine similarity generated 
high scores even for random pairings, raising doubts about 
the direct correlation between high scores and pairing quality. 
These results suggest that compatibility values may reflect 
the characteristics of the metric rather than the actual quality 
of pairs formed (see Fig. 8). 

 
Table 5. Data of pairing using Cosine compatibility scores on the numerical dataset 

 mean min 25% median 75% max execution time iterations 

GSM 10 0.8398 0.6922 0.8399 0.8648 0.8970 0.9050 0.0016 12 

GSM 100 0.8682 0.4430 0.8517 0.8860 0.9143 0.9652 0.1036 158 

GSM 1000 0.9214 0.5163 0.9098 0.9302 0.9451 0.9770 3.6140 1,511 

GSM 10000 0.9476 0.6156 0.9389 0.9530 0.9629 0.9863 152.3835 15,004 

Random 0.7534 0.4018 0.7034 0.7594 0.8109 0.9615 0.0036  

 
Visual analysis of boxplot graphs (Figs. 6–8) reveals 

consistent patterns in how metrics respond to dataset size 
increases. Metrics can differentiate between random pairings 
and those based on compatibility, emphasizing the 
importance of evaluating metrics against a random baseline. 
Qualitative evaluation is crucial alongside quantitative 
metrics. While metrics provide a comparative basis, 
researchers should measure practical pairing algorithms by 
numerical scores and the perceived relevance and satisfaction 
of the pairs formed. A comparative analysis reveals a trade-
off between pairing quality and computational efficiency. 
The Cosine metric produces the most compatible pairings but 
requires the most iterations and execution time. The Jaccard 
metric offers a balanced combination of pairing quality and 
computational efficiency, making it viable for practical 
applications requiring high pairing quality without excessive 
computational time. 

Moreover, compared to random pairings, the GSM 
algorithm improves pairing stability and compatibility across 
all three metrics (Inverse Euclidean, Jaccard, and Cosine). 
For Inverse Euclidean and Jaccard, a clear trend of increasing 
stability and compatibility with higher GSM values suggests 
that fine-tuning the algorithm parameters can significantly 
enhance pairing quality. Cosine similarity, on the other hand, 
exhibits inherently high compatibility scores, indicating its 
robustness for pairing even at lower GSM values, though 
improvements are still seen with higher GSM settings. 

Also, GSM 10000 consistently produces the most stable 
and compatible pairs across all metrics, suggesting it is an 
optimal setting for maximizing pairing stability. The 

consistently lower and more variable scores for random 
pairings underscore the importance of using a structured 
algorithm to achieve stable and compatible student pairings. 
These insights are crucial for developing and applying 
algorithms to optimize student pairings for collaborative 
learning, ensuring that the pairs formed are stable and highly 
compatible. 

These results highlight the importance of carefully 
selecting compatibility metrics to optimize pairing algorithms. 
The choice depends on the nature of the data and specific 
application requirements. The results demonstrate the 
modified GS algorithm’s adaptability to different metrics and 
datasets, offering valuable insights for implementing 
recommender systems and other data-driven pairing 
applications.  

D. Evaluation of Compatibility Metrics: Inclusion of 
Categorical and Numerical Data 

We analyzed the modified Gale-Shapley algorithm using 
different compatibility metrics—inverse Euclidean distance, 
Jaccard, and Cosine—on datasets enriched with both 
categorical and numerical data generated by SDV. Compared 
to numerical-only data sets, these enriched datasets provide a 
more complex and representative perspective of human 
interactions. A detailed analysis, using random pairing 
performance as a baseline, offers critical insights into the 
metrics’ effectiveness in capturing compatibility across 
various attributes.  

Fig. 9 shows the boxplot for pair distributions using 
Inverse Euclidean compatibility scores on datasets containing 
normalized numerical and categorical attributes. Analysis of 
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Table 6 and Fig. 9 indicates that GSM 10 has an average score 
of 0.2894 with a low standard deviation of 0.0172, suggesting 
homogeneity in compatibility scores. GSM 10000 averages 
0.2967 with a low standard deviation of 0.0727, 
demonstrating consistency even with large data volumes. In 
contrast, the randomly generated group had a low average of 
0.0015 with a standard deviation of 0.0087, indicating almost 
complete incompatibility. GSM 10000 took 146.5030 
seconds for 12,848 iterations.  

Comparing Table 6 (mixed data) with Table 3 (numerical-
only data), we notice a decrease in compatibility averages 
when categorical attributes are included. Despite fewer 
iterations, the execution time for GSM 10000 in the mixed 
data set is slightly less, suggesting greater processing 
efficiency despite added complexity. Including categorical 
attributes significantly impacts compatibility assessment, 
resulting in lower scores and more significant score variation. 

 
Table 6. Data of pairing using inverse Euclidean compatibility scores on numerical and categorical datasets 

 mean min 25% median 75% max execution time iterations 

GSM 10 0.2894 0.2592 0.2829 0.2953 0.3027 0.3070 0.0002 11 

GSM 100 0.2930 0.0708 0.2815 0.2958 0.3318 0.4624 0.0122 125 

GSM 1000 0.3003 0.0020 0.2829 0.3027 0.3413 0.4892 1.1398 1,280 

GSM 10000 0.2967 0.0003 0.2792 0.3001 0.3381 0.4892 146.5030 12,848 

Random 0.0015 0.0001 0.0002 0.0003 0.0007 0.3574 0.0034  

 
Table 7. Data of pairing using inverse Jaccard compatibility scores on numerical and categorical datasets 

 mean min 25% median 75% max execution time iterations 

GSM 10 0.5765 0.4118 0.5294 0.5882 0.5882 0.7647 0.0003 12 

GSM 100 0.6865 0.3529 0.6471 0.7059 0.7059 0.7647 0.0265 122 

GSM 1000 0.7799 0.2941 0.7647 0.7647 0.8235 0.9412 1.4173 1,241 

GSM 10000 0.8414 0.2941 0.8235 0.8235 0.8824 0.9412 166.7902 12,063 

Random 0.4298 0.2353 0.3529 0.4118 0.5294 0.8824 0.0053  

 

 
Fig. 9. The boxplot graph shows the pairing distributions using inverse 
Euclidean compatibility scores on numerical and categorical datasets. 
 

 
Fig. 10. The boxplot graph illustrates the pairing distributions using Jaccard 

compatibility scores on numerical and categorical datasets. 
 

Fig. 10 shows the boxplot for pair distributions using 
Jaccard index compatibility scores. The results indicate 
significant improvement in pairing quality as the dataset size 
increases, highlighting the metric’s ability to identify true 
compatibilities in a mixed data environment.  

Table 7 shows that GSM 10 has an average compatibility 
score of 0.5765 with a standard deviation of 0.1141. GSM 
100 has an average of 0.6865 with a standard deviation of 
0.0802, and GSM 1000 has an average of 0.7799 with a lower 
standard deviation of 0.0650. GSM 10000 has the highest 
average compatibility score of 0.8414 with the lowest 
standard deviation of 0.0496. The random group has a 
significantly lower average compatibility score of 0.4298 
with a standard deviation of 0.1128. Execution times and 
iterations increase with group size, comparable to Table 6. 

 

 
Fig. 11. Boxplot pairing distributions graph using Cosine compatibility 

scores on numerical and categorical datasets. 
 

Comparing Table 7 (mixed data) with Table 4 (numerical-
only data) shows higher averages, indicating that including 
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categorical attributes increases overall compatibility. Both 
tables show similar results regarding execution time and 
iterations, with slight increases in the mixed dataset.  

Fig. 11 shows the boxplot for pair distributions using 
Cosine similarity scores. The data in Table 8 indicate the 
highest average compatibility with the Cosine metric. 

However, high performance in the random model suggests 
that the nature of the data might influence high compatibility 
values. One-hot encoding to normalize categorical data 
introduces considerable homogeneity and high 
dimensionality into vectors, potentially inflating 
compatibility values. 

 
Table 8. Data of pairing using inverse Cosine compatibility scores on numerical and categorical datasets 

 mean min 25% median 75% max 
execution 

time 
iterations 

GSM 10 0.7869 0.3589 0.7850 0.8855 0.9322 0.9728 0.0002 21 

GSM 100 0.9774 0.3589 0.9987 0.9997 0.9999 1.0000 0.0152 200 

GSM 1000 0.9977 0.3589 1.0000 1.0000 1.0000 1.0000 1.2249 1,607 

GSM 10000 0.9998 0.3589 1.0000 1.0000 1.0000 1.0000 163.8606 15,479 

Random 0.9995 0.0005 1.0000 1.0000 1.0000 1.0000 0.0036  

 
Compared to random pairings, the GSM algorithm 

improves pairing stability and compatibility across all three 
metrics (Inverse Euclidean, Jaccard, and Cosine). For Inverse 
Euclidean and Jaccard, a clear trend of increasing stability 
and compatibility with higher GSM values indicates that fine-
tuning the algorithm parameters can significantly enhance 
pairing quality. The Cosine similarity metric consistently 
shows high compatibility scores, demonstrating its 
robustness for pairing even at lower GSM values, though 
improvements are still seen with higher GSM settings. 

GSM 10000 consistently produces the most stable and 
compatible pairs across all metrics, suggesting it is an optimal 
setting for maximizing pairing stability. The consistently 
lower and more variable scores for random pairings 
underscore the importance of using a structured algorithm to 
achieve stable and compatible student pairings. These 
insights are critical for developing and applying algorithms to 
optimize student pairings for collaborative learning, ensuring 
that the pairs formed are stable and highly compatible. 

Including categorical features generally increases 
variability and introduces more outliers, but the GSM 
algorithm still enhances pairing stability and compatibility 
across all metrics compared to random pairings. Cosine 
similarity consistently provides the highest compatibility for 
numerical data alone, while Inverse Euclidean and Jaccard 
metrics show significant improvements with higher GSM 
values. When categorical features are added, all metrics show 
increased variability, but the GSM algorithm’s effectiveness 
in improving stability and compatibility remains evident. 
GSM 10000 optimizes pairing stability across numerical and 
combined numerical-categorical datasets. These insights 
underscore the importance of using structured algorithms for 
stable and compatible student pairings in collaborative 
learning contexts. 

E. Pairing Analysis: Varying the Number of Individuals. 

This section examines how the quality of pairings 
generated by the modified Gale-Shapley algorithm compares 
to a random pairing method as the number of individuals 
varies. We use statistical measures such as mean, standard 
deviation, minima, maxima, quartiles, and the number of 
iterations required to achieve a stable pairing to evaluate 
pairing quality. 

The results show a clear improvement in pairing quality as 
the dataset size increases from 10 to 10,000 individuals, 

measured by average compatibility. The modified Gale-
Shapley algorithm forms higher-quality pairs on average and 
remains robust and effective across different data scales 
without compromising pairing integrity. 

The standard deviation of compatibility scores increases 
with dataset size, suggesting greater diversity in pairing 
quality in larger datasets. Despite this variation, the algorithm 
still produces high-quality pairings, as evidenced by 
consistently high maximum compatibility values. 

 

 
Fig. 12. Comparison of execution time in pair formation for inverse 

Euclidean, Jaccard and Cosine compatibility metrics. 
 

The execution time comparison chart (Fig. 12) shows the 
performance of three compatibility metrics, Inverse 
Euclidean, Jaccard, and Cosine, as the dataset size grows. The 
execution times for all three metrics increase gradually 
between GSM 10 and GSM 1000 but rise sharply after GSM 
1000, reflecting the increased computational demand at larger 
scales. While the overall trend is similar across all metrics, 
Inverse Euclidean shows the steepest increase in execution 
time, followed closely by Jaccard and Cosine. This indicates 
that, while all three metrics scale reasonably well with 
smaller datasets, their performance diverges significantly 
with larger datasets, highlighting the importance of selecting 
an appropriate metric based on both dataset size and 
computational constraints. Despite these increases in 
execution time, the metrics remain feasible for practical 
applications involving large datasets, with trade-offs to be 
considered between precision and efficiency. 
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The Iterations Comparison chart (Fig. 13) illustrates how 
the number of iterations required for the modified Gale-
Shapley algorithm varies across three compatibility metrics: 
Inverse Euclidean, Jaccard, and Cosine. Like the execution 
time analysis, the number of iterations remains relatively 
stable and low for smaller dataset sizes (GSM 10 to GSM 
100), with only a slight increase for GSM 1000. However, 
after GSM 1000, there is a significant spike in iterations for 
all three metrics, particularly for the Inverse Euclidean, which 
requires the most iterations, followed closely by Jaccard and 
Cosine. This increase in iterations with larger datasets 
indicates that, while the algorithm is efficient for smaller 
datasets, its computational cost rises rapidly as the dataset 
grows, with each metric exhibiting a similar growth pattern. 
The choice of metric, therefore, becomes crucial in large-
scale applications where efficiency in the number of 
iterations plays a critical role. Despite this increase, the 
algorithm remains scalable, although the performance 
differences between metrics become more pronounced with 
larger datasets. 

 

 
Fig. 13. Comparison of iterations in pair formation for inverse Euclidean, 

Jaccard and Cosine compatibility metrics. 
 
Analysis of execution time and the number of iterations 

provides insights into the efficiency and scalability of the 
modified Gale-Shapley algorithm. While runtime 
significantly increases with dataset size, the number of 
iterations increases moderately. These results indicate that the 
algorithm efficiently finds stable solutions even in large 
datasets, showing good scalability without excessively 
compromising efficiency. 

The analysis demonstrates that the modified Gale-Shapley 
algorithm produces high-quality pairings and adapts 
efficiently to varying dataset sizes. It maintains reasonable 
efficiency in runtime and iterations, even as data scales 
increase, proving its applicability in various practical 
contexts where data-driven pair formation is critical.  

V. CONCLUSIONS  

This study significantly modifies the Gale-Shapley 
algorithm, adapting it to educational environments requiring 
a single participant list based on compatibility metrics. The 
research’s main contribution is developing a single-list 
framework that replaces subjective preferences with 
objective compatibility scores, improving the stability and 

quality of pairings in both collaborative and competitive 
learning settings. Using metrics like inverse Euclidean 
distance, Jaccard similarity, and cosine similarity, the 
proposed method ensures stable pairings and optimizes them 
for educational effectiveness, particularly in promoting SEL. 

The critical innovation is adapting the Gale-Shapley 
algorithm to handle a single list of students, reflecting real-
world educational scenarios, such as a classroom. This 
approach, which relies on objective compatibility scores, 
provides a practical solution for dynamic classroom 
environments where predefined preferences are unavailable. 
This modification enhances pairing stability across different 
learning contexts, fostering better collaborative and 
competitive student interactions. 

A significant limitation of this study is the reliance on 
synthetic data to validate the algorithm. While this allows for 
controlled experimentation and scalability testing, it fails to 
capture the full complexity of real-world educational 
environments. Factors such as student emotions, shifting 
preferences, and classroom dynamics may affect the 
algorithm’s performance in ways synthetic data cannot 
simulate. Therefore, empirical validation in actual classroom 
settings is essential to confirm its practical utility and 
effectiveness under more diverse conditions. 

The algorithm scales well in terms of computational 
complexity, but this scalability comes with a cost. As the 
number of participants increases—especially with larger 
datasets of up to 10,000 individuals—execution time and the 
number of iterations required for stable pairings increase 
significantly. This is consistent across all compatibility 
metrics, with inverse Euclidean distance having the highest 
computational demand. 

Future research should focus on several key areas to 
enhance the application of the modified Gale-Shapley 
algorithm in real-world educational contexts. First, empirical 
validation through school field studies, particularly in 
cooperative and competitive learning scenarios, is crucial. 
Testing the algorithm in classroom settings or educational 
game competitions will provide valuable insights into its real-
world performance. Further refinement of the compatibility 
metrics is also necessary, as more sophisticated or hybrid 
approaches could further improve pairing stability and 
outcomes. Future studies could explore including behavioral, 
emotional, or cognitive attributes to enhance pairing success. 

Another critical area for future research is the algorithm’s 
adaptability in real-time contexts. Developing educational 
tools and platforms that integrate this algorithm would be 
particularly valuable in environments blending cooperative 
and competitive learning, such as educational games or 
collaborative problem-solving tasks. 

Lastly, testing the algorithm in varied educational settings, 
including trials in competitive and cooperative educational 
games, would further demonstrate its applicability. The 
algorithm could form pairs based on ongoing student 
performance and interactions, helping bridge the gap between 
theoretical research and practical applications in diverse 
educational contexts. 
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