
Bridging the Gap: Template-Based Coding for Transitioning

from Visual Logic to Text-Based Programming

Samer Y. Al-Imamy

Department of Management Information Systems, Prince Mohammad bin Fahd University, AlKhobar, Saudi Arabia

Email: salimamy@pmu.edu.sa (S.Y.A.-I.)

Abstract—Visual programming environments, which utilize

visual blocks or flowcharts to represent programming logic,

have emerged as a key strategy to assist novice learners in

overcoming the complexities associated with text-based

programming. However, transitioning from these visual

representations to full-text programming often presents a

significant challenge for these learners. One solution to this

challenge is the use of template-based coding, which has been

shown to increase performance and reduce the number of errors

made by students studying computer programming. This study

used an experimental assignment and survey to evaluate the

Code-By-Template (CBT) application among 82 students,

revealing enhanced coding proficiency and positive student

attitudes, highlighting the effectiveness of CBT in programming

learning. The CBT, in particular, has been found to enhance

students’ performance in successfully solving programming

problems. The observed improvement in performance can be

attributed to a 17% increase in scores (correctness) during the

same time frame, suggesting a decrease in the number of errors.

It is important to acknowledge that the scores mostly depend on

the number and type of errors. Beyond this performance

improvement, students have also expressed interest, describing

the CBT as “extremely helpful” and “making programming

easier.” This highlights the qualitative benefits of the tool in

promoting appreciation for it, indicating its potential to enhance

engagement as well as learning outcomes. The difficulty of

learning programming code has had a persistent impact on

retention rates in computer programming courses. However, the

improved performance and learning ease facilitated by the CBT

environment may offer a solution to this retention problem. By

making the learning process more manageable and less error-

prone, the CBT environment can help to ensure confidence-

boosting and interest-fostering that lead to more students

successfully completing their programming courses and

continuing their studies in this field.

Keywords—code by template, programming for novice

learners, visual programming, program logic, performance

enhancement, interest and retention

I. INTRODUCTION

Computer programming is a crucial and essential course

for information technology-related students. Due to the

language learning challenges, the selection of teaching

methods is a frequent research topic [1, 2]. In addition to their

indispensability in various fields, programming languages are

used as tools for developing critical thinking skills in

business [3], medicine [4], and other disciplines.

Programming languages are categorized by most students

and researchers as one of the most challenging tasks due to

several factors [5] that lead to a high rate of dropout [6] and

failure [7, 8] in introductory programming courses. Logical

thinking [9], reasoning and creativity [10], syntax control [5],

and logical analysis [2] are some of these challenging factors

that researchers assumed were the cause of the problem.

Therefore, it is urgent to solve the issues facing the

learners [11].

Numerous studies proposed enhancement of the

understanding of the programming logic through the use of

tools such as visual blocks or flowcharts [3]. However, the

transition from the programming logic level into full-text

programming represents a big challenge for the learners.

The purpose of this research is to ease the transition from

the programming logic level, represented as visual blocks or

flowcharts, into full-text programming using a purposefully

built interactive scaffold. In addition to circumventing syntax

memorization problems, our research endeavors to enhance

student learning experiences and increase retention rates in

computer programming courses. Furthermore, the present

study aims to evaluate the general reception of the CBT tool

among students and its ability to enhance confidence and

proficiency in programming assignments. Therefore, the

research question could be drafted as follows: “How does the

implementation of Code By Template (CBT) impact students’

programming performance and increase their confidence

levels?”

The study uses the Technology Acceptance Model (TAM)

and the Kirkpatrick model of training evaluation to measure

students’ acceptance and utilization of the CBT application.

TAM emphasizes perceived ease of use and usefulness, while

the Kirkpatrick model evaluates the tool’s effectiveness

across dimensions like student reactions, learning outcomes,

behavioral changes, improved programming skills, and

reduced dropout rates. The literature review and related work

are introduced in the next section. Section III explains the

methodology, which is based on an experiment and a survey.

The results are listed in Section IV, followed by the

discussion and limitations. The last section is devoted to the

conclusions.

II. LITERATURE REVIEW

Programming is a complex subject that demands both

theoretical and practical skills. A study conducted by

Veerasamy et al. [12] found that high problem-solving skills

could help students perform better in programming.

Malik et al. [13] proposed the PAAM (Problem Analysis

Algorithmic Model) to assist novices in their learning curve.

On the other hand, coding enhances problem solving skills

[14], which is one of the eight key competencies of the 21st

century as defined by UNESCO (2017). Several approaches

were used by researchers to improve the programming

learners’ abilities, such as Augmented Reality (AR) [15] and

blended learning [16, 17]. Tsai et al. [9] used the AR-based

logic programming system to prove its superiority in

motivation and effectiveness over the traditional learning

International Journal of Information and Education Technology, Vol. 14, No. 3, 2024

435doi: 10.18178/ijiet.2024.14.3.2064

Manuscript received September 20, 2023; revised November 15, 2023; accepted November 27, 2023; published March 12, 2024

mailto:salimamy@pmu.edu.sa

method.

Learning programming languages as a novice can be seen

as an analogy to learning to drive a car. As well as the

theoretical challenges, driving a manual car practically is a

very difficult task for beginners because it requires, at the

very least, road focus and gear-changing attention that

includes clutch balance. Similarly, program coding requires a

focus on both logic and syntax. Accordingly, introducing the

logic first is similar to learning to drive an automatic car.

Handling the logic that leads to a solution could be

represented by a flowchart, pseudocode, or even

mathematical logic. AI-Imamy et al. [3] proved the advantage

of shielding the logic from the syntax through the

measurements of the ease of use, usefulness, versatility, and

performance produced by the logic-first approach.

According to Altadmri and Brown [18], the majority of

semantic errors are followed by syntax errors, which is a

difficult and painful task for new learners due to a number of

factors, including the rigidity of the language structure and

syntax [5]. The 18 syntax mistakes committed by students

were identified by the researchers as contributing to the new

learners’ challenges [19] that may have provoked the 32% of

learners who failed to pass the programming course during

the first attempt, as found by Watson and Li [20]. The

difficulty in learning the programming code had an impact on

the retention statistics, which have remained affected over the

past decade [21].

Changing the programming language is common for

people working in the IT field, but it is daunting when they

need such a shift due to courses’ requirements or in the

marketplace. Therefore, giving the learners the ability to

work with syntax-independent constructs increases their

confidence [22]. The syntax error warnings and compiler

feedback both contribute significantly to the identification of

the issues. However, such messages are frequently

misleading to novice learners, even when generated by

modern Integrated Development Environment (IDE), which

are described as cryptic by such an audience [23]. In light of

this, a new IDE is required. Such an environment is needed

as a code generator (a template) with almost no errors.

Several approaches have been introduced by researchers

during the last couple of decades to tackle this complexity and

the discouraging retention statistics. According to the

computer programming education community, research and

development activities should be increased in order to

improve the quality of instruction and increase the number of

highly skilled instructors. A first step toward programming

skills enhancement for schools was taken by former U.S.

president Obama’s Computer Science for All project (Obama

White House Archives, 2016). Additionally, Former U.S.

president Trump has allocated a sizable amount of federal

funding for computer science education. Professional

associations, governments, and private and non-profit

organizations have all worked to increase participation and

success in computer science education. Google, Facebook,

and Amazon also contributed funding to expand the computer

science major pipeline (EdSurge, 2017). Therefore,

substantive research and development organizations are now

involved in boosting pedagogical and technological

strategies [24]. Visual programming environments are one of

the main strategies used over the past couple of decades to

help novice learners get over the complexity of text-based

approaches [25]. For example, introductory programming

learners perceived block programming [26], the Logo

environment [27], and introductory programming languages

such as “Alice” [28], “Greenfoot,” and “Scratch” [29] as a

step toward understanding full syntax-based languages.

Although these techniques are helpful for comprehending

programming principles, they provide little help with the

move to code [19]. In their recent study, AbdulSamad and

Romli [30] compared a number of block-based platforms.

The objective of their study is to identify those that promote

effective programming learning and have the potential to

accelerate code development.

Recent studies have focused on the Natural Language

Interface (NLI) as a visual/pseudocode to text transition.

Ansari et al. [22] created the NLI application to interpret

pseudocode-like statements into Java code in an attempt to let

students focus on the problem-solving issue. The proposed

environment focuses on the syntactical side of the entered

sentences in the hope of recognizing the meaning and

translating it into a runnable code. Thomas et al. [31] stressed

the importance of handling the ambiguity issue when the

natural language is processed to preserve the meaning of the

sentences that are converted into precise programming

language statements. Although the proposed applications

assist users in writing source code with no programming

knowledge, they make only a minor contribution to the

development of critical thinking skills.

The integration of AI applications, such as ChatGPT, into

the domain of coding and programming is experiencing a

growing trend. The research investigated the effects of

Artificial Intelligence (AI) tools, specifically ChatGPT and

GitHub Copilot, on programming within an academic

setting [32]. The researchers emphasized the existence of

varying perspectives among educators on the incorporation of

these tools into their instructional practices. While many

educators may advocate for their prohibition in order to

prioritize the teaching of programming principles, others

recognize the significance of their inclusion as a means of

equipping students with the necessary skills for prospective

employment opportunities. The study offers an overview of

the initial phases of incorporating and adjusting to the swiftly

developing AI coding tools within educational environments.

As a result, summarizing the language in a limited number

of phrases, as we did, may be more suitable at this stage for

critical thinking and coding experience.

While critical, logical, or cognitive thinking forms one of

the wings of the programming challenges, as cited above,

syntax control represents the second. Students, after they

understand the logic, are required to start the coding, where

they face the syntax challenges. From learners’ failure to

meet the tutor’s expectations [33] to significant

improvements in students’ results [34, 35], research in code

writing has covered the gamut. The improvement in

performance was mainly due to the reduction in the amount

of overwhelming information that the learners needed to

process. As a result, pedagogical IDE customization is

required to provide enough information to help students focus

on program development while reducing error message

deciphering [11]. Accordingly, a new IDE that could produce

perfect code (a template) with almost no errors is needed.

International Journal of Information and Education Technology, Vol. 14, No. 3, 2024

436

This work, using a customized IDE developed for the

purpose, is trying to prove the effectiveness of the use of

templates in enhancing learners’ abilities and confidence.

Researchers reported the frustration and discouragement of

novice learners due to the unclear and sometimes misleading

syntax errors they encountered during their first steps in the

programming field [36, 37]. Most of the errors are not

explained well enough to the learners, and a thorough

investigation to find the root of the error is a vital task [38].

The majority of such errors made by new learners are naive

and can be avoided by using the Code By Template (CBT)

that we propose as an addition to the existing IDEs. Microsoft

introduced snippets for some essential commands used in

their Visual Studio environment [39] that need evaluation of

their effect on the learning curve. Several studies during the

past few years have tried to compare the efficiency of block-

based computer programming against text-based computer

programming [40, 41]. Since the learning of a block-based

approach cannot replace a text-based approach, such a

comparison doesn’t lead to learners’ coding

improvement [42].

III. METHODOLOGY

This research uses two instruments: the first deals with the

students’ results of an experiment using exercise questions

prepared for this purpose and solved by the learners with and

without the CBT application; the second is a survey to

understand the students’ opinions of the application.

The IDE was created by the researcher in C# using the

Visual Studio platform. As a learning tool, our research uses

sentences controlled by a limited set of phrases that could be

selected as buttons or uttered as a human voice. Fig. 1 shows

the application with its conventional menu that is used to save,

open, edit, and so forth (A). The application contains a set of

commands, marked (B). These commands can be activated

by clicking or spoken by the learner if the speech feature is

enabled. The latter can be enabled by using the right-top

button (C). The speech-enabled application, using Microsoft

speech recognition, is an additional function of the introduced

platform. The commands (template generators), which are

one of the main characteristics of the scaffold, are adjusted

based on the language selected from the top-left radio button

(D). Only Java and C# are currently available, but other

languages can be added easily. The main area in the middle

is used for the generated constructs (E). This editing area,

which represents the core of the tool, is used to set and

overlap (nest) the templates inevitably based on the user’s

requirements. To regenerate the code seen in the picture, the

user may click or say the commands (Import Scanner, Show

Structure, Create Scan, Declare Variable, If Statement,

Output “in the true route of the if section,” and For Loop “in

the else route of the section”). The user can choose any

combination of commands to generate the structure.

The proposed IDE provides learners with buttons for

simple template generation. It is a perfect scaffold for the

learners, especially when construct nesting is required. All

the generated templates come with comments and examples

when possible. Words requiring the user’s interaction, such

as variable names and conditions, are highlighted in a

different color and surrounded by angle brackets.

Fig. 1. The proposed Code-By-Template (CBT) integrated user interface.

The use of CBT application offers advantages over

conventional IDEs, as it produces robust code that, otherwise,

may produce trivial side-effect mistakes. It will increase

focus and confidence, which will lead to better performance

and a deeper understanding of the programming constructs.

The application is simpler than the need for a natural

language interface, though it is a step towards the fifth

generation of artificial intelligence programming, especially

with its speech interface. The switch between the different

programming languages will be as simple as selecting the

radio button for the selected language.

A. The Experiment

To apply the experiment to a reasonable number of

students, several classes in more than one semester are

needed because the capacity of the lab is limited to a

maximum of 24 students. Accordingly, dividing the subjects

into control and treatment groups is inappropriate. Therefore,

within-subjects design is applied to 82 students in the

introduction to programming course. To fix all the variables,

including the individuals’ abilities, the effect of CBT (the

independent variable) on performance (the dependent

variable) is measured for every student. This design can

therefore be applied over several semesters and to many

classes.

Within each class, the students are divided into two groups.

Each group receives different but comparable questions (2

questions each). Since the objective of the research is to

measure the impact of the CBT on the students’ ability to

write the code, the understanding logic must be neutralized.

Therefore, each student within the two groups was given the

flowchart of the questions as a handout (see Fig. 2 for a

sample of the flowcharts).

Therefore, the task is reduced to translating the flowcharts

into codes, which is the goal of the research. The questions

solved by the two groups are different but almost equal in

difficulty (typically, one of them contains the decision

construct and the other has a looping construct). The

programming languages used for coding were Java or C#.

When the students completed their first tasks without any

assistance, a brief explanation of the CBT was introduced for

use with the second round of the experiment. Students were

assigned two new questions in this stage of the experiment,

i.e., B1 and B2, which were given to the first group and A1

and A2 to the second, to solve with the assistance of the CBT

application. The two questions were focused on the main

programming constructs to be sure the CBT has the same

effect on the different constructs. The purpose of splitting the

International Journal of Information and Education Technology, Vol. 14, No. 3, 2024

437

class into two groups and switching the questions is to make

sure that the questions have not been seen before and that the

experiment is unaffected by the slight variations in the

questions.

The results of the experiment were recorded and analyzed

in the results section.

Fig. 2. Samples of the questions along with their flowcharts.

B. The Survey

To support the above experiment, a survey was distributed

to students who had tried the application to assess their

attitudes and feelings towards it. These students were asked

seventeen questions through a survey to find out their

impressions of the application, as well as one open question

for them to write their comments. The questions were derived

from the Technology Acceptance Model (TAM) as a

foundation but were contextually modified through the

addition of additional variables that measure the main

characteristics of the application. The Appendix shows the

thematically classified questions in Table A.

In summary, our research approach encompassed a

thorough examination of both qualitative and quantitative

data. By giving programming assignments both before and

after the CBT tool’s adoption, the quantitative data included

performance scores that also reflect the error rates.

Additionally, the administration of surveys and feedback

forms helped to facilitate the collection of qualitative data by

eliciting insightful information about the students’

experiences with and perceptions of the CBT instrument. The

extensive dataset underwent a systematic examination

utilizing statistical tests, such as t-tests for evaluating

performance comparisons and theme analysis for analyzing

qualitative replies.

The format in which our findings will be presented will be

organized in a manner that effectively highlights the

influence of the CBT tool on the development of students’

programming abilities. The quantitative findings will be

presented through a collection of tables and graphs, providing

a visually accessible depiction of the enhancements in

performance. Together with qualitative findings like direct

quotes from student feedback, these will help us get a full

picture of how the CBT tool works in the real world and how

it affects learning. This approach will provide contextual

information and in-depth analysis. The utilization of a dual

strategy in evaluating the efficacy of the CBT tool in

augmenting programming education guarantees a thorough

comprehension of its efficiency.

IV. RESULTS

A. Performance Analysis

The learners were divided into two groups. In the first

round, both groups solved their first assigned set of questions

(A for group 1 and B for group 2) without the CBT

application’s support, while in the second round, both groups

solved the second set of questions (B for group 2 and A for

group 1), where the application was used to assist them in

writing the code in either Java or C# programming languages.

The initial view of the results from 82 comparisons shows

more than half of the learners improved their performance

with the assistance of the CBT application. The t-test analysis

of Table 1 shows a significant enhancement when the

students use the CBT application.

Table 1. The t-Test of two-sample assuming unequal variances

Statistical Measure With CBT No CBT

Mean 7.25 6.19

Variance 4.70 7.81

Observations 82 82

df 153

t-Stat 2.72

P(T ≤ t) one-tail 0.004

Std. Deviation 2.17 2.80

The result of a two-sample t-test demonstrated a significant

difference between the two groups (t = 2.17, p < 0.05). This

implies that CBT contributes to student performance in

solving the questions successfully, proving the first half of the

research question. As a useful tool, the students are

encouraged to use the CBT scaffold as long as they feel the

benefit of the application support. However, they are

expected to move away gradually until they feel comfortable

writing the different constructs without support.

B. The Survey

Following the experiment, 109 students who tried the

application (including the 86 participants in the experiment)

were asked to answer a survey that measures their acceptance

of the CBT application. The number of males who

participated in the survey was 73, while the number of

females was 36. All the participants are from the college of

business except one from IT, distributed as 53 Management

Information Systems (MIS), 28 Business Administration

(BA), and 27 Finance (FINA) students. The course under

study is compulsory for the MIS, which means most of them

are at the sophomore level (age 19–23). However, the

programming is an elective course for the BA and FINA

majors. Most of the students in these two majors are juniors

or seniors (age 21–25).

Some of the students had a chance to practice the

application without participating in the experiment. It was

found that no significant difference between the responses of

those who participated in the experiment and those who only

tried the CBT application and answered the survey; t

(30) = – 0.32, p = 0.75 (Fig. 3).

The descriptive statistics are illustrated in Table 2.

International Journal of Information and Education Technology, Vol. 14, No. 3, 2024

438

Table 2. The descriptive statistics of the survey

Theme Valid N Missing Mean Std. Error Std. Dev. Variance

Enjoyment 109 0 4.35 0.08 0.89 0.79

Navigability 109 0 4.16 0.09 0.94 0.89

Complexity 109 0 4.27 0.10 1.01 1.01

Reliability 109 0 4.22 0.09 0.95 0.90

Confidence 109 0 4.18 0.10 1.01 1.02

Continuity 109 0 4.15 0.10 1.03 1.05

Understanding 109 0 4.06 0.09 0.97 0.95

Empowerment 109 0 4.20 0.10 1.00 1.00

Ease of use 109 0 4.28 0.09 0.98 0.96

Usefulness 109 0 4.30 0.09 0.97 0.94

Learnability 109 0 3.68 0.11 1.12 1.26

Preference 109 0 4.12 0.09 0.96 0.92

Practicability 109 0 4.19 0.10 1.02 1.05

Interest 109 0 4.18 0.09 0.95 0.91

Preference 109 0 3.83 0.11 1.13 1.27

Embarrassment 109 0 3.96 0.11 1.16 1.35

Usage through Voice (4%) Button (38%) Both (45%) None (13%)

Fig. 3. Difference between the survey responses of the participants and

non-participants in the experiment.

C. Quantitative Analysis

The results of the quantitative analysis are shown in

Table 3.

The data reveals that all of the CBT application advantages

mentioned previously are significantly met based on the

students’ opinions. These advantages are reflected in high

scores for enjoyment, reliability, confidence, control, ease of

use, usefulness, performance, and others, proving the second

half of the research question. However, some students still

need the assistance of the instructor and the classroom

environment instead of self-studying (learnability t = 6.3).

Most students prefer the use of CBT; however, a few of them

(probably the experienced) are preferring direct coding (t =

7.7). Although the application helped in reducing the

embarrassment (t = 8.7), few still feel it (if it ever existed).

As for the use of buttons or voice, it looks like both are

preferable.

Table 3. Survey’s one-sample test (value = 3)

Theme
Strongly

Disagree WT = 1
Disagree WT = 2 Neutral WT = 3

Agree

WT=4

Strongly

Agree

WT = 5

t df Sig.

Enjoyment 3% 2% 11% 30% 54% 15.89 108 <.001

Navigability 4% 1% 13% 41% 41% 12.78 108 <.001

Complexity 3% 3% 10% 31% 53% 13.14 108 <.001

Reliability 4% 1% 11% 39% 45% 13.46 108 <.001

Confidence 3% 3% 13% 33% 48% 12.23 108 <.001

Continuity 3% 4% 16% 29% 48% 11.67 108 <.001

Understanding 4% 0% 22% 35% 39% 11.40 108 <.001

Empowerment 4% 4% 11% 34% 47% 12.57 108 <.001

Ease of use 4% 1% 13% 29% 53% 13.58 108 <.001

Usefulness 4% 1% 11% 29% 55% 14.14 108 <.001

Learnability 6% 7% 28% 32% 27% 6.32 108 <.001

Preference 3% 3% 15% 38% 41% 12.18 108 <.001

Practicability 3% 1% 14% 38% 44% 12.18 108 <.001

Interest 5% 3% 31% 25% 36% 12.95 108 <.001

Preference 6% 6% 16% 30% 42% 7.74 108 <.001

Embarrassment 4% 6% 25% 33% 32% 8.65 108 <.001

Usage through Voice (4%) Button (38%) Both (45%) None (13%)

D. Surveyors’ Comments

Samples of the students’ comments about the application

are as follows:

1) Very good, reliable and useful;

2) It needs some improvements for perfection;

3) Creative impressing, wonderful and amazing idea;

4) Nice and easy to use;

5) Extremely helpful, simple and efficient application that

saves time;

6) Interesting and great experience to try;

7) Very useful and beneficial that make programming easy

for beginners;

8) I hope we can use this app next term i like it;

9) It made writing code easier and a much pleasant

experience;

10) The application can be very good for someone who is

International Journal of Information and Education Technology, Vol. 14, No. 3, 2024

439

confused, like me;

11) One of the best apps ever;

12) It is perfect program that helps us to learn and not to fail

in coding;

13) The idea of this application is impressing. It was a nice

experience, definitely will recommend it to my instructors

and classmates in other courses if needed;

14) The app is extremely helpful and it made the code much

easier and made me avoid silly mistakes and safe much

time;

These comments confirm the extra advantages of the CBT

over the conventional IDEs and prove the compliant of

training through Kirkpatrick Model of Training evaluation

framework [43] as shown in Table 4.

Table 4. Alignment of the students’ comments with the Kirkpatrick model

of training

Lvl# Evaluation Supporting comments

1 Reaction

(1) Very good, reliable and useful

(3) Creative impressing, wonderful and

amazing idea

(4) Nice and easy to use

(6) Interesting and great experience to try

(11) One of the best apps ever

2 Learning
(7) Very useful and beneficial that make

programming easy for beginners

3 Behavior
(9) It made writing code easier and a much

pleasant experience

4 Results
(5) Extremely helpful, simple and efficient

application that saves time

V. DISCUSSION

The literature demonstrated that programming is a difficult

subject, to the extent that introductory programming courses

frequently have significant dropout and failure rates. Our

results imply that the use of the CBT program can assist in

overcoming these difficulties by raising students’

achievements and lowering syntax errors, which are a major

barrier for new learners. The scores are influenced by the

quantity of errors; hence, marking is a process that involves

quantifying the errors while maintaining consistent exercise

durations for both the experimental and control groups.

Similar IDEs, such as “Flowgorithm” and “Flowrun”, were

eventually created to translate the flowchart into code in order

to address the transfer challenges, demonstrating the demand

for such tools. Microsoft’s well-recognized programming

IDE, Visual Studio, now includes snippets, code creation, and

reverse engineering. Nevertheless, empirical evidence

suggests that inexperienced first-year students lacking prior

programming knowledge or skill may have difficulties when

endeavoring to accomplish tasks utilizing this particular

software [44]. The The evaluation of IDE Visual Studio

usability revealed a need for further improvement for novices,

as it takes a lot of time and the interface is a bit tricky for

them. This finding gives extra credit to the CBT as a simple,

easy-to-use tool. However, there aren’t any assessments of

how well the students performed using these supplementary

resources in the literature that may be considered as a

suggestion for further study. The purpose of this empirical

study was to evaluate the students’ programming skills while

using the CBT. It was discovered to be really helpful in

raising students’ performance.

The CBT application has received favorable student

response, which is consistent with the literature’s claim that

fewer syntax errors can make learning programming simpler

and more pleasant. This shows that the CBT environment can

be used as a more convenient and beneficial substitute for

traditional Integrated Development Environments (IDEs),

which frequently issue syntax error warnings and compiler

feedback that can be confusing to inexperienced users.

Additionally, our research adds to the corpus of knowledge

on instructional strategies for programming education. While

the use of technologies like Augmented Reality (AR) and

mixed learning has been examined in the literature in various

ways, our study introduces the CBT application as a further

useful tool. The CBT application significantly improved

student interest and performance, which implies that it can

improve the learning process in programming education.

Students expressed interest in and appreciation for the tool in

addition to the performance enhancer. Comments from

students back up the Kirkpatrick model’s four levels. Online

teaching during the COVID-19 epidemic, where every

computer had a microphone available for usage, was shown

to benefit from the added feature of generating templates

through the optional audio commands. The template-based

IDEs were consequently taken into account for our

department’s teaching method.

CBT wasn’t designed to be commercialized; it was made

for our students to utilize in the Windows lab and for this

project. As a result, the application is only able to assist with

code creation because it lacks an internal compiler. Due to

this limitation, the IDE is an experimental environment, but

it is suitable for the task.

The study presents intriguing similarities and contrasts

when comparing our findings on the effectiveness of the CBT

approach in improving the programming skills of novice

learners with the literature. Previous research has

underscored the significance of problem-solving skills in the

field of programming, as evidenced by studies such as [12]

and [13]. Our study contributes to this body of knowledge by

examining a practical tool that specifically addresses the issue

of syntax errors, a well-documented obstacle for novice

programmers. This assertion not only corresponds with but

also expands upon the theoretical comprehension of

difficulties encountered in programming education,

indicating that the CBT tool can have a crucial impact in

tackling these obstacles. In contrast to conventional IDEs like

Visual Studio, which have been seen to be overwhelming for

first-year students [44], CBT presents a more accessible and

user-friendly interface, suggesting a possible transformation

in the approach to teaching beginning programming.

The results of this study suggest the need for a

reassessment of the conventional pedagogical methods

employed in programming instruction, particularly for

individuals who are new to the subject. The efficacy and

straightforwardness of CBT underscore the necessity for

educational resources that better correspond to the learners’

initial proficiency levels. Further investigation is required to

examine the enduring effects of utilizing these simplified

tools on students’ proficiency in programming and their

ability to adapt to more sophisticated programming principles

in the long run. Moreover, conducting comparative studies

that evaluate the efficacy of CBT in comparison to both

classic and current IDEs across many educational settings

would yield more profound understandings. This research has

International Journal of Information and Education Technology, Vol. 14, No. 3, 2024

440

the potential to make a substantial contribution to the current

endeavors aimed at mitigating dropout rates in programming

courses and improving overall learning results.

VI. CONCLUSIONS

The use of templates by the students proved its

effectiveness in the development of simple programs by the

new learners. It guarantees the correct constructs that the

students can integrate when they translate the logic that could

be drawn as a flowchart into a clean, correct code, therefore

enhancing the performance and consequently increasing the

confidence and interest while reducing the number of failures

and dropouts. It also helps in making the switch between

different programming languages an easy job in academia

and in the marketplace. The Code By Template (CBT)

application was developed by the author as a student support

tool. To the best of the writer’s knowledge, it is one of the

first studies looking at how such a development environment

could enhance student achievement and acceptance. As a

teaching tool, CBT is not claimed to be complete, but it

proves the concept of getting over simple mistakes in code

writing and boosts the students’ performance. Accordingly,

we encourage the vendors to consider adding code-writing

support functions to the current programming environments.

The CBT can be used to produce clear and accurate code, just

like any other calculator used to solve mathematical tasks.

The tool can be used by the students as a scaffold for as long

as necessary until they are comfortable writing their own

correct codes. Such assistance lowers programming-related

anxiety and, ideally, lowers the dropout rate.

APPENDIX

Table A. The questions and their thematic classifications

Question Theme

I enjoyed the Code By Template (CBT) application Enjoyment

CBT supports the navigation through the code Navigability

CBT reduces the code writing complexity Complexity

CBT provides a reliable and robust programming environment Reliability

CBT increased my confidence in code writing Confidence

I intend to continue using the CBT application Continuity

CBT supports the understanding of the links between the different constructs Understanding

I believe that CBT empowered my learning Empowerment

I found CBT application easy to use Ease of use

I found the CBT application useful for learning Usefulness

I believe that I am capable of learning on my own through the CBT app Learnability

Using CBT application would improve my course performance Performance

CBT application supports practical teaching and learning Practicability

CBT application increased my interest in the subject Interest

I prefer using CBT application instead of the direct code writing Preference

Learning by CBT answers the questions that I sometimes feel embarrassed to ask in the class Embarrassment

I prefer using CBT application through, voice, buttons, both, or none Usage through

CONFLICT OF INTEREST

The author declares no conflict of interest.

REFERENCES

[1] R. M. Siegfried, D. Liporace, and K. G. Herbert-Berger, “What can the

reid list of first programming languages teach us about teaching CS1?”

in Proc. the 50th ACM Technical Symposium on Computer Science

Education, 2019, pp. 1256–1257.

https://doi.org/10.1145/3287324.3293830

[2] M. Kesselbacher, “Supporting the acquisition of programming skills

with program construction patterns,” in Proc. 2019 IEEE/ACM 41st

International Conference on Software Engineering: Companion, ICSE-

Companion 2019, pp. 188–189. https://doi.org/10.1109/ICSE-

Companion.2019.00077

[3] S. Y. Al-Imamy, “Computer programming course for non-mis business

students: Curriculum, perception and enrichment,” IOSR Journal of

Business and Management, vol. 19, no. 03, pp. 87–95, 2017.

https://doi.org/10.9790/487X-1903018795

[4] C. E. Morton, S. F. Smith, T. Lwin, M. George, and M. Williams,

“Computer programming: should medical students be learning it?”

JMIR Medical Education, vol. 5, no. 1, 11940, 2019.

https://doi.org/10.2196/11940

[5] A. Azad and D. T. Smith, “Teaching an introductory programming

language in a general education course,” Journal of Information

Technology Education. Innovations in Practice, vol. 13, no. 57, 2014.

https://doi.org/10.28945/1992

[6] A. Yadin, “Reducing the dropout rate in an introductory programming

course,” ACM Inroads, vol. 2, no. 4, pp. 71–76, 2011.

https://doi.org/10.1145/2038876.2038894

[7] W. M. Kunkle and R. B. Allen, “The impact of different teaching

approaches and languages on student learning of introductory

programming concepts,” ACM Transactions on Computing Education

(TOCE), vol. 16, no. 1, pp. 1–26, 2016.

https://doi.org/10.1145/2785807

[8] T. Koulouri, S. Lauria, and R. D. Macredie, “Teaching introductory

programming: A quantitative evaluation of different approaches,”

ACM Transactions on Computing Education (TOCE), vol. 14, no. 4,

pp. 1–28, 2014. https://doi.org/10.1145/2662412

[9] C. Y. Tsai and Y. C. Lai, “Design and validation of an augmented

reality teaching system for primary logic programming education,”

Sensors, vol. 22, no. 1, 2022. https://doi.org/10.3390/s22010389

[10] M. Figueiredo, M. A. Cifredo-Chacon, and V. Goncalves, “Learning

programming and electronics with augmented reality,” in proc.

International Conference on Universal Access in Human-Computer

Interaction, 2016, Springer, Cham, pp. 57–64.

https://doi.org/10.1007/978-3-319-40238-3_6

[11] I. Karvelas, “Investigating novice programmers’ interaction with

programming environments,” Annual Conference on Innovation and

Technology in Computer Science Education (ITiCSE), pp. 336–337,

2019. https://doi.org/10.1145/3304221.3325596

[12] A. K. Veerasamy, D. D’Souza, R. Linden, and M. J. Laakso,

“Relationship between perceived problem-solving skills and academic

performance of novice learners in introductory programming courses,”

Journal of Computer Assisted Learning, vol. 35, no. 2, pp. 246–255.

2019. https://doi.org/10.1111/jcal.12326

[13] Malik, S. Iqbal, R. Mathew, A. Al‐Sideiri, J. Jabbar, R. Al‐Nuaimi, and

R. M. Tawafak, “Enhancing problem‐solving skills of novice

programmers in an introductory programming course,” Computer

Applications in Engineering Education, vol. 30, no. 1, pp. 174–194,

2022, https://doi.org/10.1002/cae.22450

[14] H. J. B. Rocha, P. C. D. A. R. Tedesco, E. D. B. Costa, “On the use of

feedback in learning computer programming by novices: a systematic

literature mapping,” Informatics in Education, 2022.

https://doi.org/10.15388/infedu

[15] S. Y. Al-Imamy, “Blending printed texts with digital resources through

augmented reality interaction,” Education and Information

Technologies, vol. 25, no. 4, pp. 2561–2576, 2020.

https://doi.org/10.1007/s10639-019-10070-w

International Journal of Information and Education Technology, Vol. 14, No. 3, 2024

441

https://doi.org/10.1145/3287324.3293830
https://doi.org/10.1109/ICSE-Companion.2019.00077
https://doi.org/10.1109/ICSE-Companion.2019.00077
https://doi.org/10.9790/487X-1903018795
https://doi.org/10.2196/11940
https://doi.org/10.28945/1992
https://doi.org/10.1145/2038876.2038894
https://doi.org/10.1145/2785807
https://doi.org/10.1145/2662412
https://doi.org/10.3390/s22010389
https://doi.org/10.1007/978-3-319-40238-3_6
https://doi.org/10.1145/3304221.3325596
https://doi.org/10.1111/jcal.12326
https://doi.org/10.1002/cae.22450
https://doi.org/10.15388/infedu.2023.09
https://doi.org/10.1007/s10639-019-10070-w

[16] S. Al-Imamy, J. Alizadeh, and M. A. Nour, “On the development of a

programming teaching tool: The effect of teaching by templates on the

learning process,” Journal of Information Technology Education:

Research, vol. 5, no. 1, pp. 271–283, 2006.

https://doi.org/10.28945/247

[17] M. A. Nour, S. Al-Imamy, and J. Alizadeh, “An empirical investigation

of student perceptions of the effect of a blended learning environment

on the learning outcomes,” International Journal of Excellence in e-

Solutions for Management, vol. 1, no. 2, pp. 27–39, 2007.

[18] A. Altadmri and N. C. C. Brown, “37 million compilations:

Investigating novice programming mistakes in large-scale student data,”

in Proc. the 46th ACM Technical Symposium on Computer Science

Education, PP. 522–527, 2015.

https://doi.org/10.1145/2676723.2677258

[19] Z. Xu, A. D. Ritzhaupt, F. Tian, and K. Umapathy, “Block-based versus

text-based programming environments on novice student learning

outcomes: a meta-analysis study,” Computer Science Education, vol.

29, no. 2, pp. 177–204, 2019.

https://doi.org/10.1080/08993408.2019.1565233

[20] C. Watson, and F. W. Li, “Failure rates in introductory programming

revisited,” in Proc. the 2014 conference on Innovation & technology in

computer science education, pp. 39–44, 2014.

https://doi.org/10.1145/2591708.2591749

[21] J. Bennedsen, and M. E. Caspersen, “Failure rates in introductory

programming,” AcM SIGcSE Bulletin, vol. 39, no. 2, pp. 32–36, 2007.

https://doi.org/10.1145/1272848.1272879

[22] A. A. R. H. Ansari and D. R. Vora, “NLI-GSC : A natural language

interface for generating SourceCode,” International Journal of

Advanced Computer Science and Applications, vol. 13, no. 1, 2022.

https://doi.org/10.14569/IJACSA.2022.0130198

[23] T. Barik, “Error messages as rational reconstructions”. North Carolina

State University ProQuest Dissertations Publishing, 2018.

[24] C. Kelleher, and R. Pausch, “Lowering the barriers to programming: A

taxonomy of programming environments and languages for novice

programmers,” ACM Computing Surveys (CSUR), vol. 37, no. 2, pp.

83–137, 2005. https://doi.org/10.1145/1089733.1089734

[25] M. Idrees, F. Aslam, K. Shahzad, and S. M. Sarwar, “Towards a

universal framework for visual programming languages,” Pak. J. Engg.

Appl. Sci., vol. 23, pp. 55–65, 2018.

[26] A. Repenning, “Moving beyond syntax: Lessons from 20 years of

blocks programing in agentsheets,” Journal of Visual Languages and

Sentient Systems, vol. 3, no. 1, pp. 68–91, 2017.

https://doi.org/10.18293/VLSS2017-010

[27] N. Bubica and I. Boljat, “Teaching of novice programmers: Strategie,

programming languages and predictors,” in Proc. V International

Conference of Information Technology and Development of Education,

Lanuary, 2014.

[28] T. Daly, “Minimizing to maximize: An initial attempt at teaching

introductory programming using Alice,” Journal of Computing

Sciences in Colleges, vol. 26, no. 5, pp. 23–30, 2011.

[29] I. Utting, S. Cooper, M. Kolling, J. Maloney, and M. Resnick, “Alice,

greenfoot, and scratch--a discussion,” ACM Transactions on

Computing Education (TOCE), vol. 10, no. 4, pp. 1–11, 2010.

https://doi.org/10.1145/1868358.1868364

[30] U. AbdulSamad and R. Romli, “A comparison of block-based

programming platforms for learning programming and creating simple

application,” in Proc. International Conference of Reliable Information

and Communication Technology, 2022, pp. 630–640.

https://doi.org/10.1007/978-3-030-98741-1_52

[31] J. J. Thomas, V. Suresh, M. Anas, S. Sajeev, and K. S. Sunil,

“Programming with natural languages: A survey,” in Proc. Computer

Networks and Inventive Communication Technologies, 2022,

Singapore, pp. 767–779. https://doi.org/10.1007/978-981-16-3728-

5_57

[32] S. Lau, and P. Guo, “From ‘Ban it till we understand it’ to ‘Resistance

is futile’: How university programming instructors plan to adapt as

more students use AI code generation and explanation tools such as

ChatGPT and GitHub Copilot,” in Proc. the 2023 ACM Conference on

International Computing Education Research-Volume 1, 2023, pp.

106–121. https://dx.doi.org/10.1145/3568813.3600138

[33] M. McCracken, V. Almstrum, D. Diaz, M. Guzdial, D. Hagan, Y. B.-

D. Kolikant, and T. Wilusz, “A multi-national, multi-institutional study

of assessment of programming skills of first-year CS students,” in Proc.

Conference on Innovation and technology in computer science

education, 2001, pp. 125–180. https://doi.org/10.1145/572133.572137

[34] R. McCartney, J. Boustedt, A. Eckerdal, K. Sanders, and C. Zander,

“Can first-year students program yet? A study revisited,” in Proc. the

Ninth Annual International ACM Conference on International

Computing Education Research, 2013, pp. 91–98.

https://doi.org/10.1145/2493394.2493412

[35] I. Utting, A. E. Tew, M. McCracken, L. Thomas, D. Bouvier, and R.

Frye, “A fresh look at novice programmers’ performance and their

teachers’ expectations,” in Proc. Conference on Innovation and

Technology in Computer Science Education, 2013, pp. 15–32.

https://doi.org/10.1145/2543882.2543884

[36] B. A. Becker, “An effective approach to enhancing compiler error

messages,” in Proc. the 47th ACM Technical Symposium on Computing

Science Education, 2016, pp. 126–131.

https://doi.org/10.1145/2839509.2844584

[37] B. A. Becker, K. Goslin, and G. Glanville, “The effects of enhanced

compiler error messages on a syntax error debugging test,” in Proc. the

49th ACM Technical Symposium on Computer Science Education,

2018, pp. 640–645. https://doi.org/10.1145/3159450.3159461

[38] V. J. Traver, “On compiler error messages: what they say and what they

mean,” Advances in Human-Computer Interaction, 2010,

https://doi.org/10.1155/2010/602570

[39] P. Bouna, “Visual studio code for C developers,” Packt Publishing,

2022.

[40] S. Gul, M. Asif, W. Ahmad, and U. Ahmad, “Teaching programming:

A mind map based methodology to improve learning outcomes,” in

Proc. 2017 International Conference on Information and

Communication Technologies (ICICT), 2017, pp. 209–213.

https://doi.org/10.1109/ICICT.2017.8320192

[41] M. Mladenovic, I. Boljat, and Z. Zanko, “Comparing

loops misconceptions in block-based and text-based programming

languages at the K-12 level,” Education and Information Technologies,

vol. 23, no. 4, pp. 1483–1500, 2018. https://doi.org/10.1007/s10639-

017-9673-3

[42] O. Meerbaum-Salant, M. Armoni, and M. Ben-Ari, “Habits of

programming in scratch,” in Proc. the 16th Annual Joint Conference

on Innovation and Technology in Computer Science Education, 2011,

pp. 168–172. https://doi.org/10.1145/1999747.1999796

[43] D. Kirkpatrick, “Evaluating training program,” Alexandria, VA:

American Society for Training and Development, 1975.

[44] A. Muhammad, and I. Ashraf, “A survey on evaluating usability of

visual studio,” Pakistan Journal of Engineering and Technology, vol.

5, no. 1, pp. 23–28, 2022.

Copyright © 2024 by the authors. This is an open access article distributed

under the Creative Commons Attribution License which permits unrestricted

use, distribution, and reproduction in any medium, provided the original

work is properly cited (CC BY 4.0).

International Journal of Information and Education Technology, Vol. 14, No. 3, 2024

442

https://doi.org/10.28945/247
https://doi.org/10.1145/2676723.2677258
https://doi.org/10.1080/08993408.2019.1565233
https://doi.org/10.1145/2591708.2591749
https://doi.org/10.1145/1272848.1272879
https://doi.org/10.14569/IJACSA.2022.0130198
https://doi.org/10.1145/1089733.1089734
https://doi.org/10.18293/VLSS2017-010
https://doi.org/10.1145/1868358.1868364
https://doi.org/10.1007/978-3-030-98741-1_52
https://doi.org/10.1007/978-981-16-3728-5_57
https://doi.org/10.1007/978-981-16-3728-5_57
https://doi.org/10.1145/572133.572137
https://doi.org/10.1145/2493394.2493412
https://doi.org/10.1145/2543882.2543884
https://doi.org/10.1145/2839509.2844584
https://doi.org/10.1145/3159450.3159461
https://doi.org/10.1155/2010/602570
https://doi.org/10.1109/ICICT.2017.8320192
https://doi.org/10.1007/s10639-017-9673-3
https://doi.org/10.1007/s10639-017-9673-3
https://doi.org/10.1145/1999747.1999796
https://creativecommons.org/licenses/by/4.0/

	IJIET-V14N3-2064-IJIET-11208

