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Abstract—The goal of learning analytics is to assess students  

performance over time. While virtual learning environments 

enable educators to intervene quickly, distance can make it 

challenging to evaluate students’ success. Many studies have 

developed prediction models using data from Massive Open 

Online Courses (MOOCs), but these models were limited to 

classifying students into binary groups based on the courses they 

had completed. The paper tackles an important gap in 

predicting student performance by introducing a daily multi-

class model based on Recurrent Neural Networks (RNNs), 

specifically leveraging Gated Recurrent Units (GRUs) and Long 

Short-Term Memory (LSTM) networks. To validate the GRU 

model, it is compared against two baseline models: Artificial 

Neural Networks (ANNs) and LSTM networks. The results 

show that the GRU model achieves an impressive accuracy of 

nearly 90%, outperforming the LSTM model, which reaches 88% 

accuracy. This highlights the potential of GRUs to better 

capture temporal dependencies and patterns in student 

performance data, making them a strong candidate for 

educational forecasting. The study suggests that GRU-based 

models could serve as a powerful tool for educators and 

institutions to predict and address student performance issues 

proactively. This demonstrates how early student performance 

in MOOCs can be predicted using the design and latent 

dependency maintenance capabilities of the GRU time series 

model. Along with this, the paper evaluates the accuracy, loss, 

and training time of several stochastic gradient descent 

algorithms, such as Adam, AdaGrad, RMSProp, and Stochastic 

Gradient Descent (SGD) with momentum. It also assesses the 

loss that each algorithm must endure in order to produce an 

optimal solution. When comparing all optimizers utilizing the 

pre-trained GRU model, the highest accuracies of 97.58% and 

97.66% are obtained by Adam and SGD with momentum, 

respectively. 
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I. INTRODUCTION 

The COVID-19 pandemic has underscored the importance 

of Virtual Learning Environments (VLEs), as students 

worldwide were compelled to transition to remote learning. 

This shift has accelerated the adoption and reliance on digital 

educational platforms. At the same time, advancements in 

science and technology have driven significant progress in 

educational tools over the past few decades, enabling more 

interactive, accessible, and personalized learning experiences. 

Together, these developments have reshaped the educational 

landscape, emphasizing the critical role of technology in 

supporting modern learning environments. Massive Open 

Online Courses (MOOCs) and similar VLEs have gained 

traction, especially during the pandemic. These platforms 

offer a variety of resources, including lecture videos, online 

assessments, discussion forums, and live video sessions over 

the internet. Early insights into student performance within 

VLEs at the beginning of courses facilitate the assessment of 

learning analytics objectives. As a result, researchers have 

developed predictive models to forecast student outcomes in 

MOOCs, with a primary focus on binary classifications such 

as pass/fail or dropout scenarios. However, there has been 

limited exploration of models that predict performance using 

multi-classification approaches. Addressing this gap, the 

authors in reference [1] propose a novel method that 

combines Variable Reduction with an Optimized Deep 

Recurrent Neural Network (VR-ODRNN) to analyze student 

performance and predict course outcomes. The VR-ODRNN 

model is specifically designed to process student data and 

accurately predict course grades, offering a more nuanced and 

detailed approach compared to traditional binary 

classification models. This innovative framework represents 

a significant step forward in understanding and forecasting 

student performance in MOOCs. Input data is first 

normalized using min-max normalization to ensure 

consistency. For feature selection, the Coot Optimization 

Algorithm (COA) is employed to identify an optimal subset 

of variables. Student performance is then predicted using a 

Deep Recurrent Neural Network (DRNN), with its 

hyperparameters optimized through the Dwarf Mongoose 

Gannet Optimization Algorithm (DMGOA). The proposed 

VR-ODRNN model is evaluated using a student performance 

dataset from the Kaggle repository. Experimental results 

demonstrate that the VR-ODRNN model achieves a high 

accuracy. Several studies have investigated the use of various 

machine learning techniques to predict students’ academic 

performance. As highlighted in [2], Principal Component 

Analysis (PCA) was first utilized to reduce the 

dimensionality of the dataset, improving its visualization. 

Following this, K-Means clustering was applied to categorize 

students according to their learning patterns. The resulting 

clusters were then used to train classification models, 

allowing for customized predictions for each group of 

students. This approach was validated using the Open 

University Learning Analytics Dataset (OULAD) and data 

from an undergraduate science course at a North American 

University (NAU) [2]. 

As a result, there is a need for further research to improve 

the performance of multi-class prediction models [3]. While 

traditional artificial intelligence techniques are frequently 
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employed to predict student achievement in online higher 

education, more advanced methods such as deep learning 

remain underutilized [4]. The main objective of this study is 

to develop a multi-class, course-agnostic, day-wise predictive 

model using activity clickstream data and demographic 

information. This model aims to classify students’ 

performance in MOOC environments as early as possible 

while maintaining satisfactory accuracy. Such a model can 

support higher education decision-making processes, 

promote sustainable education in MOOC settings, and enable 

instructors to take timely and appropriate actions to support 

student success. 

Deep Neural Networks (DNNs) have established 

themselves as highly effective tools across a variety of 

domains, particularly for processing and analyzing large-

scale datasets. By training on vast amounts of data, DNNs can 

uncover complex patterns and relationships between 

variables. To enhance their performance, optimization 

algorithms such as Stochastic Gradient Descent (SGD), 

RMSprop, Adam, and Adagrad are commonly employed in 

various applications. However, despite their strengths, these 

methods often encounter difficulties with generalization, 

especially when dealing with large datasets, which can hinder 

their ability to deliver consistent and reliable results. 

The success of this study hinges on achieving the following 

objectives: 

1) To develop an innovative deep learning model that makes 

daily predictions about student performance in a multi-

class setting. 

2) To identify which of the three recurrent deep learning 

models LSTM, and GRU can improve the precision of 

student performance forecasts. 

3) To evaluate the accuracy of the proposed model by 

comparing it with relevant state-of-the-art models. 

4) To assess different stochastic gradient optimization 

techniques for deep learning and identify a method that 

combines the rapid convergence of adaptive techniques 

with the robust generalization performance of traditional 

Stochastic Gradient Descent (SGD). Additionally, this 

study proposes optimization strategies that incorporate 

parameter adjustments to enhance performance. 

The reste of the article is organized as follows: Section II 

reviews the relevant literature on the use of deep learning 

models for predicting student performance. Section III 

describes the methodology employed in this study. Section 

IV presents the results and provides a discussion. Finally, 

Section V offers conclusions and perspectives based on the 

findings. 

II. RELATED WORKS 

Massive Open Online Courses, commonly known as 

MOOCs, are freely accessible online courses available to 

everyone. They are structured around specific learning 

objectives across various fields of study and typically run 

over a set period within a digital learning environment that 

encourages interaction among peers and instructors. MOOCs 

foster the development of a learning community. Many 

research studies have employed performance prediction 

models in MOOC courses, with a significant number utilizing 

the OULAD dataset, which is widely recognized in the 

MOOC domain. Throughout the years 2021, 2022, 2023, and 

2024, numerous prediction models trained using the OULAD 

dataset have been published [5]. 

RNNs (Recurrent Neural Networks) are supervised neural 

networks that preserve the temporal dimension of time series 

data by using a recurrent hidden state, which is updated by 

sequential information obtained from the input time series 

data. The output of a sequence depends on this hidden state, 

meaning the current output of a sequence is linked to the 

previous output (recurrent neural network. They rely on the 

repeated use of classifiers, which avoids the need for a large 

number of historical classifiers [6]. 

Recurrent Neural Networks (RNNs) can be used to predict 

student performance by analyzing sequential data, such as 

time-series data of student activities, grades, or engagement 

metrics. RNNs are particularly well-suited for this task 

because they can capture temporal dependencies and patterns 

in the data, which are often critical for understanding student 

behavior and performance over time [6]. 

In 2021, Adnan et al. utilized a Deep Feed Forward Neural 

Network (DFFNN) to predict students’ final performance 

status, categorizing them as fail, pass, withdrawn, or distinct. 

They observed varying levels of accuracy based on the input 

data used. Specifically, when only demographic data was 

considered, the average accuracy was 43% by the end of the 

course. However, this accuracy increased to 63% when 

demographic and clickstream data were combined, and 

further improved to 71% when assessment data was also 

included. Notably, incorporating all features from the 

OULAD dataset in the input data led to a significant accuracy 

of 72%. Additionally, the researchers employed binaryization 

to facilitate multi-classification grouping. Remarkably, after 

conversion, they achieved an accuracy of 90% at the 

conclusion of the courses [4] . 

Another study, referenced as [7], focused on utilizing 

demographic information and aggregated clickstream data 

from two STEM courses (CCC_2014B and CCC_2014J), as 

well as two social science courses (AAA_2013J and 

AAA_2014J). 

The study aimed to predict whether a student would persist 

or drop out in the following week. To achieve this, a 

supervised machine learning model was developed using an 

expectation-maximization approach. The model’s prediction 

accuracy for the current week was subsequently enhanced by 

incorporating the resulting probabilities. Additionally, 

Reference [8] utilized the Synthetic Minority Over-Sampling 

(SMOTE) technique. By the end of the courses, the average 

accuracy across all selected courses for all weeks approached 

88%. 

In 2022, as described in [9], a prediction framework was 

developed. This framework incorporates six classical 

machine learning algorithms: SVC (R), SVC (L), Naïve 

Bayes, KNN (U), KNN (D), and Softmax. The predictor 

aimed to classify outcomes as either “qualified” or 

“unqualified.” The framework utilized the “DDD” module 

(course) along with clickstream data across 12 activities in its 

implementation. 

In Reference [10], researchers created a basic prediction 

model using a Bayesian Network (BN) and compared it with 

ensemble models, including Naïve BN, Multi-Layer 

Perceptron (MLP), and Gradient Boosting Decision Trees, to 

predict final performance. The performance value, based on 
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student assessment results, was categorized into four groups: 

fail, pass, good, and distinction. 

Adnan et al. created several machine learning models 

within a multi-class classification framework to forecast 

student performance across four categories: distinct, pass, fail, 

and withdrawn. These models featured a single deep learning 

classifier, specifically a Feed Forward Neural Network 

(FFNN), and were assessed using criteria such as Gini and 

entropy. The evaluation involved various classifiers, 

including Random Forest, AdaBoost, Extra Tree classifier, 

K-Nearest Neighbor (KNN), Decision Tree, Support Vector 

Machine (SVM), Gradient Boosting, Logistic Regression, 

Gaussian NB, and Bernoulli NB, as detailed in [3]. 

In 2023, a team proposed the ANN-LSTM model, which 

integrates an artificial neural network with long short-term 

memory, to predict students’ performance. They investigated 

and compared this model with two baseline models, the Gated 

Recurrent Unit (GRU) and the Recurrent Neural Network 

(RNN), to evaluate its effectiveness in this specific context. 

Additionally, they compared the accuracy of ANN-LSTM 

with that of the most advanced models available. The results 

demonstrated that the ANN-LSTM model outperformed the 

baseline models. By the end of the third month of the course, 

ANN-LSTM achieved an accuracy of nearly 70%, surpassing 

the accuracy of the RNN and GRU models, which were 53% 

and 57%, respectively [11]. 

In [12] , the study explores a wide range of machine 

learning algorithms using two data representations. It 

demonstrates that algorithms relying solely on assignment 

information and a representation based on mean information 

entropy (MIL) can outperform single instance learning 

representations by more than 20% in terms of accuracy. This 

suggests that using an appropriate representation to mitigate 

data sparsity highlights the importance of a factor—such as 

completed assignments—that has not been extensively 

utilized to date for forecasting students’ academic 

achievement. Furthermore, a comparison with earlier 

research on the same dataset and problem shows that 

predictive models based on MIL, which use only assignment 

data, produce competitive outcomes compared to earlier 

studies that incorporate other predictor variables to predict 

student performance. 

Several machine learning techniques were employed in 

this study to forecast students performance. The analysis was 

conducted using educational data from the Open University 

(OU), based on performance, engagement, and demographic 

criteria. Through experimental analysis, it was found that 

among all the compared methods on the OU dataset, the k-

NN approach performed best in some circumstances, while 

the ANN approach excelled in others [13]. 

In [14] , the momentum method is used to develop a 

dynamic adjustment scheme that incorporates both stale 

penalty and stale compensation. Stale compensation aims to 

mitigate the adverse effects of stale gradients, while stale 

penalty reduces the reliance on these gradients. This research 

introduces a dynamic asynchronous stochastic gradient 

descent method (DASGD) based on this adjustment approach. 

DASGD dynamically modifies the compensation and penalty 

factors using stale size. Under certain mild assumptions, the 

study demonstrates that DASGD is convergent. Additionally, 

the paper proposes evaluating DASGD on a real distributed 

training cluster using the Cifar10 and ImageNet datasets. 

Experimental results confirm the superior performance of 

DASGD compared to four state-of-the-art baselines. 

Specifically, DASGD achieves nearly the same test accuracy 

as SGD on Cifar10 and ImageNet, while using only around 

27.6% and 40.8% of the training time required by SGD, 

respectively. 

In [15] , the authors developed an ensemble method based 

on stochastic gradient descent with warm restarts (SGDRE) 

to address issues related to generalization, dataset size, and 

time complexity. This method leverages the generalization 

capabilities of ensemble techniques and the SGD with warm 

restarts mechanism, which generates a diverse set of 

classifiers required for the ensemble in a single training 

process. This approach takes the same amount of time to train 

as a single CNN classification model. The SGDRE algorithm 

was evaluated using a 10-fold cross-validation technique after 

being trained on a publicly available dataset of pediatric chest 

X-ray images. According to the experimental data, SGDRE 

significantly outperforms the two baseline approaches under 

comparison. The proposed method proved to be a highly 

competitive classification technique, achieving a test 

accuracy of 96.26% and an AUC of 95.15%. 

III. MATERIALS AND METHODS 

This section will describe the operation of the system, 

utilizing the most advanced deep learning and artificial 

intelligence techniques that are relevant to and compatible 

with predicting student performance. 

A. Dataset Collection 

One of the publicly available learning analytics datasets is 

the Open University Learning Analytics Dataset (OULAD), 

which includes information on 32,593 students who enrolled 

in open online courses. The data for this study was provided 

by the Open University, one of the largest distance learning 

organizations in the UK [11]. The dataset contains over 10 

million student interaction records, encompassing 

clickstream data, course information, assessment results, and 

demographic details. The OULAD dataset covers seven 

online courses offered over four semesters, catering to 

students of all ages and educational backgrounds [16]. 

The Open University, UK, provided the Open University 

Learning Analytics Dataset (OULAD), which is freely 

accessible. The dataset is organized into seven tables, each 

containing student-centered data such as demographics, 

interactions with the Virtual Learning Environment (VLE), 

exam results, course registration, and course offerings. These 

tables are interconnected through key identifiers. Clickstream 

data, which represents the total number of clicks and reflects 

students’ daily activities and interactions within the VLE, is 

stored in the student VLE table. The student-module 

presentation dataset triplet contains the assessment results of 

the students. OULAD was created for the academic years 

2013 and 2014, encompassing 32,593 registered students 

across 7 courses and 22 module presentations. The dataset has 

been certified by the Open Data Institute (http://theodi.org/) 

and is publicly available at 

https://analyse.kmi.open.ac.uk/open_dataset [16]. 
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Fig. 1. The proposed system to predict student performance. 

 

B. Background on GRU and LSTM Model  

Recurrent Neural Networks (RNNs) are supervised neural 

networks designed to preserve the temporal dimension of 

sequential data. They achieve this by employing a recurrent 

cache that is updated with sequential information obtained 

from temporally organized input data series. The current 

output of a sequence depends on this hidden state, and as 

illustrated in Fig. 1, a sequence’s previous output (a neural 

recurrent reservoir) is linked to its current output. RNNs rely 

on the repeated use of classifiers, eliminating the need for a 

large number of historical classifiers. Unlike traditional 

neural networks, where cached neurons are not connected, 

RNNs feature interconnected cached neurons. This 

characteristic makes RNNs a more effective method for 

solving traffic flow prediction problems), as shown in Fig. 2 

[17]. 
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Fig. 2. The structure of RNN [17]. 

 

LSTM networks was develped to solve the vanishing 

gradient issue that basic RNNs have. The use of gating 

techniques to regulate the information flow across the 

network is the main breakthrough of LSTM [18]. 
 

 
Fig. 3. The structure of LSTM [18]. 

 

Two well-known models that RNNs use to solve the traffic 

flow prediction problem are the Long Short-Term Memory 

model (LSTM) and the Gated Recurrent Unit model (GRU) 

[19]. 
 

 
Fig. 4. The structure of GRU [20]. 

 

Cho et al. in [18] developed the Gated Recurrent Unit 

(GRU) cell, which features a more compact structure 

compared to the Long Short-Term Memory (LSTM) model. 

Unlike LSTM’s multi-gate structure), as shown in Fig. 3, 

GRU has fewer control gates and a single cell state, resulting 

in lower computational complexity and a lower cutoff point. 

Additionally, GRU exhibits a similar ability to LSTM in 

addressing common RNN issues such as gradient explosion 

and vanishing. The two control gates in the GRU, as shown 

in Fig. 4 are: 

1) The reset gate that determines if we need to combine the 

current state with the previous state. 

2) The update portal, which determines how much state-

related data were provided at the previous moment [20]. 

B. Optimisers Algorithms 

Optimizers are essential algorithms in deep learning 

designed to adjust a model’s parameters during training to 

minimize a specified loss function. These tools enhance the 

learning process of neural networks by iteratively updating 

weights and biases based on feedback from the data. Popular 

optimizers such as Stochastic Gradient Descent (SGD), 

Adam, and RMSprop each employ unique update rules, 

learning rates, and momentum strategies. Their primary goal 

is to identify and converge toward optimal model parameters, 

ultimately improving the model’s performance [21]. 

Optimizer algorithms are optimization techniques 

designed to improve the performance of deep learning models. 

These algorithms, often referred to as optimizers, play a 

critical role in determining both the accuracy and efficiency 

of the training process. However, before delving into their 

impact, it is important to first grasp the fundamental concept 

of what an optimizer is and how it functions [21]. 

During the training of a deep learning model, optimizers 

adjust the weights at each epoch to minimize the loss function. 

At its core, an optimizer is a function or algorithm designed 

to fine-tune a neural network’s parameters, such as weights 

and learning rates, with the aim of reducing the overall loss 

and enhancing the model’s accuracy. Selecting the right 

weights for the model is a complex task, especially since deep 

learning models often involve millions of parameters. This 

underscores the significance of choosing an appropriate 

optimization algorithm tailored to your specific application. 

As a result, a solid understanding of these machine learning 

algorithms is crucial for data scientists before they dive 

deeper into the field [21]. 

You can employ various optimizers in a machine learning 

model to fine-tune weights and learning rates. However, 

selecting the most suitable optimizer depends heavily on the 

specific application. As a beginner, one might consider 

experimenting with different optimizers and selecting the one 

that delivers the best results. While this trial-and-error 

approach may work initially, it becomes increasingly 

impractical when working with hundreds of gigabytes of data, 

as even a single training epoch can consume a substantial 

amount of time. Randomly selecting an optimizer can end up 

being a costly gamble with your time—a realization that 

becomes clearer as you advance in your machine learning 

journey. 

This guide will explore a variety of deep learning 

optimizers, such as Gradient Descent, Stochastic Gradient 

Descent (SGD), Stochastic Gradient Descent with 

Momentum, Mini-Batch Gradient Descent, Adagrad, 

RMSprop, AdaDelta, and Adam. By the end of the article, 

you will gain the ability to compare these optimizers and 

understand the underlying principles and procedures they rely 

on. This paper will help you make informed decisions when 

selecting the right optimizer for your specific deep learning 

tasks. 

C. Stochastic Gradient Descent Optimizer for Deep 

Learning 

At the end of the previous section, you discovered why 

gradient descent may not be the most suitable choice for very 

large datasets. To tackle the challenges associated with 

massive datasets, Stochastic Gradient Descent (SGD) 

emerges as a widely used optimizer in deep learning. The 

term “stochastic” refers to the randomness inherent in the 

algorithm’s approach. Unlike traditional gradient descent, 

International Journal of Information and Education Technology, Vol. 15, No. 6, 2025

1293



  

which processes the entire dataset in each iteration, SGD 

randomly selects small batches of data. This means only a 

subset of samples is used at a time, making the optimization 

process more efficient and computationally manageable for 

training deep learning models [22]. 

𝜔 = 𝜔 − 𝜂𝛻𝑄ⅈ(𝜔)                                       (1) 

The procedure for Stochastic Gradient Descent (SGD) 

begins, as shown in Fig. 5 by initializing the parameters and 

setting the learning rate. Next, the data is randomly shuffled 

at each iteration to ensure randomness in the selection of data 

samples. By processing small batches or individual data 

points at a time, the algorithm iteratively updates the 

parameters to move toward an approximate minimum of the 

loss function. This approach allows SGD to efficiently handle 

large datasets and converge faster compared to traditional 

gradient descent, albeit with some noise in the optimization 

process due to the randomness introduced [22]. 
 

 
Fig. 5. The diagram of SGD. 

 

Since SGD processes only small batches of data (or 

individual samples) in each iteration rather than the entire 

dataset, the optimization path it follows tends to be noisier 

compared to the gradient descent algorithm. As a result, SGD 

typically requires a higher number of iterations to converge 

to the local minimum. While this increases the overall 

computation time, the computational cost per iteration 

remains significantly lower than that of gradient descent. 

Therefore, even with more iterations, the total computational 

expense of SGD is still less than that of batch gradient descent. 

In conclusion, if you are working with extremely large 

datasets and computational efficiency is a critical factor, 

stochastic gradient descent is generally a better choice than 

batch gradient descent. 

 

Algorithm 1 : SGD algorithm 

Inputs: Initial vector 𝜃, Learning rate 𝜂, 

 Maximum number of iterations max_iter 

 

Begin: 

          𝑘 ← 0 

         While (not converged and 𝑘 ≤ max_iter) do: 

                       Shuffle the dataset 

                       For each observation i in the           

              dataset do: 

 

                            Compute the gradient 𝛻𝑓 (𝜃),  
                            for observation i 

                            Compute the step: step ← 𝜂 × 𝛻𝑓 (𝜃) 

                            Update 𝜃: 𝜃 ← 𝜃 + step 

                      𝑘 ← 𝑘 + 1  

        End While 

  End 

D. Stochastic Gradient Descent with Momentum (SGDM) 

As discussed earlier, stochastic gradient descent (SGD) 

follows a much noisier path compared to the gradient descent 

algorithm when optimizing deep learning models. This noise 

results in a higher number of iterations being required to 

reach the optimal minimum, which in turn slows down the 

computation time. To address this issue, we use Stochastic 

Gradient Descent with Momentum. This enhanced algorithm 

incorporates the concept of momentum, which helps 

accelerate convergence by smoothing the update path. 

Momentum achieves this by accumulating a fraction of the 

past gradients, effectively reducing oscillations and allowing 

the optimizer to move more consistently toward the minimum. 

This makes the training process faster and more stable 

compared to standard SGD. 

Momentum accelerates the convergence of the loss 

function by addressing the oscillations commonly seen in 

stochastic gradient descent (SGD). In standard SGD, the 

updates to the weights can oscillate significantly, as the 

algorithm follows the gradient’s direction in each iteration. 

By incorporating momentum, a fraction of the previous 

update is added to the current update, which helps smooth out 

these oscillations and allows the optimizer to move more 

consistently toward the minimum. This results in faster 

convergence. 

However, when using momentum, it’s important to 

remember that the learning rate should be reduced if a high 

momentum term is applied. This is because a high momentum 

term can cause the updates to overshoot the optimal minimum 

if the learning rate is too large. Balancing the learning rate 

and momentum is key to achieving stable and efficient 

training. 
 

 
Fig. 6. Comparison of SGD algorithms without and with momentum. 

 

In the Fig. 6, the left side illustrates the convergence path 

of the standard stochastic gradient descent (SGD) algorithm, 

while the right side demonstrates SGD with momentum. By 

comparing the two, it’s clear that the addition of momentum 

results in a smoother and more direct path toward 

convergence, significantly reducing the time required to 

reach the optimal minimum.  

You might consider using a large momentum and learning 

rate to further speed up the process. However, it’s important 

to note that increasing the momentum too much can lead to 

overshooting the optimal minimum. This can cause the 

algorithm to miss the best solution, resulting in poor accuracy 

and even increased oscillations. Therefore, finding the right 

balance between momentum and learning rate is crucial to 

ensure efficient and stable convergence without 

compromising the model’s performance [23]. 

In this variation of gradient descent, the loss function is 

computed using a subset of the training data rather than the 
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entire dataset. Fewer rounds are required because we are 

using a chunk of data rather than the entire dataset. Because 

of this, the mini-batch gradient descent algorithm 

outperforms the batch and stochastic gradient descent 

techniques. Compared to the previous gradient descent 

variations, this algorithm is more reliable and efficient. The 

procedure is more efficient to implement since the algorithm 

uses batching, which eliminates the need to put all of the 

training data into memory. Additionally, the mini-batch 

gradient descent algorithm’s cost function is smoother than 

the stochastic gradient descent technique’s but noisier than 

the batch gradient descent algorithm. Mini-batch gradient 

descent is therefore perfect since it offers a decent trade-off 

between accuracy and speed. 

Despite all that, the mini-batch gradient descent algorithm 

has some downsides too. It needs a hyperparameter that is 

“mini-batch-size”, which needs to be tuned to achieve the 

required accuracy. Although, the batch size of 32 is 

considered to be appropriate for almost every case. Also, in 

some cases, it results in poor final accuracy. Due to this, there 

needs a rise to look for other alternatives too. 

 

Algorithm 2 : SGD with Momentum 
Inputs: learning rate 𝜂, momentum coefficient 𝛽,  

       initial parameters 𝜃, Initial velocity 𝑚 

Begin: 

while stopping criteria is not met do: 

compose a minibatch {θ⁽ⁱ⁾, y⁽ⁱ⁾} from 

the dataset 

                compute the gradient estimate: 

                                  𝑔 ←
1

𝑛
𝛻𝜃 ∑ 𝐽(𝑓(𝜃(𝑖); 𝜃)𝑖 , 𝑦(𝑖)) 

 

update the velocity: 

𝑚 ← 𝛽𝑚 − 𝜂. 𝑔 

 

apply the update to parameters: 

𝜃 ← 𝜃 +  𝑚 

End While 

Return 𝜃 

End 

E. Adaptive Gradient Descent Deep Learning Optimizer 

(Adagrad)  

Despite its advantages, the mini-batch gradient descent 

algorithm also has some drawbacks. One key limitation is the 

need to tune the **”mini-batch size”** hyperparameter to 

achieve the desired accuracy. While a batch size of 32 is 

generally considered suitable for most cases, this may not 

always hold true, requiring experimentation to find the 

optimal size. Additionally, in certain scenarios, mini-batch 

gradient descent can lead to suboptimal final accuracy, which 

can be a significant drawback depending on the application. 

These limitations highlight the importance of exploring other 

optimization alternatives to address specific challenges and 

improve performance [24]. 

𝑤𝑡 = 𝑤𝑡−1 − 𝜂𝑡
′ 𝜕𝐿

𝜕𝜔(⊢−1)
                        (2) 

 

𝜂𝑡
′ =

𝜂

√𝛼𝑡+𝜖
                                   (3) 

 

The Adagrad optimizer offers a significant advantage by 

eliminating the need to manually adjust the learning rate. It is 

more robust and reliable compared to standard gradient 

descent and its variants, and it often achieves convergence 

faster. However, Adagrad has a notable drawback: it reduces 

the learning rate aggressively and monotonically over time. 

This occurs because the squared gradients in the denominator 

of the update rule continuously accumulate, causing the 

denominator to grow larger with each iteration. As a result, 

the learning rate can become excessively small, potentially 

reaching a point where the model can no longer learn 

effectively. This stagnation in learning compromises the 

model’s accuracy, making it less suitable for tasks requiring 

prolonged training or fine-tuning. 

 

Algorithm 3 : Adagrad 
Algorithm 3 : AdaGrad algorithm 

Inputs: learning rate 𝜂 , small constant  𝛽(10−7) 

 initial parameters 𝜃 

Initialize: 

Gradient accumulation variable 𝑟 ←  0   

Begin: 

while stopping criteria is not met do: 

                     compose a minibatch {𝜃(𝑖)⁾, 𝑦(𝑖)} 

                      from               the dataset 

                     apply an intermediate update: 

                        �̃�  ← 𝜃 + 𝜂. 𝑚 

                     compute the gradient estimate: 

                         𝑔 ←
1

𝑛
𝛻𝜃 ∑ 𝐽(𝑓(𝜃(𝑖); 𝜃)

𝑖

, 𝑦(𝑖)) 

                      accumulate the squares of gradients: 

                          𝑟 ← 𝑟 + 𝑔. 𝑔 

                       calculate the update: 

                           𝑚 ← −
𝜂

√𝑟 + 𝛽
⨀ 𝑔 

 

                        apply the update to parameters: 

                        𝜃 ← 𝜃 +  𝑚 

End While 

Return 𝜃 

End 

F. Root Mean Square Deep Learning Optimizer 

(RMSProp) 

RMSprop is a widely popular optimizer among deep 

learning practitioners, despite not being formally published in 

a research paper. It is well-regarded in the community and is 

considered an extension of the RMSprop algorithm. 

RMSprop addresses the issue of varying gradients, where 

some gradients may be very small while others are large, 

making it challenging to define a single global learning rate. 

RMSprop solves this by adapting the step size individually 

for each weight based on the sign of the gradients. It compares 

the signs of two consecutive gradients: if they are the same, 

it increases the step size slightly, indicating that the 

optimization is moving in the right direction. If the signs are 

opposite, it decreases the step size to avoid overshooting. 

After adjusting the step size, it is clipped to stay within a 

reasonable range, and the weight update is performed. 

RMSprop builds on this idea but uses a different approach to 

adapt the learning rate, making it more efficient and robust 
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for training deep neural networks. It is particularly effective 

in handling non-stationary objectives and noisy gradients, 

which are common in deep learning tasks [25]. 

The issue with RMSprop is that it struggles with large 

datasets and mini-batch updates, limiting its effectiveness in 

such scenarios. The goal of combining the robustness of 

RMSprop with the efficiency of mini-batch updates led to the 

development of improved optimization techniques. RMSprop 

itself is an enhancement over the AdaGrad optimizer, 

addressing AdaGrad’s key limitation: the monotonically 

decreasing learning rate. While AdaGrad accumulates 

squared gradients, causing the learning rate to shrink 

excessively over time, RMSprop introduces a decay factor to 

control this accumulation. This adjustment prevents the 

learning rate from becoming too small, allowing for more 

stable and efficient training. However, further advancements 

were still needed to fully address the challenges of large-scale 

datasets and mini-batch optimization [25]. 

The RMSprop algorithm primarily aims to accelerate the 

optimization process by reducing the number of function 

evaluations required to reach the local minimum. It achieves 

this by maintaining a moving average of squared 

gradients for each weight. During each update, the gradient is 

divided by the square root of this mean square, which helps 

normalize the step size. This approach effectively adapts the 

learning rate for each parameter, addressing the issue of 

varying gradient magnitudes. By doing so, RMSprop ensures 

more stable and efficient convergence, particularly in 

scenarios with noisy or non-stationary gradients. This makes 

it a popular choice for optimizing deep learning models. 

𝜗(𝑤, 𝑡) ≔ 𝛾𝜗(𝑤, 𝑡 − 1) + (1 − 𝛾)(𝛻𝑄𝑖(𝜔))
2

      (4) 

where gamma is the forgetting factor. Weights are updated by 

the below formula 

          𝜔 ≔ 𝑤 −
𝜂

√𝑣(𝑤,𝑡)
𝛻𝑄𝑖(𝑤)                       (5) 

In simpler terms, RMSprop works by penalizing updates to 

parameters that cause significant oscillations in the cost 

function. For example, imagine you built a model to classify 

different types of fish, and the model heavily relies on the 

feature “color” to make predictions. This over-reliance on a 

single feature leads to many errors. RMSprop addresses this 

by penalizing the parameter associated with “color,” 

encouraging the model to consider other features as well. This 

prevents the algorithm from adapting too quickly to changes 

in the “color” parameter compared to others, ensuring a more 

balanced learning process. 

Compared to earlier gradient descent algorithms, 

RMSprop offers several advantages. It converges faster and 

requires less hyperparameter tuning, making it more user-

friendly and efficient. By adaptively adjusting the learning 

rate for each parameter, RMSprop provides a more stable and 

robust optimization process, especially in scenarios with 

noisy or imbalanced data [25]. 

The main drawback of RMSprop is that it requires 

the learning rate to be set manually, and the default value may 

not suit every application. This means users often need to 

experiment to find the optimal learning rate, which can be 

time-consuming. While RMSprop adapts the learning rate for 

each parameter, the initial value remains crucial. If not set 

properly, it can lead to slow convergence or poor 

performance, highlighting the need for more advanced 

optimizers with less manual tuning [25]. 

 

Algorithm 4 : RMSprop 
Inputs: learning rate 𝜂 , small constant  𝛽(10−7) 

 initial parameters 𝜃 

Initialize: 

Gradient accumulation variable 𝑟 ←  0   

Begin: 

while stopping criteria is not met do: 

                     compose a minibatch {𝜃(𝑖)⁾, 𝑦(𝑖)} 

                      from               the dataset 

                     apply an intermediate update: 

                        �̃�  ← 𝜃 + 𝜂. 𝑚 

                     compute the gradient estimate: 

                         𝑔 ←
1

𝑛
𝛻𝜃 ∑ 𝐽(𝑓(𝜃(𝑖); 𝜃)

𝑖

, 𝑦(𝑖)) 

                      accumulate the squares of gradients: 

                         𝑟 ← 𝛽𝑟 + (1 − 𝛽)𝑔. 𝑔 

                       calculate the update: 

                           𝑚 ← −
𝜂

√𝑟 + 𝛽
⨀ 𝑔 

 

                        apply the update to parameters: 

                        𝜃 ← 𝜃 +  𝑚 

End While 

Return 𝜃 

End 

C. Adam Optimizer in Deep Learning 

The Adam optimizer, short for Adaptive Moment 

Estimation, is a widely-used optimization algorithm in deep 

learning. It builds upon the stochastic gradient descent (SGD) 

approach by dynamically adjusting the weights of a neural 

network during training. Adam combines the benefits of 

momentum-based methods and adaptive learning rates, using 

estimates of both the first and second moments of gradients 

to update parameters efficiently. This results in faster 

convergence, improved stability, and better performance 

across a wide range of deep learning tasks. Its adaptability 

and robustness have made Adam one of the most popular 

optimizers in the field. 

The Adam optimizer adaptively adjusts the learning rate 

for each individual weight in a neural network. Unlike 

Stochastic Gradient Descent (SGD), which uses a fixed, 

global learning rate for all parameters, Adam dynamically 

computes unique learning rates for every parameter during 

training. This is achieved by maintaining and utilizing two 

key pieces of information: 

1) The first moment (mean) of past gradients, which 

provides momentum-like acceleration.   

2) The previous gradients’ second instant (uncentered 

variance), which aids in adaptively scaling the learning 

rate.  

By leveraging these moments, Adam ensures efficient and 

stable optimization, making it a powerful and widely-used 

optimizer in deep learning. 

In order to create a very efficient optimizer, the Adam 

optimizer’s developers integrated the advantages of several 

optimization algorithms, including RMSProp and AdaGrad. 
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Similar to RMSProp, Adam takes into account the gradients’ 

second moment, which aids in adjusting the learning rate for 

every parameter. Adam, in contrast to RMSProp, determines 

the gradients’ uncentered variance (without deducting the 

mean). Adam can dynamically modify learning rates and 

attain faster convergence using this method with the addition 

of momentum (initial instant of gradients). By combining 

these characteristics, Adam offers a reliable and effective 

optimization technique that performs better on deep learning 

tasks than many conventional algorithms. 

The Adam optimizer creates an adaptive learning rate that 

effectively traverses the optimization landscape during 

training by taking into account both the gradients’ first 

moment (mean) and second moment (uncentered variance). 

This flexibility allows for quicker convergence and improves 

the neural network’s overall performance. 

In conclusion, by dynamically modifying learning rates for 

specific weights, the Adam optimizer provides a 

sophisticated optimization technique that builds upon 

Stochastic Gradient Descent (SGD). By utilizing adaptive 

learning rates and momentum, it combines the advantages of 

RMSProp and AdaGrad to deliver effective and efficient 

network weight updates. Because of this, Adam is a strong 

and popular deep learning optimizer that strikes a balance 

between performance, stability, and speed. 

Because of its many advantages, the Adam optimizer is 

widely utilized. As a default optimization approach, it is 

suggested and modified as a benchmark for deep learning 

research. In addition, the technique requires less tuning than 

any other optimization algorithm, is easy to build, and runs 

faster and uses less memory [26]. 

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1) [
𝛿𝐿

𝛿𝜔𝑡
]                     (6) 

             𝜗𝑡 = 𝛽2𝜗𝑡−1 + (1 − 𝛽2) [
𝛿𝐿

𝛿𝜔𝑡
]

2

                    (7) 

 

 
Fig. 7. The variety of SGD optimizers. 

 

While the Adam optimizer combines the strengths of 

various algorithms and is often considered one of the best 

optimizers available, it is not universally suitable for every 

application. Adam prioritizes faster computation and efficient 

convergence, but this can sometimes come at the cost of 

generalization performance. Algorithms like Stochastic 

Gradient Descent (SGD), though slower, often generalize 

better because they focus more on individual data points 

during training. This makes SGD a better choice for tasks 

where generalization is critical, even if it requires more 

computation time [27]. 

From the above, we have represented several types of SGD 

algorithms to see the differences between them as shown in 

Fig. 7 and to see the functionality of each one. 

 

Algorithm 5 : Adam 
Inputs: Learning rate 𝜂 

Decay rates 𝛽1  and 𝛽2 , Small 

constant 𝛼 (10−7), 
Initialize: 

1st moment vector 𝑚0 ← 0 

2nd moment vector  𝑣0 ← 0 

Time step 𝑡 ← 0 

Gradient accumulation variable 𝑟 ←  0 

Begin: 

While  𝜃𝑡   not converged do: 

               𝑡 ← 𝑡 + 1 

                       Compute gradients for step t: 

                       𝑔𝑡 ← 𝛻𝜃𝐽𝑡(𝜃𝑡−1) 

                       Update biased 1st moment estimate: 

                       𝑚𝑡 ← 𝛽1𝑚𝑡−1 − (1 − 𝛽1) 𝑔𝑡 

                      Update biased 2nd raw moment   

                      estimate: 

                      𝑣𝑡 ← 𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔𝑡
2 

                      Accumulate the squares of gradients: 

                       𝑟 ← 𝛽𝑟 + (1 − 𝛽)𝑔. 𝑔 

                      Compute bias-corrected 1st moment  

                      estimate: 

                      𝑚�̂� ← 𝑚𝑡/(1 − 𝛽1
𝑡) 

                      Compute bias-corrected 2nd moment 4 

                      estimate: 

                      𝑣�̂� ← 𝑣𝑡/(1 − 𝛽2
𝑡) 

                      Update parameters: 

                      𝜃𝑡  ←  𝜃𝑡−1 +  𝜂 𝑚�̂�/(√ 𝑣�̂� + 𝛼) 

End While 

Return  𝜃𝑡    
End 

 

IV. EXPERIMENTAL RESULTS 

A. Evaluation Metrics 

The suggested method’s performance was evaluated using 

several metrics derived from the tested sample photographs’ 

categorization as shown in Fig. 8. These measurements were 

computed using a contingency table called the confusion 

matrix. The percentage of correctly classified image samples, 

regardless of their class labels, is displayed by the accuracy 

statistic. Specificity is the percentage of correctly classified 

negative class samples, while sensitivity is the percentage of 

correctly classified positive class samples in binary 

classification, which is relevant to our study [19]. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                            (8) 

𝑆𝑒𝑛𝑠ⅈ𝑡ⅈ𝑣ⅈ𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                     (9) 

 

𝑆𝑝𝑒𝑐ⅈ𝑓ⅈ𝑐ⅈ𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑁
                               (10) 
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Fig. 8. The experiments flowchart. 

B. Algorithms Best Parameters

Several variables, including learning rate, batch size, 

optimizer selection, loss function, activation functions, and 

the number of epochs, are considered optimal parameters for 

GRU algorithms. The adjustment of these parameters 

depends on the specific network architecture as shown in Fig. 

9, the characteristics of the dataset, and the desired task. The 

ideal parameters identified for our pre-trained GRU model 

are presented in Table 1 [20]. 

Table 1. The best hyper-parameters used for the TL models in training 
phase of different optimizers 

Network 
Learning 

rate 

Batch 

Size 
Optimiser 

Loss 

Function 
Epochs 

RNNs 

model 

1.00e10-7 
10 SGD 

momentum 

Mean-

Squared- 
Error 

140 

1.00e10-7 10  Adagrad 

Mean-

Squared- 
Error  

140 

1.00e10-7 10 RMSProp 

Mean-

Squared- 
Error  

140 

1.00e10-7 10 Adam 

Mean-

Squared-

error 
140 

C. Training and Testing Results

Figs. 10, 11, and 12 show that the GRU model using the 

RMSprop optimizer, starting from epoch 30, yields 

satisfactory results, as the training and validation curves 

converge. However, between epochs 80 and 140, these curves 

begin to diverge, indicating a decline in performance. On the 

other hand, for the Adagrad and Adam optimizers, the 

training and validation curves gradually converge from epoch 

30 to epoch 140, suggesting that these optimizers deliver 

better results for the GRU model. Among them, the Adam 

optimizer stands out as the most effective for this model. 

Fig. 9. Architecture of the proposed model. 

Fig. 10. The accuracy obtained by training and evaluating the GRU model 

based on RMSProp optimizer. 

Fig. 11. The accuracy obtained by training and evaluating the GRU model 

based on Adagrad optimizer. 
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Fig. 12. The accuracy obtained by training and evaluating the GRU model 

based on Adam optimizer. 

 

Figs. 13, 14, and 15 show that the LSTM model using the 

RMSprop optimizer yields good results from epoch 0 to 

epoch 30. However, after epoch 30, the curves begin to 

diverge, indicating that this optimizer is not the most suitable 

choice for LSTM models in this specific case and with the 

data used. On the other hand, for the Adagrad and Adam 

optimizers, the training and validation curves converge 

progressively from epoch 30 to epoch 140, suggesting that 

both optimizers deliver better results for the LSTM model. 

Among them, the Adam optimizer remains the best choice for 

this model, as well as for the GRU model. 
 

 
Fig. 13. The accuracy obtained by training and evaluating the LSTM model 

based on RMSProp optimizer. 
 

  
Fig. 14. The accuracy obtained by training and evaluating the LSTM model 

based on Adagrad optimizer. 

 
Fig. 15. The accuracy obtained by training and evaluating the LSTM model 

based on Adam optimizer. 

 

D. Discussion 
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Initially, a day-wise deep learning model known as the 

GRU (Gated Recurrent Unit) model was developed to 

forecast students’ performance across multiple classes. This 

model was specifically designed to predict the performance 

category of students in a multi-class format. The GRU model 

achieved an accuracy of 88% on the validation dataset, which 

was comparable to its performance on the training dataset. 

Notably, it provided the most precise predictions regarding 

students’ performance compared to other evaluated models, 

such as the LSTM model. The primary objective of the study 

was to assess the GRU model against other state-of-the-art 

models.

On the one hand results indicated that the GRU model 

consistently outperformed its counterparts. Specifically, 

when incorporating clickstream and demographic data from 

the final day of courses, the GRU model demonstrated 

superior accuracy compared to the LSTM model. While the 

GRU achieved an accuracy of 88%, the LSTM model lagged 

behind at 63%. This performance gap can be attributed to the 

GRU model’s ability to effectively retain long-term 

relationships between parameters.

On the other hand, according to the figure we notice that 

the Adam optimizer is always given better results by 

comparing with the other optimizers either RMSProp or 

Adagrad.

GRU model with adam optimizer is always better than 

LSTM model with Adam optimizer. This explains that GRU  

has fewer control ports and a state of the cell, which accounts 

for its lower computational complexity and lower cutoff point 

than LSTM.

V. CONCLUSION AND PERSPECTIVES

The use of deep learning to predict student performance 

represents a significant advancement in the field of education. 

By leveraging advanced neural network architectures, such as 

Convolutional Neural Networks (CNNs), Recurrent Neural 

Networks (RNNs), and Transformer-based models, deep 

learning can effectively analyze complex and diverse datasets, 

including academic records, learning behaviors, and 

engagement metrics. These models excel at identifying 

hidden patterns and correlations that traditional statistical 
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methods often overlook, enabling more accurate and 

personalized predictions. 

The The application of various optimization algorithms, 

such as Stochastic Gradient Descent (SGD), plays a critical 

role in training these models. SGD, along with its variants 

like SGD with momentum, Adagrad, RMSProp, and Adam, 

allows for efficient adjustment of model parameters to 

minimize the loss function and improve prediction accuracy. 

Each of these algorithms offers specific advantages. This 

paper proposed an application of RNNs models with different 

optimization algorithms and obtained a precision of more 

than 90%. 

However, challenges remain, such as the need for high-

quality, well-annotated data, the interpretability of deep 

learning models, and the risks of bias in training data. To 

ensure responsible implementation, it is essential to employ 

robust preprocessing techniques, improve model 

transparency, and address ethical considerations, application 

of other optimization method that I did not have time to apply 

like ADadelta algorithm and others, that’s our future work. 

In conclusion, deep learning, combined with optimization 

algorithms like SGD and its variants, offers powerful tools 

for predicting student performance. This approach has the 

potential to transform educational systems by enabling data-

driven decision-making and improving learning outcomes. 

With ongoing advancements in research and technology, the 

integration of deep learning into education will open new 

possibilities for teaching and learning. 
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