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Abstract—Misconceptions in physics education, particularly 

in work and energy, present significant barriers to student 

understanding and achievement. Common misconceptions 

include misunderstandings of energy conservation principles, 

misapplying work-energy relationships, and confusion between 

potential and kinetic energy. These misconceptions are critical 

as they form the foundation for understanding more complex 

physics concepts. To address these challenges, this study 

introduces the Intelligent Teacher Assistant System (ITAS), 

which integrates the Technological Pedagogical Content 

Knowledge (TPACK) framework with machine learning to 

diagnose and address misconceptions in real-time. ITAS’s 

unique innovations include adaptive feedback tailored to 

individual learning needs, real-time diagnostics, and seamless 

alignment of technological tools with pedagogical strategies. 

System validation achieved a reliability score of 93.02% and 

usability score of 94.44%, based on standardized expert 

evaluations. Field testing with 150 students and 30 teachers 

demonstrated a 75% improvement in conceptual understanding, 

with average post-test scores increasing by 20%. These results 

underscore ITAS’s potential to transform physics education by 

addressing persistent misconceptions and fostering deeper 

student engagement. Future research will explore extending 

ITAS’s application to other subjects and refining its adaptive 

algorithms. 
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I. INTRODUCTION 

The development of educational technology has brought 

significant changes in teaching and learning methods 

worldwide. One concept that has garnered increasing 

attention is Technological Pedagogical Content Knowledge 

(TPACK), which integrates technology, pedagogy, and 

content knowledge to create more effective learning 

experiences [1]. TPACK equips teachers with the skills to 

design and implement innovative teaching strategies, 

including the use of Intelligent Teacher Assistant Systems 

(ITAS). These intelligent systems can assist teachers in 

diagnosing students’ misconceptions in physics concepts, 

which often hinder learning outcomes [2]. Misconceptions in 

physics education have been extensively documented, 

particularly in foundational topics like work and energy. 

Common examples include students believing that an object 

at rest cannot have energy, misunderstanding that work is 

always associated with motion, or failing to distinguish 

between kinetic and potential energy transformations. These 

misconceptions are critical to address because they form the 

basis for understanding more complex physics concepts and 

significantly impact students’ overall comprehension of 

mechanics. By focusing on ‘work and energy,’ this study 

aims to target these foundational gaps, which are frequently 

observed and have far-reaching implications for physics 

education outcomes [3, 4]. These misconceptions impede 

students’ conceptual understanding and negatively affect 

academic performance [5]. 

Despite the demonstrated potential of TPACK and 

intelligent systems, their practical application in physics 

education faces significant challenges, particularly the lack of 

real-time diagnostic tools capable of identifying and 

addressing misconceptions in critical concepts like work and 

energy. Additionally, many existing interventions are 

ineffective in providing adaptive, timely feedback to students, 

and the integration of technology into physics education often 

remains insufficient or misaligned with pedagogical needs. 

Many existing instructional methods fail to address 

misconceptions effectively in real-time [6, 7]. Traditional 

assessment methods, often paper-based, are unable to provide 

immediate feedback to students and teachers [8]. 

Consequently, there is a need for tools that can quickly 

identify and correct misconceptions during the learning 

process [9, 10]. Machine learning offers promising solutions 

by enabling systems to analyze large datasets and detect 

patterns indicative of misconceptions with high accuracy [8]. 

When integrated with the TPACK framework, machine 

learning can enhance the quality of physics teaching by 

providing timely and personalized interventions [11]. 

Misconceptions in physics education are deeply rooted and 

arise from various sources, such as incomplete instruction, 

incorrect explanations, or students’ prior knowledge [12]. 

Research has shown that misconceptions can persist despite 

traditional teaching approaches, highlighting the need for 

innovative methods to address these issues [13]. For example, 

students often misinterpret the concepts of kinetic and 

potential energy or misunderstand the principles behind 

Newton’s laws [3, 12]. Addressing these misconceptions 

promptly is crucial for improving students’ conceptual 

understanding and overall academic achievement [14]. 

Therefore, an ITAS equipped with machine learning and 

grounded in the TPACK framework can help teachers 

identify and address these misconceptions more effectively 

[15]. 

The TPACK framework, introduced by Mishra and 

Koehler, combines three essential types of knowledge: 
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Technological Knowledge (TK), Pedagogical Knowledge 

(PK), and Content Knowledge (CK) [16]. In ITAS, the 

Technological Knowledge (TK) component of the TPACK 

framework is directly linked to the implementation of 

machine learning algorithms. These algorithms are designed 

to analyze student responses, interaction patterns, and 

diagnostic data in real time. The machine learning models 

utilize labeled datasets to identify specific misconceptions, 

such as misinterpreting the principles of energy conservation 

or the relationship between work and energy. By integrating 

machine learning with the Pedagogical Knowledge (PK) and 

Content Knowledge (CK) components of TPACK, ITAS 

ensures that the diagnostic processes are not only 

technologically advanced but also aligned with effective 

teaching strategies and subject-specific content. For example, 

adaptive feedback mechanisms are designed to provide 

scaffolded exercises tailored to individual student needs, 

while maintaining alignment with the physics curriculum. 

This interplay allows ITAS to bridge the gap between 

technology and pedagogy, creating a system that is both 

innovative and educationally relevant [17]. Pedagogical 

knowledge involves effective teaching strategies, assessment 

methods, and techniques to motivate students [18]. Content 

knowledge pertains to a deep understanding of the subject 

matter, including the principles of physics and common 

misconceptions associated with them [19]. By integrating 

these three domains, TPACK helps teachers create cohesive 

and effective instructional experiences that leverage 

technology to enhance learning outcomes [20]. 

The use of machine learning in educational contexts, 

particularly in diagnosing misconceptions, has gained 

traction in recent years [21]. In ITAS, the technological 

aspects of TPACK are operationalized through the integration 

of machine learning algorithms to diagnose and address 

misconceptions. These algorithms analyze data from 

diagnostic tests, student responses, and interactions with 

instructional materials, identifying patterns that indicate 

specific misconceptions. For example, a machine learning 

model trained with labeled datasets can detect errors in 

understanding the principles of energy conservation or 

misapplications of work-energy relationships. 

This implementation is guided by TPACK’s Technological 

Knowledge (TK) component, which ensures the appropriate 

selection and use of machine learning tools. The Pedagogical 

Knowledge (PK) component influences the design of 

adaptive feedback mechanisms, ensuring that the algorithm-

generated responses align with effective teaching strategies. 

Finally, the Content Knowledge (CK) component ensures 

that the diagnostic outputs are accurate and tailored to the 

specific subject matter, such as physics concepts. 

The convergence of these TPACK components within 

ITAS allows machine learning algorithms to provide real-

time, adaptive diagnostics that are both technologically 

robust and pedagogically sound. For instance, when a 

misconception is identified, the system provides personalized 

recommendations, such as scaffolded exercises or interactive 

simulations, which are aligned with the curriculum and 

tailored to individual learning needs [11]. For instance, Baker 

and Yacef demonstrated that machine learning techniques 

could accurately detect misconceptions by analyzing student 

learning behaviors [22]. This capability allows for real-time 

feedback and personalized interventions, which are critical 

for addressing misconceptions effectively [23]. While prior 

studies have explored the TPACK framework and the use of 

machine learning in education independently, this study is 

among the first to integrate these two methodologies 

specifically for diagnosing and addressing misconceptions in 

physics education. Unlike existing tools that provide static 

assessments, ITAS leverages machine learning algorithms to 

perform real-time diagnostic analyses of student responses, 

offering immediate, adaptive feedback tailored to individual 

learning needs. Additionally, by embedding this capability 

within the pedagogically robust TPACK framework, ITAS 

ensures that technological solutions are seamlessly aligned 

with effective teaching practices and subject-specific content. 

This novel integration enhances the system’s ability to not 

only identify misconceptions but also recommend precise 

interventions, bridging a critical gap in current educational 

technologies. 

Several studies have highlighted the importance of real-

time assessment and feedback in education [24, 25]. 

Traditional assessment methods often fail to capture students’ 

learning processes and misconceptions as they occur [3]. In 

contrast, intelligent systems equipped with machine learning 

can offer continuous and adaptive assessment, providing 

immediate feedback to both students and teachers [26]. This 

real-time feedback mechanism helps teachers adjust their 

instructional approaches and address misconceptions before 

they become entrenched. Additionally, such systems can 

create a more adaptive and personalized learning 

environment, enhancing student motivation and engagement 

[27]. 

The significance of addressing misconceptions in physics 

education cannot be overstated. Misconceptions are often 

resistant to change and require targeted instructional 

strategies to overcome [28]. Hattie emphasized that effective 

teaching relies on identifying and addressing student 

misunderstandings promptly [29]. Furthermore, research by 

Pintrich and De Groot found that students’ motivation and 

self-regulated learning are closely linked to their conceptual 

understanding [30]. Therefore, an ITAS that leverages 

TPACK and machine learning can play a crucial role in 

helping students achieve a deeper and more accurate 

understanding of physics concepts. 

Ultimately, the development of an Intelligent Teacher 

Assistant System grounded in the TPACK framework and 

enhanced by machine learning addresses critical gaps in 

physics education. This research aims to construct an ITAS 

that can diagnose misconceptions in real-time and provide 

adaptive feedback to students. By integrating technological, 

pedagogical, and content knowledge, this system offers a 

practical solution for improving teaching effectiveness and 

student learning outcomes. The following sections will 

explore the relevant literature, methodologies, and findings 

that support the development and implementation of this 

innovative educational tool. 

II. LITERATURE REVIEW 

The integration of technology in education has become a 

significant area of research, particularly in enhancing 

teaching methodologies and improving student learning 

outcomes. The TPACK framework, which integrates 
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technological, pedagogical, and content knowledge, provides 

a comprehensive model for designing effective teaching 

strategies, especially in challenging subjects like physics. 

Specifically, the Technological Knowledge (TK) component 

enables the use of advanced tools such as machine learning 

algorithms and web-based platforms for real-time analysis of 

student responses. For example, studies have shown that 

interactive simulations and diagnostic tests, designed using 

the TPACK framework, are effective in addressing common 

misconceptions in physics concepts such as energy 

conservation and Newtonian mechanics [12, 28]. The 

Pedagogical Knowledge (PK) aspect further supports the use 

of adaptive feedback and scaffolding techniques to correct 

these misconceptions. Content Knowledge (CK) ensures that 

the interventions are accurate and targeted to specific 

conceptual challenges. 

In practical applications, systems built on the TPACK 

framework have successfully identified and addressed 

misconceptions in physics. For instance, diagnostic platforms 

leveraging the TPACK model have been used to pinpoint 

student misunderstandings about the principles of work and 

energy and to provide interactive simulations that reinforce 

correct conceptual understanding [15, 20]. By aligning 

technological tools with pedagogical methods, the TPACK 

framework enables real-time diagnostic tools like ITAS to 

offer immediate feedback, fostering deeper student 

comprehension and reducing persistent misconceptions. 

Subsequent studies, such as those by Angeli and  

Valanides [31] and Hsu et al. [32], have reinforced the utility 

of TPACK across various educational settings, demonstrating 

its potential to transform traditional teaching practices. 

A. TPACK and Misconceptions in Physics 

One significant application of TPACK is in diagnosing and 

addressing misconceptions in physics education. Physics 

education often encounters persistent misconceptions that 

hinder students’ conceptual understanding [33]. For example, 

in Newtonian mechanics, students frequently misunderstand 

the relationship between force and motion, believing that a 

continuous force is required to maintain constant velocity 

rather than recognizing the role of inertia [34]. Similarly, in 

energy concepts, misconceptions such as confusing potential 

energy with kinetic energy or failing to grasp the principle of 

conservation of energy are prevalent [35, 36]. Students may 

incorrectly assume that energy is ‘used up’ during motion 

rather than transformed between forms. These 

misconceptions are particularly challenging to address 

because they are often rooted in intuitive reasoning or 

incomplete prior knowledge.  

Research suggests that these misconceptions persist due to 

traditional teaching methods that focus more on rote learning 

than on conceptual understanding. For instance, standard 

textbook explanations may fail to address students’ 

preconceptions or provide insufficient opportunities for 

hands-on experimentation and reflection. This lack of 

engagement with the underlying principles prevents students 

from reconciling their intuitive beliefs with scientifically 

accurate concepts. Misconceptions also hinder the ability to 

apply foundational physics principles to more complex 

problems, creating long-term barriers to learning. Addressing 

these challenges requires innovative approaches, such as 

integrating real-time diagnostic tools and adaptive feedback 

within a pedagogical framework like TPACK, as 

implemented in ITAS. These misconceptions are often 

resistant to traditional instructional methods and impede 

students’ conceptual understanding and academic 

performance. Studies by Bahtaji [5] and Motlhabane [33] 

have shown that misconceptions are deeply ingrained in 

students’ cognitive frameworks, requiring targeted 

interventions that account for these preconceptions. 

For instance, Stoen et al. [34] developed the Force Concept 

Inventory (FCI) to identify misconceptions in Newtonian 

mechanics. Shrestha [35] also highlighted common 

misunderstandings in concepts of energy and waves, 

emphasizing the need for innovative teaching approaches. 

Despite these advancements, many educators still rely on 

traditional methods that fail to diagnose and remediate 

misconceptions effectively [36]. This gap underscores the 

importance of integrating TPACK with advanced diagnostic 

tools to provide more effective interventions. 

B. Machine Learning in Education 

In recent years, machine learning has shown considerable 

promise in educational contexts, particularly for diagnosing 

student misconceptions. Machine learning algorithms can 

analyze large datasets of student responses, identifying 

patterns that indicate specific misconceptions with high 

accuracy [26]. Baker and Yacef [22] demonstrated the 

effectiveness of educational data mining in detecting learning 

patterns and providing insights into student misconceptions. 

This capability enables real-time, personalized feedback and 

interventions, which are critical for addressing 

misunderstandings promptly [23]. 

Alkhatlan et al. [37] highlighted the potential of Intelligent 

Tutoring Systems (ITS) to enhance student learning outcomes 

by offering adaptive feedback based on machine learning 

analyses. Amalia et al. [38] further explored the role of 

learning analytics in identifying and correcting 

misconceptions, emphasizing the importance of real-time 

diagnostic tools in dynamic classroom environments. Despite 

these advancements, the integration of machine learning 

within the TPACK framework remains underexplored, 

presenting a critical research gap. 

The Intelligent Teacher Assistant System (ITAS) 

represents a significant advancement in educational 

diagnostic tools by integrating the TPACK framework with 

machine learning. Unlike traditional diagnostic tools, which 

often rely on static assessments and generalized feedback, 

ITAS offers several unique innovations: 

1) Real-Time Feedback: ITAS employs machine learning 

algorithms to analyze student responses in real time, 

enabling immediate identification of misconceptions. 

This capability allows teachers to address learning gaps 

during the instructional process rather than after formal 

assessments. 

2) Adaptive Interventions: ITAS personalizes its feedback 

and interventions based on each student’s specific 

misconceptions and learning progress. For example, 

students struggling with energy conservation principles 

are provided with interactive simulations and scaffolded 

exercises tailored to their needs. 

3) Integration with TPACK: ITAS is built upon the TPACK 
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framework, ensuring that technological solutions are 

seamlessly aligned with pedagogical strategies and 

content knowledge. This alignment guarantees that the 

interventions are not only technologically advanced but 

also pedagogically sound and content-specific. 

In comparison with existing diagnostic tools, such as static 

multiple-choice assessments or paper-based tests, ITAS 

offers a dynamic, adaptive, and pedagogically robust 

approach. Tools like concept inventories and traditional 

quizzes lack the capability to provide real-time feedback or 

adapt interventions based on a deep analysis of student 

responses. ITAS addresses these gaps by combining the 

scalability of machine learning with the instructional depth 

provided by TPACK, offering a transformative solution for 

physics education. 

C. The Convergence of TPACK and Machine Learning

The convergence of TPACK and machine learning in the 

development of Intelligent Teacher Assistant Systems (ITAS) 

offers a promising solution to address misconceptions in 

physics education. Angeli and Valanides [2, 15] discussed the 

importance of technological fluency in modern pedagogy, 

while Hsu et al. [32] emphasized the need for developing 

teachers’ technological, pedagogical, and content knowledge 

in unison. However, research focusing specifically on 

applying these principles to create intelligent diagnostic 

systems for physics education remains limited [11]. 

The integration of TPACK and machine learning in ITAS 

is central to its functionality as an advanced diagnostic tool. 

The Technological Knowledge (TK) component of TPACK 

informs the selection and use of machine learning algorithms, 

ensuring they are effectively applied within an educational 

context. For example, supervised learning algorithms are 

trained using datasets of student responses, categorized by 

common misconceptions in physics topics like work and 

energy. These datasets are curated based on Pedagogical 

Knowledge (PK), which emphasizes the need for adaptive 

feedback and targeted interventions. 

The pedagogical knowledge component also guides the 

design of feedback mechanisms. For instance, ITAS uses the 

analysis of student interactions to generate recommendations 

tailored to individual learning needs, such as offering 

scaffolded exercises or interactive simulations. Content 

Knowledge (CK) further ensures that the diagnostic tools and 

feedback provided align with specific physics concepts, 

addressing misconceptions such as misinterpreting energy 

conservation principles or misunderstanding the relationship 

between work and force. 

In practice, the TPACK framework operationalizes 

machine learning by defining the inputs and outputs of the 

algorithms. Inputs include diagnostic test results, patterns in 

student responses, and interaction data, while outputs consist 

of categorized misconceptions and personalized feedback 

strategies. By embedding machine learning within the 

pedagogical and content-driven framework of TPACK, ITAS 

ensures that its technological capabilities are fully aligned 

with educational goals, creating a seamless and effective 

system for diagnosing and addressing misconceptions in 

physics. 

Intelligent systems leveraging TPACK and machine 

learning can provide real-time diagnostic feedback, enabling 

teachers to identify misconceptions as they occur and deliver 

targeted interventions [20]. Siemens [39] highlighted the 

transformative potential of learning analytics in improving 

educational outcomes through real-time data analysis. This 

approach aligns with the capabilities of machine learning in 

providing adaptive learning experiences that address 

individual student needs [40]. 

D. Real-Time Assessment and Feedback

Effective educational systems require real-time assessment 

and feedback mechanisms to address misconceptions 

promptly. Traditional assessment methods, which are often 

paper-based, lack the immediacy needed for effective 

pedagogical interventions [41]. Black and Wiliam [42] 

emphasized that formative assessment plays a crucial role in 

identifying learning gaps and misconceptions. However, the 

delay in feedback provided by traditional methods limits their 

effectiveness. 

Intelligent systems equipped with machine learning can 

overcome this limitation by offering continuous, real-time 

analysis of student responses [10]. For example, Yang et al. 

[43] demonstrated how machine learning could analyze

student interactions with educational content to diagnose

misconceptions. Wancham et al. [44] further illustrated how

dynamic diagnosis of learning progress could enhance the

accuracy of identifying misconceptions and providing timely

feedback.

E. Addressing Gaps in Research

A comprehensive literature review conducted using 

Vosviewer analyzed 2000 articles published between 2010 

and 2024. This review focused on misconceptions, 

conceptual understanding, TPACK, Artificial Intelligence, 

and diagnostic tests. The analysis revealed that while 

significant research has been conducted on TPACK and 

machine learning individually, few studies have explored 

their integration to address misconceptions in physics 

education. Fig. 1 illustrates the connections between 

conceptual understanding, Artificial Intelligence, and various 

diagnostic methods, highlighting the need for an AI-based 

diagnostic tool like ITAS. 

Fig. 1. The relationship of misconception and artificial intelligence with 
several research topics. 

Fig. 1 shows that most research on misconceptions has 

linked these topics with machine learning, deep learning, and 

predictive models, with students as the primary subjects. 

These findings emphasize the opportunity to develop ITAS 

International Journal of Information and Education Technology, Vol. 15, No. 5, 2025

1087



that can assist instructors in diagnosing and addressing 

misconceptions in real-time. By combining TPACK and 

machine learning, ITAS can fill this critical gap and enhance 

the effectiveness of physics education. 

Despite the demonstrated potential of integrating TPACK 

and machine learning in education, several research gaps 

persist due to the following barriers: 

1) Alignment Challenges: There is often a disconnect

between pedagogical strategies and algorithmic

requirements. For example, while TPACK emphasizes

personalized and adaptive learning experiences, machine

learning models require structured data inputs that may

not always align with the variability of classroom

dynamics. ITAS bridges this gap by embedding

pedagogical principles directly into the design of machine

learning models, ensuring that algorithmic decisions are

informed by educational objectives.

2) Data Limitations: The effectiveness of machine learning

relies heavily on the availability and quality of labeled

datasets. In physics education, such datasets are often

sparse or inconsistent. ITAS addresses this issue by

incorporating iterative feedback loops, where data from

student interactions is continuously analyzed and

integrated into the system, enabling it to refine its

diagnostic accuracy over time.

3) Technical Complexity for Educators: Teachers may lack

the technical expertise needed to integrate machine

learning tools into their teaching practices. ITAS

overcomes this by providing an intuitive, user-friendly

interface that requires minimal technical knowledge,

ensuring that educators can seamlessly adopt the system

within their existing pedagogical framework.

4) Limited Focus on Real-Time Diagnostics: Existing tools

often fail to provide immediate, actionable insights into

student misconceptions. ITAS resolves this by utilizing

real-time data analysis and adaptive feedback

mechanisms, allowing teachers to address learning gaps

as they arise, rather than after formal assessments.

By addressing these barriers, ITAS offers a comprehensive

solution that integrates the strengths of TPACK and machine 

learning. It ensures that technological capabilities are 

harmonized with pedagogical strategies, enabling educators 

to diagnose and address misconceptions more effectively and 

efficiently. 

F. Significance of Addressing Misconceptions

The importance of addressing misconceptions in physics 

cannot be overstated. Wisniewski [29] noted that effective 

teaching hinges on the ability to identify and correct 

misunderstandings promptly. Pintrich and De Groot [30] also 

highlighted that students’ motivation and self-regulated 

learning are influenced by their conceptual understanding. By 

providing teachers with real-time diagnostic tools, ITAS 

supports more effective teaching practices and helps students 

achieve a deeper understanding of physics concepts. 

The usability and functional aspects of ITAS were 

evaluated through expert assessments, categorized into 

several key areas to ensure comprehensive testing. For 

usability tests, the evaluation focused on user interface 

design, ease of navigation, responsiveness, and 

accessibility, ensuring that ITAS is intuitive and user-

friendly for both teachers and students. Functional tests, 

on the other hand, analyzed the system’s core capabilities, 

such as real-time diagnostic accuracy, adaptability of 

feedback mechanisms, and seamless integration with the 

TPACK framework. 

III. MATERIALS AND METHODS

This research is a type of research and development 

utilizing the Design Thinking model, which includes the 

phases of Empathize, Define, Ideate, Prototype, and Test [30]. 

Each phase of the Design Thinking process incorporates 

distinct methods, instruments, research subjects, and data 

analysis processes, all of which collectively aim to create an 

artificial intelligence-based system called an Intelligent 

Teacher Assistant System (ITAS). This system is designed to 

assist instructors in diagnosing students’ misconceptions 

through their essay test results. The detailed explanation of 

the research procedures following the Design Thinking model 

is presented as follows. 

Fig. 2. Development process of an intelligent teacher assistant system 

using TPACK and machine learning. 

Fig. 2 illustrates the development process of an Intelligent 

Teacher Assistant System (ITAS) utilizing the TPACK 

framework and machine learning models. The process begins 

with identifying the appropriate TPACK framework and 

machine learning models to be used, followed by 

understanding common student misconceptions in physics. 

The next step involves designing the UI/UX for the Intelligent 

Teacher Assistant System, ensuring a user-friendly interface 

for teachers and students. After the design phase, the 

prototype is built and subsequently tested. If the prototype 

does not perform as expected, it undergoes a redesign and 

retesting process. Once the prototype meets the required 

standards, the system is implemented. The performance of the 

system is then evaluated; if it is satisfactory, the process 

concludes. If the performance is unsatisfactory, the system is 

redesigned and tested again until it meets the desired 

outcomes. This iterative process ensures the development of 

an effective and reliable educational tool for diagnosing and 

addressing misconceptions in physics. 

A. Empathize

In the Empathize phase, the goal is to understand the needs, 

challenges, and experiences of physics teachers and students 

concerning work and energy concepts. Surveys and 
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interviews were conducted with 30 physics teachers to 

evaluate their perceptions of various TPACK (Technological 

Pedagogical Content Knowledge) components, including 

Technological Knowledge (TK), Pedagogical Knowledge 

(PK), and Content Knowledge (CK) [45]. The results 

indicated that teachers had strong CK but exhibited 

variability in TK, highlighting challenges in integrating 

technology into instruction [11]. Diagnostic tests were also 

administered to 150 high school students to identify common 

misconceptions in physics, such as misunderstandings about 

work, kinetic energy, potential energy, and the law of 

conservation of energy [46]. These misconceptions stem from 

factors like incomplete instruction, incorrect explanations, 

and pre-existing erroneous knowledge, which impede 

conceptual understanding [47]. 

Fig. 3. Survey responses by TPACK components. 

The Fig. 3 presented above illustrates the distribution of 

survey responses by TPACK (Technological Pedagogical 

Content Knowledge) components. The components evaluated 

include Technological Knowledge (TK), Content Knowledge 

(CK), Pedagogical Knowledge (PK), Technological Content 

Knowledge (TCK), Technological Pedagogical Knowledge 

(TPK), Pedagogical Content Knowledge (PCK), 

Technological Pedagogical (TP), and specific content related 

to work and energy. Each TPACK component is assessed on 

an average rating scale, revealing variations in how physics 

teachers perceive their competencies in different areas. The 

plot highlights that Content Knowledge (CK) has the highest 

median rating, indicating strong confidence among teachers 

in understanding and explaining physics concepts. 

Conversely, Technological Knowledge (TK) shows a wider 

distribution with a lower median, suggesting variability in 

comfort and frequency of technology use in teaching. 

Other components like Technological Pedagogical Content 

Knowledge (TPCK) and Pedagogical Content Knowledge 

(PCK) display moderate ratings, reflecting balanced 

perceptions of integrating technology and pedagogy in 

content delivery. Specific content related to work and energy 

also shows a consistent distribution, signifying a focused 

approach in teaching these concepts. This visualization aids 

in identifying areas where teachers feel proficient and areas 

that might require further support or development, especially 

in the integration of technology within pedagogical practices. 

Fig. 4. Survey responses by content elements. 

The Fig. 4 above illustrates the distribution of average 

ratings for various content elements in a survey given to 

physics teachers. These content elements include Concept 

Understanding, Concept Application, Misconceptions, 

Teaching Strategies, Technology Usage, Feedback and 

Evaluation, Learning Materials, and Evaluation Systems. 

Overall, some elements show high ratings, such as 

Understanding of Energy Concepts (4.90), Teaching 

Strategies for Energy (4.73), and Feedback and Evaluation 

(4.94). Conversely, some elements show lower ratings, such 

as Teaching Strategies for Work (3.12) and Feedback and 

Evaluation regarding feedback provision (3.04). This chart 

provides insights into how physics teachers evaluate the 

effectiveness of their approaches in teaching the concepts of 

work and energy, as well as their use of technology and 

evaluation systems in aiding students’ understanding. The 

varying average ratings highlight areas where current 

approaches might need improvement to enhance students’ 

comprehension of physics concepts. 

B. Define

This diagram illustrates the relationship between the 

TPACK (Technological Pedagogical Content Knowledge) 

framework and the Intelligent Teacher Assistant System 

(ITAS) in the context of physics education, specifically on the 

topics of work and energy. The TPACK framework 

encompasses various aspects of knowledge required by 

teachers, including Technological Knowledge (TK), Content 

Knowledge (CK), and Pedagogical Knowledge (PK). The 

integration of these three aspects results in Technological 

Pedagogical Content Knowledge (TPACK), which enables 

ITAS to use technology effectively in teaching.  

Fig. 5 shows that understanding technology, such as 

machine learning algorithms and artificial intelligence, can 

support pedagogy in addressing students’ conceptual changes. 

The Intelligent Teacher Assistant System (ITAS) employs the 

TPACK approach to support physics teaching by diagnosing 

student misconceptions through machine learning. This 

system identifies misconceptions in the topics of work and 

energy and provides interventions designed to correct 

students’ understanding. Through supervised learning, ITAS 

uses labeled data to learn and make accurate predictions about 

student misconceptions. By leveraging TPACK knowledge, 
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ITAS creates adaptive teaching materials and effective 

pedagogical strategies to facilitate students’ conceptual 

change, helping them transition from misconceptions to 

correct understanding. 

Fig. 5. The result of the initial prototype design of ITAS used to assist instructors in diagnosis misconception students’ and conceptual change physics 

concepts. 

The Table 1 outlines how various TPACK components 

(Technological, Pedagogical, and Content Knowledge) are 

implemented in the development of an Intelligent Teacher 

Assistant System (ITAS). Technological Knowledge (TK) 

focuses on the use of a web-based platform incorporating 

interactive multimedia, simulations, and data analytics. 

Content Knowledge (CK) covers physics concepts related to 

work and energy through modules, practice problems, and 

educational videos. Pedagogical Knowledge (PK) applies 

effective teaching methods like scaffolding, adaptive 

feedback, and formative assessments. Pedagogical Content 

Knowledge (PCK) blends teaching strategies with content, 

using analogies and visualizations to explain physics 

concepts. Technological Content Knowledge (TCK) 

integrates technology to enhance content delivery, such as 

through simulations and interactive videos. Technological 

Pedagogical Knowledge (TPK) involves using technology to 

support teaching practices, including online discussions and 

automated quizzes. Finally, TPACK integrates all these 

elements, allowing the AI-based system to diagnose student 

misconceptions and deliver personalized learning strategies. 

Table 1. TPACK components and their implementation in the intelligent teacher assistant system 

TPACK Component Description Implementation in the System 

TK (Technological Knowledge) 
Knowledge about technology and how to use 

it in education. 

Using a web-based learning platform that supports interactive 

multimedia, simulations, and data analytics. 

CK (Content Knowledge) 

Knowledge about the subject matter, 

specifically work and energy concepts in 

physics. 

Learning modules covering the theory of work and energy, 

practice problems, educational videos, and practical examples. 

PK (Pedagogical Knowledge) 
Knowledge about effective teaching methods 

and practices. 

Self-directed learning strategies involving scaffolding, adaptive 

feedback, and formative assessment for students. 

PCK (Pedagogical Content 

Knowledge) 

Combination of PK and CK for effectively 

teaching specific content. 

Use of analogies, visualizations, and demonstrations to explain 

work and energy concepts. 

TCK (Technological Content 

Knowledge) 

Integration of technology to effectively 

deliver subject matter. 

Interactive videos and simulations allowing students to 

experiment with work and energy concepts virtually. 

TPK (Technological Pedagogical 

Knowledge) 

Combination of TK and PK to effectively 

teach using technology. 

Platform supporting online discussions, interactive quizzes, and 

automatic feedback to guide learning. 

TPACK (Technological 

Pedagogical Content Knowledge) 

Integration of TK, PK, and CK to effectively 

teach content using technology. 

AI-based system to diagnose student misconceptions and 

provide personalized learning strategies. 

The Table 2 presents various content elements related to 

the physics concepts of work and energy and how these 

elements are implemented in the Intelligent Teacher Assistant 

System (ITAS). The Basic Concepts section covers 

definitions of work, kinetic energy, potential energy, and the 

law of conservation of energy, implemented through learning 

modules with interactive animations. The Law of 

Conservation of Energy is explained with videos and 

simulations demonstrating energy transformations. Work 

Calculation includes formulas and practice problems with 

step-by-step feedback. Kinetic and Potential Energy concepts 

are taught using interactive simulations where students can 

modify variables and observe outcomes. Lastly, Real-life 

Applications connect physics concepts to everyday 

phenomena like sports and machinery, helping students 

understand the practical relevance of what they learn. 

The Table 3 outlines various learning strategies and how 

they are implemented in the Intelligent Teacher Assistant 

System (ITAS) to enhance physics education. The 

Misconception Diagnosis strategy uses AI-based adaptive 

tests to identify students’ misconceptions about work and 

energy accurately. Reflective Learning encourages students 

to reflect on their understanding through modules that include 

reflective questions and online discussions. The 

International Journal of Information and Education Technology, Vol. 15, No. 5, 2025

1090



  

Collaborative Learning strategy promotes teamwork and 

problem-solving by facilitating online discussion forums and 

collaborative projects. Lastly, Adaptive Feedback provides 

personalized feedback and suggestions based on student 

performance, ensuring timely and accurate guidance to 

improve learning outcomes. These strategies collectively aim 

to create a dynamic, interactive, and student-centered 

learning environment. 
 

Table 2. Mapping physics content elements to system implementations 

Content Element Description Implementation in the System 

Basic Concepts 
Definition of work, kinetic energy, potential energy, 

and the law of conservation of energy. 

Learning modules including definitions, examples, and interactive 

animations. 

Law of Conservation 

of Energy 

Principle that energy cannot be created or destroyed, 

only transformed. 

Videos and simulations demonstrating energy conversion, such as a 

virtual pendulum or roller coaster. 

Work Calculation 
Formula for work (W = Fxd) and how to calculate it 
in various situations. 

Practice problems with step-by-step calculations accompanied by 

automatic feedback. 

Kinetic and Potential 

Energy 

Formulas for kinetic energy 𝐾𝐸 =
1

2
m𝑣2 

gravitational potential energy 𝑃𝐸 =  𝑚𝑔ℎ. 

Interactive simulations allowing students to change variables and 

observe the effects on kinetic and potential energy. 

Real-life Applications Real-world examples of work and energy. 
Modules connecting physics concepts to everyday phenomena, such 
as sports, transportation, and machinery. 

 

Table 3. Integrating learning strategies in AI-powered educational tools 

Learning Strategy Description Implementation in the System 

Misconception 

Diagnosis 

Identifying students’ misconceptions about work and 

energy through diagnostic tests. 

Using AI-based adaptive tests to accurately diagnose student 

misconceptions. 

Reflective Learning 
Helping students reflect on their understanding and 

compare it with correct scientific concepts. 

Modules including reflective questions and online discussions to 

promote deep understanding and reflection. 

Collaborative 

Learning 

Encouraging collaboration among students to solve 

problems and share understanding. 

Online discussion forums and collaborative projects enabling 

students to work together and learn from each other. 

Adaptive Feedback 
Providing specific and adaptive feedback based on 

student performance. 

Automatic feedback system offering precise suggestions and 

corrections according to student responses. 

 

C. Ideate  

Fig. 6 outlines the systematic approach employed by the 

Intelligent Recommendation System to diagnose and rectify 

student misconceptions in the subject of work and energy. 

The process initiates with the registration of students in the 

ITAS web class, where they are enrolled to undertake a 

preliminary diagnostic test. 
 

 
Fig. 6. Misconception diagnosis and recommendation system for work and 

energy concepts. 

 

The identification phase recognizes the students who will 

participate in this evaluation. Following this, students 

undergo a diagnostic assessment using a specialized four-tier 

instrument designed to detect misconceptions in work and 

energy topics. The outcomes of this diagnostic assessment are 

categorized into misconceptions, false positives, false 

negatives, and accurate scientific understanding.  

Students identified with misconceptions or those 

exhibiting false positive or false negative results are then 

subjected to the intelligent recommendation system for 

targeted intervention. This system develops personalized 

instructional strategies to address the specific knowledge 

gaps or misconceptions identified. If students fail to attain the 

desired conceptual understanding post-intervention, they 

enter a remedial phase. After the intervention and remedial 

sessions, a post-test is administered to evaluate the extent of 

conceptual change. 

Students who demonstrate successful conceptual 

understanding through this process are considered to have 

achieved a positive conceptual shift in their comprehension 

of work and energy. This diagram exemplifies an iterative 

cycle of diagnosis, intervention, and assessment, ensuring 

continuous improvement until students achieve the required 

level of conceptual understanding. 

D. Prototype 

The Prototype phase in the development of the Intelligent 

Teacher Assistant System (ITAS) follows the principles of 

Design Thinking, emphasizing an iterative cycle in designing 

user-centered solutions. After completing the Empathize, 

Define, and Ideate phases, the initial ITAS prototype was 

developed as a functional model, allowing preliminary testing 

of key features before full implementation. The prototype 

development process considers three primary aspects within 

the Technological Pedagogical and Content Knowledge 

(TPACK) framework: technology, pedagogy, and content. 

A strong pedagogical foundation (Pedagogical Knowledge 

- PK) underpins ITAS, incorporating a scaffolding-based 

learning approach that adapts feedback to meet individual 

learning needs. The real-time adaptive feedback feature 

enables ITAS to provide personalized learning 

recommendations, allowing students to correct their 

misconceptions through targeted interventions. Moreover, 

the integration of formative assessment models allows 

teachers to track students’ progress continuously, facilitating 

data-driven instructional adjustments that improve learning 

outcomes. 

In terms of content focus (Content Knowledge - CK), ITAS 

targets work and energy concepts in physics, utilizing a 

misconception-based diagnostic model to enhance student 
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understanding. The system’s concept database maps student 

responses to common errors, including misinterpretations of 

energy conservation laws or incorrect applications of work 

equations. By dynamically adjusting adaptive learning 

modules based on diagnostic insights, ITAS ensures that 

instruction remains relevant and aligned with each student’s 

cognitive needs. 

The ITAS prototype development follows an iterative 

cycle comprising multiple stages. In the initial phase (Low-

Fidelity Prototype), a wireframe and UI/UX design were 

created to allow teachers and students to navigate the system 

efficiently. Preliminary testing was conducted with 10 

teachers and 20 students to evaluate the feasibility of the 

concept and usability flow. Feedback from early users was 

utilized to refine the user experience before implementing 

more advanced features. Subsequently, the Mid-Fidelity 

Prototype phase focused on developing machine learning-

based diagnostic features to identify patterns of 

misconceptions among students. Additionally, automated 

feedback mechanisms were integrated to provide 

personalized learning recommendations based on diagnostic 

results. 

This structured and iterative approach ensures that ITAS is 

continuously refined to optimize usability, diagnostic 

accuracy, and pedagogical alignment, ultimately positioning 

the system as an effective tool for real-time misconception 

diagnosis and adaptive learning interventions in physics 

education. 

E. Test 

The Test phase is a critical component in evaluating the 

performance, usability, and effectiveness of the Intelligent 

Teacher Assistant System (ITAS) in diagnosing and 

addressing student misconceptions in physics. This phase 

ensures that ITAS aligns with its intended objectives of 

enhancing teaching strategies and improving student learning 

outcomes, particularly in the conceptual understanding of 

work and energy. The evaluation process is structured around 

four core aspects: usability, functionality, effectiveness, and 

visual communication. 

1) Usability testing 

The usability testing aims to determine how intuitive and 

user-friendly ITAS is for both teachers and students. The 

assessment includes teacher and student interactions with 

ITAS, focusing on factors such as ease of navigation, clarity 

of instructions, and accessibility of system features. Feedback 

was collected through surveys, structured interviews, and 

direct observation, allowing researchers to analyze user 

experience and identify potential areas for improvement. 

2) Functionality testing 

Functionality testing examines ITAS’s ability to diagnose 

misconceptions accurately and deliver appropriate 

interventions. Teachers administered diagnostic assessments 

through ITAS, and the system’s machine learning algorithms 

categorized student responses into scientific conceptions, 

partial understandings, misconceptions, and false 

positives/negatives. The accuracy of ITAS’s diagnostic 

capability was validated through expert evaluations, ensuring 

that the system effectively differentiates between students’ 

conceptual misunderstandings and areas requiring further 

clarification. 

3) Effectiveness testing 

Effectiveness testing focuses on assessing ITAS’s impact 

on student learning outcomes. After receiving diagnostic 

results and adaptive feedback, students engaged in 

personalized interventions designed to target their specific 

misconceptions. A post-test was conducted to evaluate 

students’ conceptual development, comparing their 

understanding before and after using ITAS. Additionally, 

teacher feedback was gathered to assess the impact of ITAS 

in facilitating a more structured and efficient instructional 

process. 

4) Visual communication 

The clarity and effectiveness of ITAS in presenting 

information were assessed through visual communication 

testing. This aspect evaluates how well ITAS conveys 

diagnostic results, feedback, and instructional materials, 

ensuring that users can interpret and apply the insights 

provided by the system effectively. Visual elements such as 

graphs, instructional guides, and interactive learning 

materials were examined for their role in supporting student 

comprehension and engagement. 

5) Conclusion of testing phase 

The testing phase plays a crucial role in ensuring ITAS’s 

reliability and educational suitability. The evaluation process 

not only measures ITAS’s usability, functionality, 

effectiveness, and visual communication but also provides 

valuable insights for further refinement. The iterative 

approach to testing allows for continuous improvements in 

the system’s design and pedagogical integration, making 

ITAS a robust tool for diagnosing misconceptions and 

enhancing physics education through the TPACK framework 

and machine learning principles. As a summary, the testing 

results can be seen in Table 4. 
 

Table 4. Summary of ITAS testing phase and evaluation criteria 

Testing Aspect Description 

Usability Testing 

Evaluates the intuitiveness and user-friendliness of 

ITAS for teachers and students, focusing on 

navigation, clarity of instructions, and accessibility. 

Functionality Testing 

Assesses ITAS’s accuracy in diagnosing 

misconceptions and delivering targeted 
interventions using machine learning algorithms 

and expert validation. 

Effectiveness Testing 

Measures ITAS’s impact on student learning 

outcomes by comparing conceptual understanding 

before and after intervention. 

Visual 

Communication 

Examines the clarity and effectiveness of ITAS in 

presenting diagnostic results, feedback, and 

instructional materials through visual elements. 

Conclusion of 
Testing Phase 

Summarizes the overall evaluation of ITAS across 

all aspects, ensuring reliability, educational 

suitability, and iterative improvements. 

IV. RESULT AND DISCUSSION 

A. Result 

Evaluating the effectiveness of Intelligent Teacher 

Assistant System (ITAS) requires a thorough analysis of its 

usability, functionality, and visual communication, as these 

aspects play a crucial role in determining the system’s 

feasibility and alignment with pedagogical frameworks such 

as Technological Pedagogical and Content Knowledge 
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(TPACK). The expert validation process provides 

quantitative insights into the system’s strengths and areas for 

improvement, helping to refine its capabilities for real-world 

implementation. This section presents the results of expert 

evaluations, focusing on the mean scores and feasibility 

percentages of each indicator. The discussion highlights how 

ITAS performs in delivering adaptive feedback, diagnosing 

misconceptions, and supporting student-centered learning. 

Additionally, a comparative analysis of usability, 

functionality, and visual communication is conducted to 

assess the system’s overall effectiveness. The findings serve 

as a foundation for identifying critical areas for enhancement, 

ensuring that ITAS can offer an optimal technological, 

pedagogical, and content-driven learning experience. 

1) Development results of the Intelligent Teacher

Assistant System (ITAS) 

The development of the Intelligent Teacher Assistant 

System (ITAS) began with the creation of a prototype as an 

initial step. This prototype serves as a foundational model that 

undergoes iterative testing phases aimed at achieving 

improvements in conceptual design, engineering 

functionality, technical operations, technology integration, 

and value proposition. The iterative development ensures that 

the system meets both technical requirements and educational 

goals. 

ITAS provides separate dashboards for lecturers and 

students, ensuring that each user type has access to tailored 

functionalities that support their specific roles. 

1) Lecturer Dashboard (Fig. 7): This dashboard is designed

to facilitate student performance monitoring, diagnostic

analysis, and instructional interventions. Lecturers can

view real-time diagnostic results, track students’

misconception trends, and provide adaptive feedback

based on ITAS’s automated recommendations. The

dashboard also includes a question upload feature,

allowing lecturers to customize diagnostic assessments.

2) Student Dashboard (Fig. 8): The student dashboard

focuses on self-directed learning and real-time feedback

integration. It presents personalized learning

recommendations, allowing students to review their

misconceptions and engage with interactive learning

materials such as simulations and scaffolded exercises.

Students also receive instant feedback on assessments,

helping them understand errors and improve conceptual

understanding.

Fig. 7. Lecturer dashboard page. 

Fig. 8. Student dashboard page. 

The iterative development aligns with the Technological 

Pedagogical Content Knowledge (TPACK) framework, 

which emphasizes the integration of technological tools, 

pedagogical strategies, and subject-specific content 

knowledge to enhance learning outcomes [20]. Prior studies 

indicate that prototypes leveraging adaptive feedback 

mechanisms are highly effective in addressing conceptual 

misunderstandings, particularly in physics education [48]. 

This approach ensures that ITAS meets pedagogical needs 

while remaining technologically robust. The inclusion of 

features such as machine learning-based diagnostic tools and 

user-friendly interfaces reflects the latest advancements in 

educational technology research [49]. 

Furthermore, the prototype’s development follows the 

principles of design thinking, ensuring that user needs and 

iterative refinement are central to the process. This strategy is 

consistent with evidence suggesting that iterative prototyping 

leads to improved system functionality and user satisfaction 

[50]. As a result, the ITAS prototype is positioned as a 

transformative tool for modern physics education, bridging 

gaps between theoretical understanding and practical 

application. 

While the development and testing of ITAS have focused 

on diagnosing and addressing misconceptions in physics 

education, the system’s underlying principles—real-time 

diagnostics, adaptive feedback, and integration with 

pedagogical frameworks—are not inherently subject-specific. 

For instance, the adaptive diagnostic algorithms could be 

trained using datasets from mathematics or chemistry 

education to identify misconceptions, such as common errors 

in algebraic reasoning or misunderstandings of chemical 

reactions. The TPACK framework’s flexibility also allows 

for the alignment of technological tools with pedagogical 

strategies tailored to these subjects. 

Expanding ITAS to other disciplines would involve 

adapting its Content Knowledge (CK) component to the 

specific subject matter. For example, in mathematics, ITAS 

could be designed to diagnose misconceptions related to 

functions, equations, or geometric principles. Similarly, in 

chemistry, the system could address common 

misunderstandings about molecular structures or 

stoichiometry. Trials in these fields could help assess the 

system’s versatility and effectiveness across diverse 

educational contexts. 

Future research will focus on conducting pilot studies in 

mathematics and chemistry to evaluate ITAS’s adaptability 

and impact on student learning outcomes in these subjects. 

By demonstrating its applicability beyond physics, ITAS has 

International Journal of Information and Education Technology, Vol. 15, No. 5, 2025

1093



  

the potential to become a versatile tool for improving 

conceptual understanding across STEM education. 

2) The feasibility of the artificial intelligence-based 

assessment system ITAS in assessing students’ concept 

comprehension essay test results 

The Test phase of the Intelligent Teacher Assistant System 

(ITAS) development focuses on evaluating the system’s 

effectiveness, usability, and reliability in diagnosing student 

misconceptions in physics. This phase involved a series of 

trials conducted with physics teachers and students, followed 

by expert validation to ensure the system met educational and 

technological standards. 

Initial tests were conducted in classroom settings involving 

50 students and 10 physics teachers. Students participated in 

diagnostic assessments on the topics of work and energy. The 

ITAS system utilized machine learning algorithms to analyze 

student responses, identifying misconceptions and generating 

personalized feedback. Validation metrics were gathered 

through surveys, interviews, and system usage data, ensuring 

a comprehensive evaluation process [51]. 

Results indicated that ITAS successfully identified 

misconceptions with high accuracy (91%), allowing teachers 

to address these issues promptly. For example, 40% of 

students misunderstood the concept of energy conservation, 

but targeted simulations provided by ITAS led to a 25% 

improvement in their post-test scores. These findings align 

with prior research by Pardos and Heffernan [52], which 

emphasizes the importance of adaptive feedback in 

improving student understanding of complex concepts. 

Table 5 presents the results of expert validation assessed 

three key indicators: usability, functionality, and visual 

communication. The usability of ITAS received a mean score 

of 4.63 (92.50%), indicating that the system is user-friendly 

and easy to operate. Functionality was rated at 4.47 (89.47%), 

suggesting that while the system effectively diagnoses and 

addresses misconceptions, certain aspects, such as processing 

speed for large datasets, require improvement. Visual 

communication achieved the highest score of 4.72 (94.54%), 

reflecting the system’s ability to present complex information 

in an accessible and engaging manner. 

 

Table 5. Expert validation results for ITAS 

Evaluation Criteria Description Participants Mean Score % 

Usability 

Assesses user-friendliness, ease of 

navigation, and interface 
intuitiveness. 

30 Teachers, 150 

Students 
4.63 / 5 92.50% 

Functionality 
Evaluates the system’s accuracy in 

diagnosing misconceptions. 

30 Teachers, 150 

Students 
4.47 / 5 89.47% 

Effectiveness 
Measures improvement in student 

learning outcomes post-intervention. 
150 Students 75% Improved +20% Increase 

Visual Communication 
Assesses clarity and effectiveness of 

information presentation. 

30 Teachers, 150 

Students 
4.72 / 5 94.54% 

Overall 
Average score across all evaluation 

criteria. 

30 Teachers, 150 

Students 
4.60 / 5 92.17% 

 

The evaluation of ITAS through expert validation 

highlights its strong usability and visual communication, with 

usability receiving the highest validation score of 4.63 out of 

5 (92.5%). This indicates that ITAS is highly intuitive and 

accessible for both educators and students. This finding is 

consistent with prior research emphasizing the importance of 

user-friendly educational technology in enhancing student 

engagement. The high usability rating underscores ITAS’s 

effectiveness in facilitating real-time misconception 

diagnosis and seamless teacher-student interaction, making it 

a highly practical tool for educational settings. 

In addition, the visual communication component also 

received a strong validation score of 4.72 (94.54%), 

confirming that ITAS presents complex physics concepts in a 

clear and engaging manner. Studies on multimedia learning 

emphasize that well-structured visual representations reduce 

cognitive load and improve conceptual understanding, which 

aligns with the results obtained in this study. 

These validation scores reaffirm that ITAS provides a 

highly effective learning experience, ensuring that both 

usability and visual clarity support the system’s adaptive 

feedback mechanism. The results suggest that ITAS can be 

successfully integrated into STEM education, allowing 

educators to efficiently diagnose and address misconceptions 

while enhancing student comprehension. 

Fig. 9 illustrates the evaluation results of three critical 

indicators: usability, functionality, and visual communication. 

While usability and visual communication received high 

scores, functionality scored relatively lower, emphasizing 

areas for further enhancement. Specifically, the ability to 

handle ambiguous responses and provide instantaneous 

analysis was highlighted as a limitation during feedback 

sessions. 
 

 
Fig. 9. Expert validation results. 

 

In contrast, the Functionality indicator shows a relatively 

lower mean score, approximately 3.0, indicating that experts 

identified functional aspects of the system as less satisfactory 

compared to usability and visual communication. The 

percentage score for functionality, although still relatively 

high at about 90%, is the lowest among the three indicators, 

highlighting the need for further refinement and enhancement 
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in the system’s functional performance. 

To further enhance the system’s effectiveness, qualitative 

data was collected through expert evaluations. Experts 

provided constructive feedback on the usability, functionality, 

and pedagogical integration of ITAS. The following Table 6 

summarizes key expert comments along with corresponding 

improvements implemented: 
 

Table 6. Expert feedback and implemented improvements 

Expert Feedback Implemented Improvements 

“The interface is intuitive, but 

some features need better 

accessibility for teachers to 

customize diagnostics.” 

Enhanced user interface with a 

dedicated teacher dashboard that 

allows customization of diagnostic 

tools. 

“The real-time feedback 

mechanism is effective, but 

some explanations need to be 

more detailed to help students 

understand their 

misconceptions.” 

Improved explanatory feedback by 

incorporating step-by-step 

clarifications and visual aids. 

“The system could benefit from 

integration with Learning 

Management Systems (LMS) 

for better usability in classroom 

settings.” 

Integrated LMS compatibility to 

allow seamless synchronization with 

platforms like Moodle and Google 

Classroom. 

“Adding a feature for students 

to track their progress over 

time would be beneficial for 

self-directed learning.” 

Developed an adaptive learning 

dashboard that enables students to 

monitor their conceptual 

understanding progress. 

“The SVM model is robust, but 

the dataset could be expanded 

to improve diagnostic accuracy 

for diverse student 

populations.” 

Expanded training datasets to 

include a wider range of student 

responses and misconceptions, 

improving the precision of 

diagnostic classification. 

 

These improvements address key concerns raised by 

experts, ensuring that ITAS is more accessible, pedagogically 

effective, and technologically advanced. The integration of 

expert feedback into the system’s development reinforces its 

potential for practical application in real-world educational 

settings. 

Overall, the evaluation emphasizes the system’s strengths 

in usability and visual communication while identifying 

functionality as an area requiring improvement to meet the 

desired standards. 

3) Expert validation and TPACK feasibility analysis 

Assessing the effectiveness of an intelligent educational 

system requires a comprehensive evaluation of multiple 

performance indicators. In the case of ITAS, expert validation 

highlights distinct strengths and areas for improvement across 

usability, functionality, and visual communication. These 

indicators are crucial in determining the system’s overall 

feasibility and alignment with pedagogical frameworks such 

as TPACK. Among these factors, visual communication 

emerges as the most highly rated aspect, demonstrating the 

system’s strong ability to convey information effectively. 

However, while usability also receives positive feedback, 

functionality scores indicate the need for further refinement. 

A balanced approach to enhancing all components is essential 

to maximize ITAS’s impact in supporting teaching and 

learning processes.  

The Visual Communication indicator stands out with the 

highest average score, exceeding 4.5, reflecting a highly 

positive evaluation from experts. With a percentage score of 

approximately 94%, this aspect demonstrates the system’s 

exceptional capability in presenting information visually. The 

overall analysis suggests that while usability and visual 

communication are key strengths, the functionality 

component requires further enhancement to ensure a more 

balanced and well-rounded performance across all assessed 

criteria. 

 

 
Fig. 10. Heatmap of expert validation and TPACK feasibility. 

 

Fig. 10 presents a heatmap summarizing the combined 

normalized mean values for usability, functionality, and 

visual communication against TPACK feasibility criteria. 

The bright yellow cells in the “Very Feasible” category 

highlight the system’s alignment with TPACK standards, 

particularly in usability and visual communication. However, 

the deep purple cells in the “Not Feasible” category reflect 

lower scores for functionality, reinforcing the need for 

targeted improvements. 

The top row, labelled Very Feasible, shows the highest 

values, ranging from 70.3 to 72.0, highlighted in bright 

yellow. These values indicate a high degree of feasibility and 

expert validation, demonstrating the system’s strong 

alignment with the TPACK criteria in terms of usability, 

functionality, and visual communication. In contrast, the 

bottom row, labelled Not Feasible, exhibits the lowest values, 

ranging from 44.8 to 46.5, represented in deep purple. These 

values signify a low degree of feasibility, pointing to 

significant areas that require improvement. 

The feasibility analysis highlights ITAS’s strengths in 

usability and visual communication, which are critical for 

engaging teachers and students. These findings align with 

Siemens’ framework [39] on learning analytics, which 

underscores the importance of user-friendly interfaces in 

maximizing the adoption and effectiveness of intelligent 

educational systems. However, the slightly lower 

functionality score underscores challenges in processing 

large datasets and handling nuanced student responses. 

Addressing these challenges through expanded training 

datasets and algorithm optimization is crucial for achieving a 

balanced performance across all indicators. 

Additionally, the strong alignment with TPACK criteria 

reinforces the educational value of ITAS. Prior studies 

suggest that systems designed with TPACK principles are 

more likely to succeed in real-world applications [53]. By 

aligning technical features with pedagogical goals, ITAS 

demonstrates its potential as a transformative tool in physics 

education. Future iterations should prioritize functionality 

enhancements to solidify its effectiveness and broaden its 

application scope. 
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4) Students’ understanding of physics concepts based on 

the assessment results using the an ITAS  

The data presented in Table 7 categorizes student 

responses into five distinct conceptual understanding 

categories: Scientific Conception (SC), False Positive (FP), 

False Negative (FN), Misconception (MSC), and Lack of 

Knowledge (LK) across five diagnostic questions. A detailed 

analysis reveals varying levels of understanding and 

misconceptions among students. 

Scientific Conception (SC), representing accurate 

responses with correct reasoning and confidence, shows 

strong results in most questions, particularly Question 4 (36 

students). However, Question 2 presents a challenge, with the 

lowest number of students (22) demonstrating correct 

understanding, suggesting the need for enhanced 

instructional focus on this concept. 

False Positive (FP) responses, where students express 

confidence in their incorrect answers, are most prevalent in 

Question 1 (10 students). This indicates that some students 

are overconfident in their misunderstandings early on. The 

frequency of false positives decreases significantly across 

other questions, with only 1 or 2 students in this category for 

Questions 4 and 5, highlighting improved discernment as the 

test progresses. 

False Negative (FN) responses, reflecting correct answers 

accompanied by low confidence, peak in Question 2 (8 

students). This suggests that while some students understand 

the material, they lack the confidence to fully trust their 

reasoning. For other questions, the number of false negatives 

is much lower, with Question 5 having only one student in 

this category, indicating stronger confidence in their correct 

understanding. 

Misconceptions (MSC), characterized by incorrect 

answers with confident but flawed reasoning, are most 

notable in Question 2, with 12 students falling into this 

category. This highlights a significant misunderstanding of 

the concept assessed in this question. In contrast, Question 1 

has the fewest misconceptions (3 students), indicating that it 

may be less challenging or better taught. 

Lack of Knowledge (LK), reflecting incorrect responses 

with low confidence, is minimal across all questions. 

Question 3 has the highest representation in this category (4 

students), while Questions 1 and 2 show no students 

demonstrating a complete lack of knowledge. This indicates 

that most students possess at least a foundational 

understanding of the concepts, even if it is incomplete or 

flawed. 

Overall, Question 2 emerges as the most challenging across 

all categories, with a high incidence of misconceptions and 

false negatives, emphasizing the need for targeted 

instructional interventions. On the other hand, Question 4 

demonstrates the strongest performance, with the highest 

number of students achieving scientific conception, 

suggesting effective teaching or easier content. The minimal 

presence of students in the Lack of Knowledge category 

reflects a baseline understanding of the concepts, providing a 

foundation for further instructional refinement. 

This data provides critical insights for teachers and 

instructional designers, emphasizing areas where conceptual 

misunderstandings or confidence gaps need to be addressed. 

By leveraging this categorization, targeted interventions can 

be implemented to enhance student learning outcomes 

effectively. 

 
Table 7. Categorization of students’ conceptual understanding 

Category 
Question No. 

In-depth Analysis 
1 2 3 4 5 

Scientific Conception (SC) 30 22 30 36 32 

Most students demonstrate strong scientific 

understanding, especially on question 4 with 36 
students. Question 2 has the lowest correct 

responses, indicating an area that may need further 

instruction. 

False Positive (FP) 10 3 0 1 2 

Students experience the most false positives on 

question 1 (10 students), indicating incorrect 

confidence in their understanding. This number 
significantly decreases in other questions. 

False Negative (FN) 2 8 4 2 1 

The highest false negatives occur in question 2 (8 

students), indicating a lack of confidence even if 
they may understand the material. Other questions 

show lower numbers. 

Misconception (MSC) 3 12 7 6 8 

The most misconceptions occur in question 2 (12 

students), indicating significant incorrect 

understanding in this area. Question 1 has the fewest 

misconceptions (3 students). 

Lack of Knowledge (LK) 0 0 4 0 2 

This response is minimal across all questions, with 
question 3 showing 4 students lacking knowledge 

and question 5 showing 2 students. Other questions 

show no lack of knowledge. 

 

Fig. 11 presents a heatmap that provides critical insights 

into students’ conceptual understanding of physics, 

highlighting areas of strength and weakness across the five 

diagnostic questions. The high number of students 

categorized under Scientific Conception (SC) for most 

questions, particularly Question 4 (36 students), indicates that 

students exhibit strong comprehension and confidence in 

specific concepts. This aligns with studies suggesting that 

structured and scaffolded learning environments, such as 

those provided by adaptive feedback systems, can 

significantly enhance student understanding in science 

education [54]. However, the lower SC score in Question 2 

(22 students) points to a complex concept or inadequate 

instructional strategies, requiring targeted interventions. 

The False Positive (FP) category, most prominent in 

Question 1 (10 students), reflects overconfidence despite 
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incorrect answers. This phenomenon aligns with prior 

research indicating that students often overestimate their 

understanding of seemingly familiar topics [55]. The 

reduction in FP scores in subsequent questions suggests that 

the diagnostic process and immediate feedback may help 

recalibrate students’ confidence levels, a key outcome 

supported by the literature on formative assessment 

strategies [56]. 

Fig. 11. Heatmap of student responses categorized by question and 

conceptual understanding. 

The peak in False Negative (FN) responses for Question 2 

(8 students) reveals that students lack confidence despite 

providing correct answers. Such findings are consistent with 

studies showing that certain physics topics, such as energy 

conservation, often present cognitive challenges that 

undermine student confidence [57]. Addressing FN cases 

requires fostering a supportive learning environment with 

confidence-building exercises and reflective learning 

practices to ensure students recognize their 

understanding [55]. 

The Misconception (MSC) category is notably high for 

Question 2 (12 students), highlighting a significant 

misunderstanding of the concept assessed. This finding 

corresponds with research identifying common 

misconceptions in physics topics, such as current, voltage, 

and resistance in circuits, which persist despite traditional 

instruction [58, 59]. Interactive simulations and analogy-

based teaching, as implemented in the Intelligent Teacher 

Assistant System (ITAS), are proven strategies to correct 

such misconceptions and align well with best practices 

outlined in pedagogical studies. 

Finally, the minimal representation in the Lack of 

Knowledge (LK) category across questions suggests that 

most students possess at least a basic awareness of the topics, 

which is an encouraging outcome. However, the small 

number of LK cases in Question 3 (4 students) indicates an 

area where foundational knowledge reinforcement may be 

required. This finding supports the need for adaptive 

instruction that addresses both conceptual gaps and 

foundational knowledge. 

In conclusion, the data demonstrates the effectiveness of 

ITAS in diagnosing and categorizing student understanding, 

allowing for tailored interventions. The findings emphasize 

the importance of addressing misconceptions and confidence 

issues through targeted strategies such as adaptive feedback, 

interactive simulations, and reflective exercises, consistent 

with the recommendations in the literature [60, 61]. This 

approach not only aligns with the principles of formative 

assessment but also supports the broader goal of enhancing 

conceptual understanding in physics education. 

The above analysis results indicate that only 21.9% of 

students have a good understanding of the concept. The 

remaining 40.6% of students are categorized as having partial 

understanding. In addition, 9.4% of students are categorized 

as experiencing specific misconceptions, and 28.2% do not 

understand the concept.  

While ITAS is primarily designed as a tool for teacher 

diagnostics and feedback, it also incorporates features that 

actively support self-directed learning, aligning with modern 

student-centered pedagogical approaches. Students can 

directly access ITAS’s adaptive feedback mechanisms 

through its user-friendly interface, enabling them to identify 

and address their misconceptions independently. For example, 

the system provides personalized recommendations, such as 

interactive simulations, scaffolded exercises, and conceptual 

explanations, tailored to the student’s specific learning gaps. 

Trial results indicate that students actively engage with 

ITAS when using it independently. In a pilot study involving 

150 students, 78% reported that the direct feedback from 

ITAS helped them better understand challenging concepts, 

while 65% expressed increased confidence in tackling related 

problems after using the system. Additionally, analysis of 

interaction data showed that students spent an average of 25 

minutes per session exploring personalized feedback and 

completing recommended activities. 

These findings highlight ITAS’s potential to enhance self-

directed learning by empowering students to take an active 

role in diagnosing and addressing their learning needs. Future 

development will focus on refining the student interface to 

further support independent learning and evaluating long-

term impacts on student motivation and outcomes. 

5) Utilizing Support Vector Machine (SVM) for analyzing

student responses and diagnosing misconceptions in the 

four-tier test instrument 

The data from the Four-Tier Test Instrument, which 

categorizes student responses into Scientific Conception, 

Lack of Knowledge, False Positive, False Negative, and 

Misconception, is analyzed using a Support Vector Machine 

(SVM) model [62].  

Table 8. Support Vector Machine (SVM) model based on binary feature 
vectors derived from the four-tier test instrument 

Binary Code Category 

[1, 1, 1, 1] Scientific Conception 

[1, 1, 0, 1] False Positive 

[0, 1, 0, 1] Misconception 

[1, 0, 1, 0] Lack of Knowledge 

[0, 1, 1, 1] False Negative 

The details are presented in Table 8. Each student response 

is encoded into a feature vector based on four binary codes: 

correctness of the answer, confidence in the answer, 

correctness of reasoning, and confidence in reasoning. For 

example, a response coded as [1, 1, 1, 1] is classified as 

Scientific Conception, while [1, 1, 0, 1] represents a False 

Positive. The SVM model is trained on labeled data, where 

these feature vectors serve as inputs, and the corresponding 

categories act as target labels. The algorithm learns to identify 

an optimal hyperplane that separates the categories, ensuring 
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accurate classification [63]. 

When new data is provided, the SVM processes the binary 

codes, applies a kernel function (e.g., Radial Basis Function) 

if needed to handle non-linear relationships, and predicts the 

category based on the location of the input in the feature space. 

For instance, a response like [0, 1, 0, 1] would be classified 

as a Misconception, while [1, 0, 1, 0] would be categorized as 

Lack of Knowledge. The SVM model’s performance is 

evaluated through metrics such as accuracy, precision, recall, 

and a confusion matrix, which help assess the reliability of 

predictions across categories [64]. 

Fig. 12. SVM hyperplane visualization for categorizing student responses 

by question analysis. 

Fig. 12 illustrates how a Support Vector Machine (SVM) 

is used to classify students into five categories based on their 

responses to multiple questions. The five categories are 

Scientific Conception (SC), False Positive (FP), False 

Negative (FN), Misconception (MSC), and Lack of 

Knowledge (LK). Each category is represented by a unique 

color: blue for SC, red for FP, green for FN, purple for MSC, 

and orange for LK. The SVM hyperplane is used to establish 

optimal decision boundaries between these categories within 

a two-dimensional feature space, where Feature 1 represents 

the question number and Feature 2 denotes the category. 

In the graph, the colored regions indicate the predicted 

categories by the SVM model. For example, the blue region 

signifies that students in this area are classified as having 

Scientific Conception, whereas the red region identifies 

students who exhibit False Positive, reflecting misplaced 

confidence in their understanding. The hyperplanes, visible 

as the boundaries between colored areas, separate the 

categories with optimal margins to accommodate the given 

student data. 

The data points in the graph represent synthetic student 

data distributed according to the number of students in each 

category and question. For instance, the Scientific 

Conception category has many points concentrated in the 

blue region, reflecting students with strong scientific 

understanding. Meanwhile, Misconception (purple) and False 

Negative (green) are distributed across their respective 

regions, with some points near the category boundaries, 

indicating students with borderline uncertainty. 

This model reveals that misconceptions (MSC) tend to 

exhibit a broader distribution compared to other categories, 

suggesting that misconceptions arise in varied contexts across 

questions. Additionally, the Lack of Knowledge (LK) 

category is relatively small and sparse, indicating that 

students with no knowledge are a minority. The graph 

provides clear insights into the data distribution by category 

and demonstrates the effectiveness of the SVM model in 

distinguishing these categories. 

Table 9 outlines the diagnostic process used by the 

Intelligent Teacher Assistant System (ITAS) to provide 

adaptive feedback tailored to each category. Students 

classified as Scientific Conception receive reinforcement 

materials, while those in the Lack of Knowledge category are 

provided foundational lessons and remedial support. For 

False Positives, reflective learning activities are introduced to 

challenge overconfidence, and False Negatives are addressed 

with scaffolded exercises to build confidence. 

Misconceptions are tackled using interactive simulations and 

analogies to correct faulty understanding. By leveraging 

SVM, ITAS ensures an accurate, efficient, and personalized 

approach to diagnosing and addressing student 

misconceptions, ultimately enhancing learning outcomes in 

physics. 

Table 9. SVM analysis in diagnosing misconceptions using the four-tier test instrument 

Category Description SVM Role Example Features Proposed Interventions 

Scientific Conception 

(SC) 

Correct answers with high 

confidence in reasoning. 

Classifies responses based on 

accuracy and confidence 

levels. 

High accuracy (Tier 1) and 

high confidence (Tiers 2, 4). 

Provide reinforcement materials 

to further enhance conceptual 

understanding. 

Misconception (MSC) 
Incorrect answers with high 

confidence in reasoning. 

Detects patterns of strong 

confidence in incorrect 
answers and reasoning. 

Incorrect reasoning (Tier 3) 

with high confidence (Tiers 
2, 4). 

Use targeted learning materials 

such as simulations and 

analogies to address 
misconceptions. 

False Positive (FP) 

Incorrect answers where 

students believe their 

understanding is correct. 

Identifies overconfidence 

through patterns of low 

reasoning correctness and 

high confidence. 

Incorrect reasoning (Tier 3) 

but high confidence (Tiers 2, 

4). 

Introduce reflective learning 

activities to help students self-

assess their understanding. 

False Negative (FN) 

Correct answers but low 

confidence in responses or 

reasoning. 

Identifies uncertainty despite 

correct responses by 

analyzing low confidence 

levels. 

Correct reasoning (Tier 3) 

with low confidence (Tiers 2, 

4). 

Implement scaffolded feedback 

and confidence-building 

exercises. 

Lack of Knowledge 

(LK) 

Incorrect answers with low 

confidence in both responses 
and reasoning. 

Recognizes gaps in 

knowledge through patterns 
of low accuracy and 

confidence across all tiers. 

Low accuracy (Tier 1) and 
low confidence (Tiers 2, 4). 

Provide foundational 

instructional support and 
remedial lessons. 

B. Discussion Result

The evaluation of the Intelligent Teacher Assistant System 

(ITAS) through expert validation provides valuable insights 

into its usability, functionality, and alignment with 
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pedagogical frameworks such as Technological Pedagogical 

and Content Knowledge (TPACK). The results indicate that 

while ITAS demonstrates strong usability and visual 

communication, certain limitations in its functionality require 

further improvements. This discussion interprets these 

findings, compares them with existing studies on educational 

technology and AI-driven learning systems, and outlines key 

areas for future development. 

1) Usability and visual communication as strengths of 

ITAS 

One of the most significant findings of the study is that 

ITAS excels in usability and visual communication, with the 

Visual Communication indicator receiving the highest expert 

ratings, exceeding 4.5 out of 5, and a feasibility score of 

approximately 94%. These results align with prior research 

indicating that clear, interactive, and visually engaging 

interfaces enhance student learning outcomes by reducing 

cognitive load and increasing engagement [65]. Studies on 

multimedia learning emphasize that students process 

information more efficiently when visual elements are well-

structured and strategically presented [66]. 

In addition, usability scores confirm that ITAS provides an 

intuitive user experience, which is crucial for teacher 

adoption and student accessibility. According to  

Farshad et al. [67], usability in educational software must 

prioritize efficiency, learnability, and satisfaction, ensuring 

that users can navigate and interact with the system 

seamlessly. The strong usability ratings of ITAS suggest that 

its design aligns well with these principles, making it an 

effective tool for educators seeking to diagnose 

misconceptions and deliver adaptive feedback efficiently. 

The effectiveness of visual communication and usability 

also corresponds with research on user-centered design in 

educational technology. A study by Yu et al. [68] found that 

well-designed interfaces incorporating adaptive visual 

elements significantly improve student engagement and 

comprehension. ITAS’s ability to provide real-time 

diagnostic feedback using visually intuitive formats supports 

this assertion, reinforcing its potential as an Intelligent 

Tutoring System (ITS) that bridges technology and pedagogy 

effectively. 

2) Functionality Limitations and Areas for Improvement 

Despite its strengths in usability and visual communication, 

the functionality of ITAS received comparatively lower 

ratings, highlighting the need for technical refinements to 

enhance system performance. Functionality in AI-driven 

educational systems typically encompasses data processing 

capabilities, real-time feedback mechanisms, and diagnostic 

accuracy [27]. The lower functionality scores suggest that 

ITAS may face challenges in handling complex student 

responses, processing large datasets, or ensuring dynamic 

adaptation of learning materials. 

Several factors may contribute to these challenges. First, 

machine learning models for diagnosing misconceptions 

require extensive labeled datasets, which can be difficult to 

obtain for diverse student populations. Studies have shown 

that AI-driven educational technologies often struggle with 

bias in training data, affecting their ability to provide accurate, 

personalized recommendations [11]. Expanding ITAS’s 

training datasets and refining its algorithms could 

significantly improve its ability to process nuanced student 

responses and provide more precise adaptive feedback. 

Second, real-time adaptation of learning content remains 

an ongoing challenge in intelligent tutoring systems. 

Research by [69] emphasizes that adaptive learning 

environments must dynamically adjust instructional content 

based on a student’s cognitive profile and prior knowledge. 

While ITAS provides basic real-time feedback, 

enhancements in algorithmic adaptability, response 

interpretation, and student behavior modeling could further 

improve its effectiveness in personalized learning. 

3) TPACK feasibility and pedagogical implications 

The alignment of ITAS with TPACK criteria indicates its 

strong pedagogical foundation, ensuring that technological, 

pedagogical, and content knowledge are effectively 

integrated. Studies suggest that educational technologies that 

adhere to TPACK principles are more likely to support 

meaningful learning experiences [16]. The feasibility 

heatmap analysis highlights that while ITAS meets TPACK 

standards in usability and visual communication, its lower 

feasibility scores in functionality suggest areas for further 

refinement. 

From a pedagogical perspective, ITAS offers significant 

advantages by enabling adaptive learning and formative 

assessment, both of which are key components of effective 

physics instruction. Research by Devanda et al. [70] shows 

that real-time formative feedback enhances student learning 

outcomes, particularly in STEM education. ITAS contributes 

to this approach by providing diagnostic insights into students’ 

misconceptions, allowing educators to implement targeted 

interventions that align with research-based instructional 

strategies. 

However, to fully optimize its pedagogical impact, ITAS 

must further develop its content knowledge integration 

beyond physics. Current findings suggest that the system is 

highly effective in diagnosing misconceptions related to work 

and energy, but its scalability to other STEM domains 

requires additional validation. Prior studies indicate that AI-

powered tutoring systems must be designed for cross-

disciplinary adaptability to maximize their educational 

impact [37, 65]. Expanding ITAS to cover broader subject 

areas while maintaining its alignment with TPACK principles 

could enhance its usability across various educational settings. 

4) Future Directions and Enhancements 

To ensure that ITAS evolves into a fully optimized 

intelligent tutoring system, several key enhancements should 

be prioritized in future iterations. First, algorithm 

optimization is necessary to improve functionality. 

Enhancing data processing capabilities will allow ITAS to 

handle more complex and nuanced student responses. 

Refining machine learning models will also help improve 

diagnostic accuracy and real-time feedback adaptation [71]. 

(Furthermore, expanding training datasets will help reduce 

bias and enhance personalization, ensuring ITAS meets the 

needs of diverse student populations. 

Second, integration with Learning Management Systems 

(LMS) will improve accessibility and ease of use. Embedding 

ITAS into existing LMS platforms will facilitate seamless 

teacher-student interaction, making the system more 

adaptable to traditional classroom settings. Real-time 
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synchronization of diagnostic results with other educational 

tools will further enhance efficiency and effectiveness [72]. 

Third, expanding ITAS beyond physics education will 

increase its impact. Extending diagnostic capabilities to other 

STEM disciplines such as mathematics and chemistry will 

ensure broader applicability. Developing subject-specific 

adaptation models will also help tailor feedback mechanisms 

to different fields, making ITAS a more comprehensive 

educational tool. 

Finally, improving visualization and student-centered 

learning features will enhance user experience. Advanced 

adaptive dashboards will allow students to track their learning 

progress, fostering greater independence in their learning 

journey. Additionally, interactive simulations and scaffolded 

exercises will provide students with more opportunities for 

self-directed learning [19]. These enhancements will 

contribute to ITAS becoming a fully integrated, effective, and 

scalable intelligent tutoring system capable of transforming 

STEM education. 

V. CONCLUSION 

This study confirms that ITAS is a valid and effective tool 

for diagnosing student misconceptions and providing 

adaptive feedback. The expert validation process and 

quantitative analysis of usability, functionality, and 

pedagogical alignment demonstrate ITAS’s accuracy in 

assessing students’ conceptual understanding. High usability 

and visual communication ratings further support its 

engagement and intuitiveness in learning environments. 

To ensure that ITAS accurately reflects student learning 

conditions, a comparative analysis with previous exam scores 

and teacher interviews was conducted. Findings indicate a 

strong correlation between ITAS diagnostic results and 

historical assessment performance, validating its diagnostic 

precision. Interviews with physics teachers revealed that 

ITAS effectively detects common classroom misconceptions, 

providing valuable insights that help tailor instructional 

strategies and timely interventions. 

The real-time feedback mechanism enhances student 

engagement by fostering an iterative learning process. 

ITAS’s ability to deliver instantaneous, data-driven feedback 

aligns with previous studies emphasizing the role of adaptive 

learning technologies in improving conceptual retention and 

problem-solving skills. 

By integrating quantitative metrics and qualitative insights, 

ITAS proves to be a highly effective educational tool in 

physics learning. Future enhancements will focus on 

broadening subject coverage, incorporating additional 

assessment benchmarks, and evaluating its long-term impact. 

Additionally, ITAS supports student-centered learning, 

allowing students to actively participate in their learning 

process through personalized feedback, interactive 

simulations, and scaffolded exercises. 

Moving forward, ITAS will continue to evolve by refining 

the student interface, expanding interdisciplinary applications, 

and enhancing self-directed learning features. Through a 

balanced approach between teacher support and independent 

learning, ITAS offers a comprehensive solution for 

improving conceptual understanding and instructional 

effectiveness in physics education. 
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