
Enhancing Student Learning and Engagement with Object-
Oriented Block-Based Programming Tool

Xavier Jia Le Chin1, Chee Kiat Seow2, Yiyu Cai3, Yongqing Zhu4, Min Wang5, and Qi Cao2,*

1School of Computing Science, University of Glasgow, Singapore
2School of Computing Science, University of Glasgow, Glasgow, Scotland, UK

3School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore
4School of Science and Technology, Singapore University of Social Sciences, Singapore

5School of Information Science and Technology, Guangdong University of Foreign Studies, Guangzhou, China
Email: 2002058@sit.singaporetech.edu.sg (X.J.L.C.); CheeKiat.Seow@glasgow.ac.uk (C.K.S.); myycai@ntu.edu.sg (Y.C.);

yqzhu@suss.edu.sg (Y.Z.); wangmin@gdufs.edu.cn (M.W.); qi.cao@glasgow.ac.uk (Q.C.)
*Corresponding author

Abstract—Technologies have been adopted and integrated
into various aspects of life, including education and learning.
Gamified learning is effective to promote student learning and
motivations. Object-Oriented Programming (OOP) is a
fundamental topic taught to university students, and in certain
countries, it is introduced as an enrichment course for younger
students. It is beneficial to develop young students on the
interests in software programming. Equipping younger students
with essential programming skills will be helpful and better
prepare them to excel in the digital age in the future. This
research leverages the benefits of gamification to enhance
student engagement by developing an educational game for
teaching OOP. The developed educational visual programming
tool simplifies complex OOP concepts and engagingly presents
them through the medium of a game. It provides an alternative
learning approach to visualizing and understanding OOP. The
study yielded positive results, with improved test scores and a
more consistent performance. It highlights the effectiveness of
this approach in teaching OOP. The positive feedback from
students regarding their enjoyment of gameplay also shows the
potential of gamified learning in enhancing engagement.

Keywords—object-oriented programming, gamified learning,
block-based programming, interactive game building

I. INTRODUCTION

It is useful to equip the younger generation with technical
skills, including coding and technological literacy. Numerous
benefits were observed in improving the technological
fluency of children through software programming [1], e.g.,
algorithmic thinking or problem-solving skills. However,
further research is required to incorporate acceptable
educational technologies into teaching software
programming. As such, there is a reasonable demand for a
software programming tool suitable for children in the
educational market.

There were initiatives in some countries to provide
enrichment training in software programming fundamentals
to adolescents in schools. For example, young students in
Singapore were taught how to do procedural programming or
block-based programming, which takes input data, processes
it, and produces the corresponding output data. These
initiatives promoted future careers in the Infocomm
Technologies (ICT) industry to students. This enables
individuals to adapt to the ever-evolving landscape of
programming languages [2]. However, these initiatives
usually do not cover popular paradigms like Object-Oriented
Programming (OOP). OOP focuses on objects and their

behaviors which works in a vastly different way. It allows
software programmers to create various classes and objects
which model the behaviors of data. It accentuates that a
supplementary software tool on OOP learning could benefit
such initiatives for nurturing the interests of young students
in software programming.

It is crucial to adopt a pragmatic approach that focuses on
the fundamental principles of programming. While logical
reasoning, problem-solving, and computational thinking are
already fostered through mainstream curriculum subjects [3],
rudimentary programming concepts can be introduced to
supplement the existing syllabus. However, the conventional
methods of learning software programming often fall short in
engaging students and promoting comprehension, which is
frequently characterized as dull and repetitive. Lectures on
different programming languages, syntax, and semantics are
followed by laboratory classes where students simply
replicate the steps provided by lecturers. This approach tends
to prioritize memorization over comprehension, limiting the
ability of students to grasp the subject beyond a superficial
level of recalling information [4]. While explanation and
logic are important aspects of learning, they do not
necessarily facilitate a deep understanding of the topic. A
higher level of abstraction is crucial for comprehending and
applying programming concepts effectively [5]. Merely
memorizing the concepts without truly understanding them
can be detrimental to learning experiences.

Moreover, the current laboratory classes with one lecturer
guiding approximately 50 students, may inadvertently
contribute to a cycle of learned helplessness among students.
This cycle occurs when students struggle to bridge the gap in
understanding due to limited guidance and incompatible
learning styles. Learned helplessness can be described as a
state of powerlessness resulting from persistent failures,
leading to apathy towards learning, particularly observed in
the study of mathematics [6]. Moreover, learned helplessness
in mathematics could signify a similar experience with
software programming, as both involve problem-solving,
logical thinking, and the use of algorithms to solve complex
problems. Mathematics and programming share a logical
foundation and are complementary [7]. The incorporation of
software programming into mathematics education elevated
the performance and interest of students [8, 9]. Therefore, a
visual representation of the algorithms and programming in
education could stimulate the interests of students, which

International Journal of Information and Education Technology, Vol. 14, No. 7, 2024

910doi: 10.18178/ijiet.2024.14.7.2117

Manuscript received February 18, 2024; revised March 8, 2024; accepted April 8, 2024; published July 9, 2024

potentially reduces learned helplessness.
 This research was driven by the significance and relevance

of OOP in modern programming paradigms, as OOP holds a
prominent position among the most widely used
programming languages globally [10]. This research aims to
address the aforementioned challenges by developing a novel
gamified visual OOP tool to teach OOP concepts [5],
prioritizing comprehension over memorization. By
incorporating game design elements into a non-game context
[11], the visual programming tool aims to effectively engage
students and improve their understanding of abstract
programming topics [12]. The main contributions of this
research are as follows:
 A gamified visual OOP tool simplifies abstract OOP

topics by providing interactive game elements that
facilitate a hands-on approach to learning. It aims to offer
students an engaging learning experience through
experimentation, harnessing the immediate feedback loop
present in games, which is lacking in conventional
classroom learning.

 A level progression system, comprising of a tutorial stage,
and various game objectives are to be implemented in the
visual OOP tool to maintain student retention and
motivation. It contributes to the development of
innovative educational tools that address the issue of
learned helplessness and promote effective programming
education in the OOP course.

The organization of the remaining parts of this paper is as
follows. Section II introduces the related works. Section III
presents the proposed methodology. Section IV discusses the
case study. Section V concludes the paper with future works.

II. LITERATURE REVIEW
Gamification is the application of game elements in non-

gaming systems to make learning more engaging and
interesting for students [13]. Gamification addresses the
issues persistent in traditional education, namely the lack of
real-time feedback and visualization. Serious games that
incorporate learning activities are a form of gamification that
is generally used in education [14, 15]. They serve as potent
tools in persuasive technology to influence user behavior in
alignment with intended core values.

OOP consists of complex concepts that are difficult for
beginners due to the lack of real-time visual feedback, which
may lead to learned helplessness [6]. Gamification is
considered an effective methodology in teaching
programming since it encourages creativity and critical
thinking [16]. An example of such is the utilization of a
serious game to break down complex cybersecurity concepts
when teaching students [17], where experiments and results
are presented from the perspectives of an educator.
Incorporating basic gamification elements into a traditional
introductory programming course demonstrates an increase
in class engagement and attendance rate [18], which provides
valuable insight into the preferred game mechanics of
students and potential pitfalls. A game-based learning
approach was also adopted to teach university students
sorting algorithms of the Data Structures course [19], using a
web portal to provide better accessibility to students.

However, learning games are not a replacement for
teachers or existing school curricula but a supplementary

product. Teachers play a critical role in ensuring that games
align with the learning objectives and needs of students. As
such, the educational game must be simple, possess clear
rules, and have a defined objective to effectively fulfil its role
as a supplementary tool for educators in their classrooms.

The plausibility of gamification is explored as a useful
technique for learning unfamiliar concepts [20]. Game
elements such as points, progress bars, leaderboards, and
badges encourage students to engage with games by behaving
as a form of conditional reinforcement, through mini-
challenges and instant feedback systems. Instant feedback
positively influences the learning and achievement of
students, where immediate feedback helps students
understand the subject better [21]. Although the efficacy of
visual feedback is discussed in guiding and motivating
Computing Science (CS) students to achieve success [22], it
also possibly revealed that visual feedback without
interactive functions only benefitted highly driven students.

A serious game was introduced in the form of a virtual
museum to solve object-oriented problems [23]. A review
was conducted on game designs where most games were for
teaching procedural programming [24]. Another review
discussed various serious games to teach programming
courses [25]. But no games for teaching OOP were included,
thus highlighting a niche in the market.

As a type of visual programming language, Block-Based
Programming Languages (BBPL) enable users to visually
drag and drop blocks to create executable programs, rather
than writing software code using a traditional textual
language. Various BBPL were analyzed based on the metrics
of usability, teaching materials, programming language
capabilities, syntaxes, paradigms, etc. [26]. Block-based
serious games were introduced to teach introductory
programming courses in Higher Education [27], with Scratch
being the most popular. However, Scratch is classified as an
object-based language, not an object-oriented language
because it lacks classes and inheritance [28]. Therefore, it is
observed that most BBPL lack support for OOP.

Support for inheritance is necessary for a language to
become object-oriented, as such, most BBPL are not suited
for teaching OOP. However, teaching OOP using a modified
mainstream BBPL called Blockly was experimented on [29],
which introduces code blocks relating to OOP concepts,
omitting language-based syntax. The usage of code blocks
enables students to focus on OOP principles without
worrying about the specifics of a textual language, which has
streamlined the learning experience. Examining another
BBPL implementation named Alice, it could be observed that
students achieved higher scores and had a preference towards
OOP, but still misunderstood certain OOP concepts [30].

III. PROPOSED METHODOLOGY
From the literature review, it is observed that gamification

is complex and requires a more nuanced approach in its
implementation. The impact of gamification on students’
learning and engagement depends on a variety of factors:
 Game Design: The game should be brief, enjoyable, and

easy to play with clear learning objectives.
 Game Elements: The game should incorporate elements,

such as points, badges, levels, etc.
 Interface and Controls: The game should utilize a simple

International Journal of Information and Education Technology, Vol. 14, No. 7, 2024

911

interface and control scheme.
 Teacher Involvement: The game should be designed as a

supplementary tool in education. The teacher’s role in
guiding the students is still significant.

 Platform: The game should consider its accessibility to
students and educators alike.

OOP is a popular programming paradigm, to equip
students with the necessary knowledge for tomorrow’s
society. Hence, a carefully designed educational game that
places emphasis on OOP concepts rather than programming
syntaxes, could be introduced as a supplementary product to
existing introductory programming courses. Moreover, the
proposed methodology fulfils a niche, as the examination of
existing products indicates a gap in the market.

It motivates the necessity to propose a methodology to
create an OOP tool, with the inclusion of a block-based
programming interface. The proposed methodology allows
students to interact with entities within the game by utilizing
a custom-made OOP-centric BBPL. It accounts for an
immediate visual feedback system to promote active
participation and attention retention as students can readily
observe the output of their code and modify it accordingly.

Tower Defence (TD) has been selected as the genre for
game creation due to its reputation for simplicity and
accessibility. It incorporates a drag-and-drop control scheme,
making it easy for players to engage with the game. This
intuitive control system is advantageous as it closely
resembles those found in BBPL, thereby reducing confusion
to a minimum. A sample screenshot of the TD game is shown
in Fig. 1, where players must prevent enemies from traversing
from points A to B. By strategically placing turrets with
offensive capabilities along the enemy path, players can
effectively defend their stronghold. This straightforward
gameplay, coupled with the drag and drop controls, ensures
that the game is enjoyed by players of all skill levels.

Fig. 1. Sample screenshot of the Tower Defence game.

A. Overall Software Architecture
Unity Engine and C Sharp (C#) programming language

were used in the game’s development. Unity facilitates the
distribution of games across various platforms, including a
WebGL application, enabling direct play on web browsers
without the need for installing any software on players’
computers, thereby enhancing the game’s accessibility.

The overall software architecture is shown in Fig. 2. The
crux of the game is composed of three core components:

game map, enemies, and turrets. They work in tandem
using a Singleton Design Pattern, creating an engaging
gameplay experience. The primary target audience for the
proposed game is students. Two user stories are formulated
and outlined from both educational and gaming perspectives:

1) As a student who is new to OOP, I want the game to be
simple yet engaging and interactive, so that I can learn
the concepts in a memorable way. This means that the
game should have clear instructions, interesting
graphics, and be easy to understand.

2) As a student who enjoys challenges while learning, I
want the game to have different difficulty levels, so that
I can progress at my own pace and feel a sense of
accomplishment as I learn new concepts. It means that
the game should have difficulty levels that gradually
increase and provide measurable forms of success.

Fig. 2. High-level software architecture.

Game Map: As a crucial component of the OOP learning

game, the map includes different obstacles and venues for the
construction of a turret. Players must navigate around the
obstacles, as it blocks the turrets’ line of sight and provides
cover for the enemies. These factors affect gameplay by
providing different strategic options for players to take
advantage of. Each map featured in each stage of the game is
randomly generated in a three-step process as follows:
 Genetic Algorithm (GA) is used to iteratively modify a

population of individual maps, selecting maps randomly
from the population to be parents and produce the next
generation of offsprings. Over successive generations, the
population evolves toward an optimal map.

 Knight Piece Obstacle Generation is performed iteratively
for each map derived from GA. As the grid-like design of
the map draws similarity to a chessboard, obstacles were
designed to be generated by selecting random points on
the grid and calculating all the possible L-shaped moves
that a knight piece can perform. Each move is marked as
an obstacle on the game map.

 A start point and an end point will be placed on a random
edge of the map for the A-star path generation. An A-star
algorithm is adopted to generate the shortest path from the
start to the end points, maneuvering around obstacles
when possible. Obstacles are removed if there are no valid
paths.

International Journal of Information and Education Technology, Vol. 14, No. 7, 2024

912

Enemies: The enemies act as the primary obstacles for
players to overcome. Enemies come in several types, each
with its own unique quirks. For example, some enemies have
a high health pool, making them difficult to defeat. Other
enemies are fast and agile, making them priority targets.
Players can learn to adapt to enemy types and develop
strategies to defeat them.

The appearance of the enemies differs in the different game
scenes. However, as the pathing in TD games are linear, the
enemies share similar behaviours and differ only in their traits.
It means the same set of actions can be used for all enemies.
Enemies are created with the two key components:
 Finite State Machine (FSM): It consists of a set of states,

transitions between states, and actions performed when a
transition occurs. It can reduce the development process
time and provides a scalable solution for adding new
states to enemies if necessary. The state diagram of the
enemies in the game is shown in Fig. 3, where the state of
each individual enemy is transited among five states
according to various event triggers. The behaviors of the
enemies in each state are inherited from the superclass in
OOP programming.

Fig. 3. Finite state machine diagram of enemies.

 Scriptable Objects: It allows for the creation of modular
and reusable behaviour templates that can be shared
between different enemy types. Different Scriptable
Objects define their unique traits and behaviours.

Turrets: The turrets are the sole means of defence for
players, allowing them to strategically place weapons to take
out incoming enemies. Turrets possess varying functions,
such as machine guns, rocket launchers, or laser cannons.
Each can be coded to modify its behaviour by players.

Various functions and properties of the turrets are built
upon OOP principles and utilise the template method pattern
in its implementation. The Template Method Pattern allows
subclasses to override specific functions in an algorithm
without altering the overall method structure. It defines the
skeleton of an algorithm in a base class. The pattern is built
on the idea of constructing a base class template function
including all steps of the algorithm but defers to subclasses to
implement some or all of them. It enables subclasses to
specify their implementation while still adhering to the
structure specified in the superclass. This is the foundation
upon which the custom BBPL was constructed, as code
blocks share a common base while allowing for variety in
block design. A high-level diagram of template method
pattern is shown in Fig. 4, where the subclasses of Shoot, Wait,
Target, and Rotate have unique functions, besides those
inherited from their superclass of Behaviour.

Fig. 4. Template method pattern diagram.

The Singleton Design Pattern is a creational design pattern

that ensures only a singular instance of a class exists and
provides a global point of access to that instance. The merits
of utilizing a Singleton pattern include global access, reduced
memory usage and resources, especially for web deployment
using WebGL.

Several singletons are utilized to oversee various
components of the game, e.g., the AI (Artificial Intelligence)
Controller, Map Controller, and Game Controller. The
Unified Modeling Language (UML) class diagram is shown
in Fig. 5. The function of each key singleton mirrors the core
components shown in Fig. 2 and is explained next:
 AI Controller: The AI of enemies in the game

demonstrates autonomy. But it does not possess the ability
to directly interact with game objects. This deliberate
choice aims to prevent intricate interactions that could
complicate code maintenance and debugging. Hence, the
AI Controller is tasked with enabling this communication
and acts as a central repository for other game objects to
access information about each AI entity. Additionally, it
oversees the creation of all AI units within the game.

 Map Controller: It serves a comparable role to the AI
Controller. It oversees the GA map generation and acts as
the intermediary between the player and the game. Its
primary function is to facilitate interactions with the game
map. It enables players to purchase, position, and sell

International Journal of Information and Education Technology, Vol. 14, No. 7, 2024

913

turrets on individual cells of the grid-like map. It also
serves as the ground truth for the multiple turrets and
houses the essential code blocks for the turrets to interpret
and execute their functions.

 Game Controller: Unlike other singleton components, the
Game Controller encapsulates crucial information of the
game, including the game state, player’s resources, and
the progression between stages. It plays a pivotal role,
coordinating with the other components and providing
centralised control over the entire game.

B. Game Design
The developed game flowchart is shown in Fig. 6. The

game is designed with two stages: a tutorial stage and a game
stage. Within each stage there are two modes: code mode and
play mode. To provide clarity for the relationships of the
various stages and game modes, a brief UML class diagram
is shown in Fig. 7. It is observed that each stage in the game
contains only one set of game modes. Each game mode
performs a different function, and players can toggle between
the two modes at any time.

Fig. 5. UML class diagram of core components.

Fig. 6. Game flow and game scenes sequence.

Fig. 7. UML class diagram of the game design.

The code mode features a block-based programming
interface. This is the mode in which players can code their
turrets. A sample screenshot is shown in Fig. 8. It allows
players to visualise the output of their code and encourages
experimentation with the code blocks and OOP concepts.

Fig. 8. Code mode in the game.

In play mode, players place the turrets that they have coded

in code mode and play the game accordingly. The play
mode’s objectives are to complete various quests and prevent
enemies from entering the castles. A sample screenshot is
illustrated in Fig. 9.

International Journal of Information and Education Technology, Vol. 14, No. 7, 2024

914

Fig. 9. Play mode in the game.

The ability to freely switch between the code mode and

play mode encourages experimentation, which allows players
to visualize and receive real-time feedback, addressing the
challenges of learned helplessness. Moreover, it promotes
interactions between players and the game, thus increasing
engagement and minimizing idle behavior.

1) Tutorial stage
The goal of the tutorial stage is to familiarize players with

the game controls and the four basic principles of OOP:
Abstraction, Inheritance, Polymorphism, and Encapsulation.
The process of teaching players is split into seven learning
activities in sequence: Introduction, Abstraction, Inheritance,
Encapsulation, Polymorphism, Game Explanation, and a
final assessment of understanding, shown in Fig. 10.

Fig. 10. Learning activities in the tutorial stage.

The tutorial stage is designed to present theories to players

through an interactive slideshow, followed by a tutorial video
and an accompanying exercise. The learning activities are
designed in code mode to facilitate the familiarisation of the
concept of block programming and OOP. A sample
screenshot of the tutorial video is shown in Fig. 11.

Fig. 11. Sample tutorial video to teach players the five activities.

In the play mode of the tutorial stage, players are able to

apply their newfound knowledge in a risk-free and stress-free
environment. Players are implicitly introduced to quests
during the final phase, eliminating the need for detailed
explanations. Shown in Fig. 12, an example quest is outlined
in red, to eliminate at least 10 simulated enemies. In the event
where players wish to replay the tutorial, they can pause the

game and restart the tutorial stage.

Fig. 12. Tutorial quest in play mode.

After completing all learning activities and quests in the

tutorial stage, players are greeted with a congratulatory
message banner. They are granted the choice of restarting the
tutorial stage, or proceeding to the game stage, or returning to
the main menu, shown in Fig. 13.

Fig. 13. Tutorial quest in play mode.

Fig. 14. A randomly generated game map.

2) Game stage
The game stage allows for the application of OOP concepts

and theories. It offers endless gameplay as the game scales
infinitely in difficulty through its random map generation.
Upon each game round’s completion, a completely new map,
set of quests, and difficulty will be generated. This is made
possible by leveraging the GA and A-star algorithms in the
map generation. The algorithms are designed to be highly
customizable as they feature various parameters that can be
adjusted, which can be observed in the Map Generator class
within the UML class diagram shown in Fig. 5. Additionally,
Fig. 14 showcases a generated example of a map that differs
from previous game scenes. Lastly, several creational and
behavioural design patterns are utilised to modularise the
game components, which ensures the scalability of the game.

Introduction Abstraction Inheritance Encapsulation

Polymorphism Explanation Assessment

International Journal of Information and Education Technology, Vol. 14, No. 7, 2024

915

IV. RESULTS AND DISCUSSIONS
To evaluate the efficacy of the developed OOP game, a

case study is performed on students from tertiary levels. The
case study includes 15 voluntary participants between the
ages of 18 and 25, including ten participants from non-
Computing Science (CS) background, and five participants
with CS background and programming knowledge. The five
participants with CS background are assigned into the CS
group. While the ten non-CS participants are equally assigned
into the control group and experiment group randomly, who
had no prior experience with software programming
knowledge and educational games, as shown in Table 1.

Table 1. Participants and grouping

Participant
No.

Education
Level

Age
Group

Programming
Experience Group

1 University 22–25 None Control
2 University 22–25 Minimal Experiment
3 University 22–25 Minimal Control
4 University 22–25 None Experiment
5 Polytechnic 18–21 Minimal Experiment
6 University 22–25 None Control
7 University 22–25 None Experiment
8 University 22–25 None Experiment
9 University 22–25 None Control
10 University 22–25 None Control
11 University 24–26 Experienced CS
12 University 24–26 Experienced CS
13 University 24–26 Experienced CS
14 University 24–26 Experienced CS
15 University 24–26 Experienced CS

When selecting participants for the control group and

experiment group, it is important to ensure that they had
minimal software programming experience or exposure. It
ensures that the assessment results are not influenced by prior
knowledge or experience of software programming. The term
programming experience is defined as previous exposure to
Introductory Programming courses but is not pursuing or has
not pursued the education in any variations of CS or ICT.

The control group and experiment group who had minimal
programming experiment are invited to participate in the
learning, quiz assessment, and survey. While the CS group
only participates in the survey, as they already had prior
experience of OOP and programming before this experiment.
The procedure of the case study is carried out as follows.

1) Participants in the control and experiment groups are
provided copies of OOP lecture slides. A traditional
lecture is given on the contents of the slides,
accompanied by a brief questions and answers session.

2) Participants are divided into their respective groups and
ushered into separate rooms. A self-study session with
permitted discussion is held. Both control and
experiment groups conduct self-directed learning on the
lecture slides, but the developed OOP game is
introduced to the experiment group.

3) A zero-discussion assessment is attempted by the 10
participants. The assessment consisted of 12 multiple
choice questions with four options shuffled randomly.
Each question carries the same mark weightage.

4) After the assessment, participants of the control group
were allowed to play with the developed OOP game.

5) A survey questionnaire was taken by all 15 participants
from three groups afterward.

The motivations behind the actions in Step 1 and 2 of the

procedure are twofold: one is to establish the necessity of
prior knowledge on the subject according to the literature
review; the other is a way to validate the legitimacy of the
developed educational game as a supplementary product to
the existing curriculum to learn OOP.

The control and experiment groups are examined by a quiz,
to test the basics of OOP, the four pillars of OOP, and
applications of these pillars. The boxplot of results is shown
in Fig. 15. The mean score of all participants is about 7.3. The
participants in the experiment group performed better than
the control group. The experiment group has a mean score
difference of about 20% as compared to the control group.
The mean score of the experimental group is about 11%
higher than the overall mean score of all participants. The
standard deviation of the experiment group at 1.82 is lower
than the control group’s 2.23. It indicates the experiment
group’s participants are more consistent in their
understanding of OOP.

Fig. 15. Boxplot of assessment results for control and experiment groups.

Table 2. Questionnaire questions

No Questions Responses Type

Q1 How would you rate the OOP
gameplay?

1 to 5 on a Likert
Scale

Q2
How agreeable are you with the
statement “The game was easy to
navigate”?

1 to 5 on a Likert
Scale

Q3
How agreeable are you with the
statement “The game’s controls were
easy to pick up”?

1 to 5 on a Likert
Scale

Q4
How agreeable are you with the
statement “The gameplay was easy to
understand”?

1 to 5 on a Likert
Scale

Q5
How agreeable are you with the
statement “The game improved my
understanding of OOP.”?

1 to 5 on a Likert
Scale

Q6
How agreeable are you with the
statement “The game made me
interested in learning OOP.”?

1 to 5 on a Likert
Scale

Q7 Which learning methods do you prefer?
Traditional Classroom
Lectures / Educational
Game / Both / None

Q8
Do you think secondary to university
level students playing the game could
learn OOP concepts?

Yes / No / Others

Q9

Is there any feedback you would like to
give regarding the game? (E.g., Ways to
improve, features you would like to see,
features you liked/disliked, etc.)

Short-text based
response

All 15 participants from three groups (i.e., control group,

experiment group, and CS group) are invited to perform the

International Journal of Information and Education Technology, Vol. 14, No. 7, 2024

916

survey questionnaire consisting of nine questions shown in
Table 2. Six out of nine questions are rating questions with a
five-point Likert scale: (1) Strongly Disagree, (2) Disagree,
(3) Neutral, (4) Agree, (5) Strongly Agree. The remaining
questions consist of multiple-choice questions and a short
text-based question. The questionnaire is designed to solicit
feedback of students, and classified as follows:
 Q1: Personal ratings of the game.
 Q2–Q4: The overall ease of use and understandability

of the game.
 Q5–Q6: The perceived efficacy of the game with regard

to its educational objectives.
 Q7–Q8: Personal preferences.
 Q9: Requirement gathering for future work on the

methodology and game development.
The feedback of all 15 individuals is collected and

summarized accordingly. The visualized response of the
ratings of the game is shown in Fig. 16. Most participants
gave the OOP game a perfect score, with an overall score of
4.73.

Fig. 16. Game rating for Q1.

The aggregated scores of Q2–Q4 are shown in Fig. 17,

where the participants are asked about the overall ease of use
and understandability of the OOP game. Most participants
find the game design straightforward, while a minority feel
neutral about it. It suggests that there is room for
improvement. However, the positive results indicate that the
game design is on the right track.

Fig. 17. Aggregated score on overall ease of use and understandability.

The aggregated scores of Q5 and Q6 are shown in Fig. 18,

where the participants are asked about their perceived
efficacy of the game regarding its educational objectives. It is
observed that most participants feel that the game improves
their interest in OOP programming. Fig. 18 shows a similar

distribution of results to that of Fig. 17, but there is an
increase in neutral responses. The increase in neutral
responses is negligible as the participants in the CS group
already have prior experience with OOP programming.

Fig. 18. Aggregated score on efficacy of the game regarding education.

It is observed in Fig. 19 that most participants prefer the
educational game as their learning method, while a minority
prefers both traditional classroom lectures and the OOP game.
This indicates that the educational game successfully fulfills
its role as a supplementary educational tool.

Fig. 19. Learning method preference in Q7.

It can be seen from Fig. 20, all participants agree that the

game could be applied to education, with the majority
supporting the idea of introducing it to secondary to
university level students. It indicates a consensus on the
potential benefits of incorporating the game into the
curriculum. The varying opinions on the appropriate starting
level further highlight the versatility and adaptability of the
OOP game for different educational contexts.

Fig. 20. Preference on applications to education level in Q8.

By analyzing the results obtained from the assessment and

questionnaire, the case study provides evidence that our
methodology is effective, practical, and feasible for OOP

0
(0%)

0
(0%)

0
(0%)

4
(26.7%)

11
(73.3%)

0
2
4
6
8

10
12
14

1 2 3 4 5

How would you rate the game? (15 responses)

0 0 4.44%

28.89%

66.67%

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

Ease of Use & Understandability

0 0

13.33%

33.33%

53.34%

0

0.1

0.2

0.3

0.4

0.5

0.6

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

OOP Learning Efficacy

0%

80%

6.70%

6.70%

6.70%

Do you think if secondary to university level students
could learn OOP concepts by playing the game?

No

Yes

Yes, can apply to Primary School too

Yes, maybe start from Upper Secondary

Yes, but Secondary students might
struggle, should start from Tertiary

International Journal of Information and Education Technology, Vol. 14, No. 7, 2024

917

learning. However, there are several limitations associated
with the methodology in this work. Firstly, this work uses
convenience sampling to select a small scale of 15
participants. This method of sampling has limitations, as it
may not provide a representative sample of the population
and may introduce bias into the study. The small sample size
limits the generalizability of the findings. In future work, we
may consider using a larger and more diverse sample to
increase the external validity of the findings. We may use
other sampling methods, e.g., random sampling or stratified
sampling, for a more representative sample of the population.

Secondly, there is limited manpower in this research who
furthermore worked on a part-time basis. This contrasts with
usual game developments which consist of a team of game
designers, game artists, and game programmers. The lack of
manpower limited the scope and scale of the methodology.

Thirdly, it lacks a baseline for game development in this
work, as the methodology is relatively novel. This work is
complex in the objectives, which may have affected the
ability to fully explore the methodology’s potential.

V. CONCLUSION
In this study, gamification techniques are applied to the

learning of OOP through the introduction of a novel block-
based programming tower defence game. The game omits
unnecessary syntax learning and exposes students to the
fundamental concepts of OOP, including Abstraction,
Inheritance, Encapsulation, and Polymorphism. It is
important to note that the developed educational game is not
intended to replace educators but rather to supplement their
teachings of the existing curricula.

The case study shows that students who use the developed
OOP game perform more consistently. Feedback gathered
from the participants show that they respond positively and
appreciate the inclusion of gamified learning. The
incorporating of gamification into the learning can enhance
the retention and absorption of information by providing
students with an experimental environment to test, visualize,
and validate their understanding of the OOP concepts.

Based on the feedback collected from all participants,
improvements and recommendations for future work include:
 Leaderboards: Currently it lacks a leaderboard to rank

players based on their scores. The inclusion of a
leaderboard would add meaning to these game elements
and benchmark among students.

 Co-op Multiplayer: It can be improved by adding a
cooperative multiplayer feature to foster teamwork
among students.

 Customizability: The platform allows educators to create
custom maps and quests, to enhance the effectiveness as
an educational tool.

 Variety: The current methodology has limited code
blocks, turrets, and enemy variations. To improve the
learning experience, a wider variety can be introduced.

CONFLICT OF INTEREST
The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS
Conceptualization, X.J.L.C., Y.C., and Q.C.; methodology,

X.J.L.C., Y.C., and Q.C.; software, X.J.L.C.; validation,
X.J.L.C.; formal analysis, X.J.L.C.; supervision, Q.C.;
writing—original draft preparation, X.J.L.C.; writing—
review and editing, X.J.L.C., C.K.S., Y.Z., M.W., and Q.C.;
all authors had approved the final version.

REFERENCES
[1] E. Macrides, O. Miliou, and C. Angeli, “Programming in early

childhood education: A systematic review,” International Journal of
Child-Computer Interaction, vol. 32, p. 100396, Jun. 2022.

[2] T. Gkrimpizi, P. Vassilios, and M. Ioannis, “Classification of barriers
to digital transformation in higher education institutions: Systematic
literature review,” Education Sciences, vol. 13, no. 7, 2023.

[3] P. L. Tin, “Coding as part of the mainstream curriculum,” Ministry of
Education Singapore, 04-Sep-2020.

[4] N. Cowan, “Working memory underpins cognitive development,
learning, and education,” Educational Psychology Review, vol. 26, no.
2, pp. 197–223, 2014. https://doi.org/10.1007/s10648-013-9246-y.

[5] Y. Soepriyanto and D. Kuswandi, “Gamification activities for learning
visual Object-Oriented Programming,” in Proc. 7th International
Conference on Education and Technology, 2021, pp. 209–213.

[6] N. Gürefe and O. Bakalım, “Mathematics anxiety, perceived
mathematics self-efficacy and learned helplessness in mathematics in
faculty of education students,” International Online Journal of
Educational Sciences, vol. 10, no. 3, pp. 154–166, 2018.

[7] D. M. Berry, “The essential similarity and differences between
mathematical modeling and programming,” Science of Computer
Programming, vol. 78, no. 9, pp. 1208–1211, 2013.

[8] S. E. Forsström and O. T. Kaufmann, “A literature review exploring
the use of programming in Mathematics Education,” International
Journal of Learning, Teaching and Educational Research, vol. 17, no.
12, pp. 18–32, 2018.

[9] M. Laurent, R. Crisci et al., “Impact of programming on primary
mathematics learning,” Learning and Instruction, vol. 82, 2022.

[10] L. S. Vailshery. Most used languages among software developers
globally 2022. Statista. [Online]. Available:
https://www.statista.com/statistics/793628/worldwide-developer-
survey-most-used-languages/

[11] S. Deterding, M. Sicart, L. Nacke, K. O’Hara, and D. Dixon,
“Gamification: Using game design elements in non-gaming contexts,”
Annual Conference Extended Abstracts on Human Factors in
Computing Systems, 2011, vol. 66, pp. 2425–2428.

[12] J. Hamari, J. Koivisto, and H. Sarsa, “Does gamification work?—A
literature review of empirical studies on gamification,” Annual Hawaii
International Conference on System Sciences, 2014.

[13] Y. Cai, W. van Joolingen, and K. Veermans, “Virtual and augmented
reality, simulation and serious games for education,” Springer
Singapore, 2021. https://doi.org/10.1007/978-981-16-1361-6

[14] C. Ebert, A. Vizcaino, and R. Grande, “Unlock the business value of
gamification,” IEEE Software, vol. 39, no. 06, pp. 15–22, 2022.

[15] Q. Cao, B. T. Png, Y. Cai, Y. Cen, and D. Xu, “Interactive virtual
reality game for online learning of science subject in primary schools,”
IEEE International Conference on Engineering, Technology &
Education, China, 2021, pp. 383–389.

[16] S. Azmi, N. A. Iahad, and N. Ahmad, “Attracting students’ engagement
in programming courses with gamification,” IEEE Conference on e-
Learning, e-Management and e-Services, Malaysia, 2016, pp. 112–115.

[17] W. Toledo, S. J. Louis, and S. Sengupta, “NetDefense: A tower defense
cybersecurity game for middle and high school students,” IEEE
Frontiers in Education Conference, Sweden, 2022, pp. 1–6.

[18] J. Figueiredo and F. J. García-Peñalvo, “Increasing student motivation
in computer programming with gamification,” IEEE Global
Engineering Education Conference, Portugal, 2020, pp. 997–1000.

[19] W. H. Lim, Y. Cai, D. Yao and Q. Cao, “Visualize and learn sorting
algorithms in data structure subject in a game-based learning,” IEEE
International Symposium on Mixed and Augmented Reality Adjunct,
Singapore, 2022, pp. 384–388.

[20] A. N. Saleem, N. M. Noori, and F. Ozdamli, “Gamification applications
in e-learning: A literature review,” Technology, Knowledge and
Learning, vol. 27, no. 1, pp. 139–159, 2021.

[21] A. P. Cavalcanti, A. Barbosa, R. Carvalho et al., “Automatic feedback
in online learning environments: A systematic literature review,”
Computers and Education: Artificial Intelligence, vol. 2, 2021.

International Journal of Information and Education Technology, Vol. 14, No. 7, 2024

918

[22] J. Seanosky, I. Guillot, D. Boulanger et al., “Real-time visual feedback:

A study in Coding Analytics,” in Proc. IEEE 17th International

Conference on Advanced Learning Technologies, 2017.

[23] T. Hainey, G. Baxter, J. Black et al., “Serious games as innovative

formative assessment tools for programming in Higher Education,” in

International Journal of Information and Education Technology, Vol. 14, No. 7, 2024

919

Proc. 16th European Conference on Games Based Learning, vol. 16,

2022.

[24] M. Aydin, H. Karal, and V. Nabiyev, “Examination of adaptation

components in serious games: A systematic review study,” Education

and Information Technologies, 2022.

[25] P. Toukiloglou and S. Xinogalos, “A systematic literature review on

adaptive supports in serious games for programming,” Information, vol.

14, 2023. https://doi.org/10.3390/info14050277

[26] R. Kraleva, V. Kralev, and D. Kostadinova, “A methodology for the

analysis of block-based programming languages appropriate for

children,” Journal of Computing Science and Engineering, vol. 13, no.

1, pp. 1–10, 2019. https://doi.org/10.5626/jcse.2019.13.1.1

[27] A. Vahldick, P. R. Farah et al., “A blocks-based serious game to

support introductory computer programming in undergraduate

education,” Computers in Human Behavior Reports, vol. 2, 2020.

[28] J. Maloney, M. Resnick, N. Rusk, B. Silverman, and E. Eastmond,

“The scratch programming language and environment,” ACM

Transactions on Computing Education, vol. 10, no. 4, pp. 1–15, 2010.

[29] O. Allen, X. Downs, E. Varoy, A. Luxton-Reilly and N. Giacaman,

“Block-Based Object-Oriented Programming,” IEEE Transactions on

Learning Technologies, vol. 15, no. 4, pp. 439-453, 2022.

[30] A. E. Rais, S. Sulaiman, and S. M. Syed-Mohamad, “Game-based

approach and its feasibility to support the learning of object-oriented

concepts and programming,” Malaysian Conference in Software

Engineering, Malaysia, 2011, pp. 307–312.

Copyright © 2024 by the authors. This is an open access article distributed

under the Creative Commons Attribution License which permits unrestricted

use, distribution, and reproduction in any medium, provided the original

work is properly cited (CC BY 4.0).

	IJIET-V14N7-2117-Conf.-13186-IELR 2024-C611

