

A Student Performance Prediction Using RNNs Models with

variety of optimization Techniques in Deep Learning

Abdelmajid El Hajoui*, Otmane Yazidi Alaoui, Omar El Kharki, Miriam Wahbi, Hakim Boulaassal,

and Mustapha Maatouk

Laboratoire de Recherche et Developpement en GeoScience Appliquées, FSTT, Abdelmalek Essaadi University, Tetouan, Morocco

Email: elhajoui.abdelmajid@etu.uae.ac.ma (A.E.H.); 0.yalaoui@uae.ac.ma (O.Y.A.); elkharki@gmail.com (O.E.K.);

mwahbi@uae.ac.ma (M.W.); h.boulaassal@uae.ac.ma (H.B.); mmaatouk@uae.ac.ma(M.M.)
*Corresponding author

Abstract—The goal of learning analytics is to assess students

performance over time. While virtual learning environments

enable educators to intervene quickly, distance can make it

challenging to evaluate students’ success. Many studies have

developed prediction models using data from Massive Open

Online Courses (MOOCs), but these models were limited to

classifying students into binary groups based on the courses they

had completed. The paper tackles an important gap in

predicting student performance by introducing a daily multi-

class model based on Recurrent Neural Networks (RNNs),

specifically leveraging Gated Recurrent Units (GRUs) and Long

Short-Term Memory (LSTM) networks. To validate the GRU

model, it is compared against two baseline models: Artificial

Neural Networks (ANNs) and LSTM networks. The results

show that the GRU model achieves an impressive accuracy of

nearly 90%, outperforming the LSTM model, which reaches 88%

accuracy. This highlights the potential of GRUs to better

capture temporal dependencies and patterns in student

performance data, making them a strong candidate for

educational forecasting. The study suggests that GRU-based

models could serve as a powerful tool for educators and

institutions to predict and address student performance issues

proactively. This demonstrates how early student performance

in MOOCs can be predicted using the design and latent

dependency maintenance capabilities of the GRU time series

model. Along with this, the paper evaluates the accuracy, loss,

and training time of several stochastic gradient descent

algorithms, such as Adam, AdaGrad, RMSProp, and Stochastic

Gradient Descent (SGD) with momentum. It also assesses the

loss that each algorithm must endure in order to produce an

optimal solution. When comparing all optimizers utilizing the

pre-trained GRU model, the highest accuracies of 97.58% and

97.66% are obtained by Adam and SGD with momentum,

respectively.

Keywords—Recurrent Neural Network (RNN), Gated

Recurrent Unit (GRU), Artificial Neural Network- Long Short-

Term Memory (ANN-LSTM), Massive Open Online Course

(MOOC), students performance, Stochastic Gradient Descent

(SGD), RMSprop, Adam, Adagrad

I. INTRODUCTION

The COVID-19 pandemic has underscored the importance

of Virtual Learning Environments (VLEs), as students

worldwide were compelled to transition to remote learning.

This shift has accelerated the adoption and reliance on digital

educational platforms. At the same time, advancements in

science and technology have driven significant progress in

educational tools over the past few decades, enabling more

interactive, accessible, and personalized learning experiences.

Together, these developments have reshaped the educational

landscape, emphasizing the critical role of technology in

supporting modern learning environments. Massive Open

Online Courses (MOOCs) and similar VLEs have gained

traction, especially during the pandemic. These platforms

offer a variety of resources, including lecture videos, online

assessments, discussion forums, and live video sessions over

the internet. Early insights into student performance within

VLEs at the beginning of courses facilitate the assessment of

learning analytics objectives. As a result, researchers have

developed predictive models to forecast student outcomes in

MOOCs, with a primary focus on binary classifications such

as pass/fail or dropout scenarios. However, there has been

limited exploration of models that predict performance using

multi-classification approaches. Addressing this gap, the

authors in reference [1] propose a novel method that

combines Variable Reduction with an Optimized Deep

Recurrent Neural Network (VR-ODRNN) to analyze student

performance and predict course outcomes. The VR-ODRNN

model is specifically designed to process student data and

accurately predict course grades, offering a more nuanced and

detailed approach compared to traditional binary

classification models. This innovative framework represents

a significant step forward in understanding and forecasting

student performance in MOOCs. Input data is first

normalized using min-max normalization to ensure

consistency. For feature selection, the Coot Optimization

Algorithm (COA) is employed to identify an optimal subset

of variables. Student performance is then predicted using a

Deep Recurrent Neural Network (DRNN), with its

hyperparameters optimized through the Dwarf Mongoose

Gannet Optimization Algorithm (DMGOA). The proposed

VR-ODRNN model is evaluated using a student performance

dataset from the Kaggle repository. Experimental results

demonstrate that the VR-ODRNN model achieves a high

accuracy. Several studies have investigated the use of various

machine learning techniques to predict students’ academic

performance. As highlighted in [2], Principal Component

Analysis (PCA) was first utilized to reduce the

dimensionality of the dataset, improving its visualization.

Following this, K-Means clustering was applied to categorize

students according to their learning patterns. The resulting

clusters were then used to train classification models,

allowing for customized predictions for each group of

students. This approach was validated using the Open

University Learning Analytics Dataset (OULAD) and data

from an undergraduate science course at a North American

University (NAU) [2].

As a result, there is a need for further research to improve

the performance of multi-class prediction models [3]. While

traditional artificial intelligence techniques are frequently

International Journal of Information and Education Technology, Vol. 15, No. 6, 2025

1289doi: 10.18178/ijiet.2025.15.6.2331

Manuscript received January 28, 2025; revised February 25, 2025; accepted March 19, 2025; published June 20, 2025

mailto:elhajoui.abdelmajid@etu.uae.ac.ma
mailto:0.yalaoui@uae.ac.ma

employed to predict student achievement in online higher

education, more advanced methods such as deep learning

remain underutilized [4]. The main objective of this study is

to develop a multi-class, course-agnostic, day-wise predictive

model using activity clickstream data and demographic

information. This model aims to classify students’

performance in MOOC environments as early as possible

while maintaining satisfactory accuracy. Such a model can

support higher education decision-making processes,

promote sustainable education in MOOC settings, and enable

instructors to take timely and appropriate actions to support

student success.

Deep Neural Networks (DNNs) have established

themselves as highly effective tools across a variety of

domains, particularly for processing and analyzing large-

scale datasets. By training on vast amounts of data, DNNs can

uncover complex patterns and relationships between

variables. To enhance their performance, optimization

algorithms such as Stochastic Gradient Descent (SGD),

RMSprop, Adam, and Adagrad are commonly employed in

various applications. However, despite their strengths, these

methods often encounter difficulties with generalization,

especially when dealing with large datasets, which can hinder

their ability to deliver consistent and reliable results.

The success of this study hinges on achieving the following

objectives:

1) To develop an innovative deep learning model that makes

daily predictions about student performance in a multi-

class setting.

2) To identify which of the three recurrent deep learning

models LSTM, and GRU can improve the precision of

student performance forecasts.

3) To evaluate the accuracy of the proposed model by

comparing it with relevant state-of-the-art models.

4) To assess different stochastic gradient optimization

techniques for deep learning and identify a method that

combines the rapid convergence of adaptive techniques

with the robust generalization performance of traditional

Stochastic Gradient Descent (SGD). Additionally, this

study proposes optimization strategies that incorporate

parameter adjustments to enhance performance.

The reste of the article is organized as follows: Section II

reviews the relevant literature on the use of deep learning

models for predicting student performance. Section III

describes the methodology employed in this study. Section

IV presents the results and provides a discussion. Finally,

Section V offers conclusions and perspectives based on the

findings.

II. RELATED WORKS

Massive Open Online Courses, commonly known as

MOOCs, are freely accessible online courses available to

everyone. They are structured around specific learning

objectives across various fields of study and typically run

over a set period within a digital learning environment that

encourages interaction among peers and instructors. MOOCs

foster the development of a learning community. Many

research studies have employed performance prediction

models in MOOC courses, with a significant number utilizing

the OULAD dataset, which is widely recognized in the

MOOC domain. Throughout the years 2021, 2022, 2023, and

2024, numerous prediction models trained using the OULAD

dataset have been published [5].

RNNs (Recurrent Neural Networks) are supervised neural

networks that preserve the temporal dimension of time series

data by using a recurrent hidden state, which is updated by

sequential information obtained from the input time series

data. The output of a sequence depends on this hidden state,

meaning the current output of a sequence is linked to the

previous output (recurrent neural network. They rely on the

repeated use of classifiers, which avoids the need for a large

number of historical classifiers [6].

Recurrent Neural Networks (RNNs) can be used to predict

student performance by analyzing sequential data, such as

time-series data of student activities, grades, or engagement

metrics. RNNs are particularly well-suited for this task

because they can capture temporal dependencies and patterns

in the data, which are often critical for understanding student

behavior and performance over time [6].

In 2021, Adnan et al. utilized a Deep Feed Forward Neural

Network (DFFNN) to predict students’ final performance

status, categorizing them as fail, pass, withdrawn, or distinct.

They observed varying levels of accuracy based on the input

data used. Specifically, when only demographic data was

considered, the average accuracy was 43% by the end of the

course. However, this accuracy increased to 63% when

demographic and clickstream data were combined, and

further improved to 71% when assessment data was also

included. Notably, incorporating all features from the

OULAD dataset in the input data led to a significant accuracy

of 72%. Additionally, the researchers employed binaryization

to facilitate multi-classification grouping. Remarkably, after

conversion, they achieved an accuracy of 90% at the

conclusion of the courses [4] .

Another study, referenced as [7], focused on utilizing

demographic information and aggregated clickstream data

from two STEM courses (CCC_2014B and CCC_2014J), as

well as two social science courses (AAA_2013J and

AAA_2014J).

The study aimed to predict whether a student would persist

or drop out in the following week. To achieve this, a

supervised machine learning model was developed using an

expectation-maximization approach. The model’s prediction

accuracy for the current week was subsequently enhanced by

incorporating the resulting probabilities. Additionally,

Reference [8] utilized the Synthetic Minority Over-Sampling

(SMOTE) technique. By the end of the courses, the average

accuracy across all selected courses for all weeks approached

88%.

In 2022, as described in [9], a prediction framework was

developed. This framework incorporates six classical

machine learning algorithms: SVC (R), SVC (L), Naïve

Bayes, KNN (U), KNN (D), and Softmax. The predictor

aimed to classify outcomes as either “qualified” or

“unqualified.” The framework utilized the “DDD” module

(course) along with clickstream data across 12 activities in its

implementation.

In Reference [10], researchers created a basic prediction

model using a Bayesian Network (BN) and compared it with

ensemble models, including Naïve BN, Multi-Layer

Perceptron (MLP), and Gradient Boosting Decision Trees, to

predict final performance. The performance value, based on

International Journal of Information and Education Technology, Vol. 15, No. 6, 2025

1290

student assessment results, was categorized into four groups:

fail, pass, good, and distinction.

Adnan et al. created several machine learning models

within a multi-class classification framework to forecast

student performance across four categories: distinct, pass, fail,

and withdrawn. These models featured a single deep learning

classifier, specifically a Feed Forward Neural Network

(FFNN), and were assessed using criteria such as Gini and

entropy. The evaluation involved various classifiers,

including Random Forest, AdaBoost, Extra Tree classifier,

K-Nearest Neighbor (KNN), Decision Tree, Support Vector

Machine (SVM), Gradient Boosting, Logistic Regression,

Gaussian NB, and Bernoulli NB, as detailed in [3].

In 2023, a team proposed the ANN-LSTM model, which

integrates an artificial neural network with long short-term

memory, to predict students’ performance. They investigated

and compared this model with two baseline models, the Gated

Recurrent Unit (GRU) and the Recurrent Neural Network

(RNN), to evaluate its effectiveness in this specific context.

Additionally, they compared the accuracy of ANN-LSTM

with that of the most advanced models available. The results

demonstrated that the ANN-LSTM model outperformed the

baseline models. By the end of the third month of the course,

ANN-LSTM achieved an accuracy of nearly 70%, surpassing

the accuracy of the RNN and GRU models, which were 53%

and 57%, respectively [11].

In [12] , the study explores a wide range of machine

learning algorithms using two data representations. It

demonstrates that algorithms relying solely on assignment

information and a representation based on mean information

entropy (MIL) can outperform single instance learning

representations by more than 20% in terms of accuracy. This

suggests that using an appropriate representation to mitigate

data sparsity highlights the importance of a factor—such as

completed assignments—that has not been extensively

utilized to date for forecasting students’ academic

achievement. Furthermore, a comparison with earlier

research on the same dataset and problem shows that

predictive models based on MIL, which use only assignment

data, produce competitive outcomes compared to earlier

studies that incorporate other predictor variables to predict

student performance.

Several machine learning techniques were employed in

this study to forecast students performance. The analysis was

conducted using educational data from the Open University

(OU), based on performance, engagement, and demographic

criteria. Through experimental analysis, it was found that

among all the compared methods on the OU dataset, the k-

NN approach performed best in some circumstances, while

the ANN approach excelled in others [13].

In [14] , the momentum method is used to develop a

dynamic adjustment scheme that incorporates both stale

penalty and stale compensation. Stale compensation aims to

mitigate the adverse effects of stale gradients, while stale

penalty reduces the reliance on these gradients. This research

introduces a dynamic asynchronous stochastic gradient

descent method (DASGD) based on this adjustment approach.

DASGD dynamically modifies the compensation and penalty

factors using stale size. Under certain mild assumptions, the

study demonstrates that DASGD is convergent. Additionally,

the paper proposes evaluating DASGD on a real distributed

training cluster using the Cifar10 and ImageNet datasets.

Experimental results confirm the superior performance of

DASGD compared to four state-of-the-art baselines.

Specifically, DASGD achieves nearly the same test accuracy

as SGD on Cifar10 and ImageNet, while using only around

27.6% and 40.8% of the training time required by SGD,

respectively.

In [15] , the authors developed an ensemble method based

on stochastic gradient descent with warm restarts (SGDRE)

to address issues related to generalization, dataset size, and

time complexity. This method leverages the generalization

capabilities of ensemble techniques and the SGD with warm

restarts mechanism, which generates a diverse set of

classifiers required for the ensemble in a single training

process. This approach takes the same amount of time to train

as a single CNN classification model. The SGDRE algorithm

was evaluated using a 10-fold cross-validation technique after

being trained on a publicly available dataset of pediatric chest

X-ray images. According to the experimental data, SGDRE

significantly outperforms the two baseline approaches under

comparison. The proposed method proved to be a highly

competitive classification technique, achieving a test

accuracy of 96.26% and an AUC of 95.15%.

III. MATERIALS AND METHODS

This section will describe the operation of the system,

utilizing the most advanced deep learning and artificial

intelligence techniques that are relevant to and compatible

with predicting student performance.

A. Dataset Collection

One of the publicly available learning analytics datasets is

the Open University Learning Analytics Dataset (OULAD),

which includes information on 32,593 students who enrolled

in open online courses. The data for this study was provided

by the Open University, one of the largest distance learning

organizations in the UK [11]. The dataset contains over 10

million student interaction records, encompassing

clickstream data, course information, assessment results, and

demographic details. The OULAD dataset covers seven

online courses offered over four semesters, catering to

students of all ages and educational backgrounds [16].

The Open University, UK, provided the Open University

Learning Analytics Dataset (OULAD), which is freely

accessible. The dataset is organized into seven tables, each

containing student-centered data such as demographics,

interactions with the Virtual Learning Environment (VLE),

exam results, course registration, and course offerings. These

tables are interconnected through key identifiers. Clickstream

data, which represents the total number of clicks and reflects

students’ daily activities and interactions within the VLE, is

stored in the student VLE table. The student-module

presentation dataset triplet contains the assessment results of

the students. OULAD was created for the academic years

2013 and 2014, encompassing 32,593 registered students

across 7 courses and 22 module presentations. The dataset has

been certified by the Open Data Institute (http://theodi.org/)

and is publicly available at

https://analyse.kmi.open.ac.uk/open_dataset [16].

International Journal of Information and Education Technology, Vol. 15, No. 6, 2025

1291

Fig. 1. The proposed system to predict student performance.

B. Background on GRU and LSTM Model

Recurrent Neural Networks (RNNs) are supervised neural

networks designed to preserve the temporal dimension of

sequential data. They achieve this by employing a recurrent

cache that is updated with sequential information obtained

from temporally organized input data series. The current

output of a sequence depends on this hidden state, and as

illustrated in Fig. 1, a sequence’s previous output (a neural

recurrent reservoir) is linked to its current output. RNNs rely

on the repeated use of classifiers, eliminating the need for a

large number of historical classifiers. Unlike traditional

neural networks, where cached neurons are not connected,

RNNs feature interconnected cached neurons. This

characteristic makes RNNs a more effective method for

solving traffic flow prediction problems), as shown in Fig. 2

[17].

International Journal of Information and Education Technology, Vol. 15, No. 6, 2025

1292

Fig. 2. The structure of RNN [17].

LSTM networks was develped to solve the vanishing

gradient issue that basic RNNs have. The use of gating

techniques to regulate the information flow across the

network is the main breakthrough of LSTM [18].

Fig. 3. The structure of LSTM [18].

Two well-known models that RNNs use to solve the traffic

flow prediction problem are the Long Short-Term Memory

model (LSTM) and the Gated Recurrent Unit model (GRU)

[19].

Fig. 4. The structure of GRU [20].

Cho et al. in [18] developed the Gated Recurrent Unit

(GRU) cell, which features a more compact structure

compared to the Long Short-Term Memory (LSTM) model.

Unlike LSTM’s multi-gate structure), as shown in Fig. 3,

GRU has fewer control gates and a single cell state, resulting

in lower computational complexity and a lower cutoff point.

Additionally, GRU exhibits a similar ability to LSTM in

addressing common RNN issues such as gradient explosion

and vanishing. The two control gates in the GRU, as shown

in Fig. 4 are:

1) The reset gate that determines if we need to combine the

current state with the previous state.

2) The update portal, which determines how much state-

related data were provided at the previous moment [20].

B. Optimisers Algorithms

Optimizers are essential algorithms in deep learning

designed to adjust a model’s parameters during training to

minimize a specified loss function. These tools enhance the

learning process of neural networks by iteratively updating

weights and biases based on feedback from the data. Popular

optimizers such as Stochastic Gradient Descent (SGD),

Adam, and RMSprop each employ unique update rules,

learning rates, and momentum strategies. Their primary goal

is to identify and converge toward optimal model parameters,

ultimately improving the model’s performance [21].

Optimizer algorithms are optimization techniques

designed to improve the performance of deep learning models.

These algorithms, often referred to as optimizers, play a

critical role in determining both the accuracy and efficiency

of the training process. However, before delving into their

impact, it is important to first grasp the fundamental concept

of what an optimizer is and how it functions [21].

During the training of a deep learning model, optimizers

adjust the weights at each epoch to minimize the loss function.

At its core, an optimizer is a function or algorithm designed

to fine-tune a neural network’s parameters, such as weights

and learning rates, with the aim of reducing the overall loss

and enhancing the model’s accuracy. Selecting the right

weights for the model is a complex task, especially since deep

learning models often involve millions of parameters. This

underscores the significance of choosing an appropriate

optimization algorithm tailored to your specific application.

As a result, a solid understanding of these machine learning

algorithms is crucial for data scientists before they dive

deeper into the field [21].

You can employ various optimizers in a machine learning

model to fine-tune weights and learning rates. However,

selecting the most suitable optimizer depends heavily on the

specific application. As a beginner, one might consider

experimenting with different optimizers and selecting the one

that delivers the best results. While this trial-and-error

approach may work initially, it becomes increasingly

impractical when working with hundreds of gigabytes of data,

as even a single training epoch can consume a substantial

amount of time. Randomly selecting an optimizer can end up

being a costly gamble with your time—a realization that

becomes clearer as you advance in your machine learning

journey.

This guide will explore a variety of deep learning

optimizers, such as Gradient Descent, Stochastic Gradient

Descent (SGD), Stochastic Gradient Descent with

Momentum, Mini-Batch Gradient Descent, Adagrad,

RMSprop, AdaDelta, and Adam. By the end of the article,

you will gain the ability to compare these optimizers and

understand the underlying principles and procedures they rely

on. This paper will help you make informed decisions when

selecting the right optimizer for your specific deep learning

tasks.

C. Stochastic Gradient Descent Optimizer for Deep

Learning

At the end of the previous section, you discovered why

gradient descent may not be the most suitable choice for very

large datasets. To tackle the challenges associated with

massive datasets, Stochastic Gradient Descent (SGD)

emerges as a widely used optimizer in deep learning. The

term “stochastic” refers to the randomness inherent in the

algorithm’s approach. Unlike traditional gradient descent,

International Journal of Information and Education Technology, Vol. 15, No. 6, 2025

1293

which processes the entire dataset in each iteration, SGD

randomly selects small batches of data. This means only a

subset of samples is used at a time, making the optimization

process more efficient and computationally manageable for

training deep learning models [22].

𝜔 = 𝜔 − 𝜂𝛻𝑄ⅈ(𝜔) (1)

The procedure for Stochastic Gradient Descent (SGD)

begins, as shown in Fig. 5 by initializing the parameters and

setting the learning rate. Next, the data is randomly shuffled

at each iteration to ensure randomness in the selection of data

samples. By processing small batches or individual data

points at a time, the algorithm iteratively updates the

parameters to move toward an approximate minimum of the

loss function. This approach allows SGD to efficiently handle

large datasets and converge faster compared to traditional

gradient descent, albeit with some noise in the optimization

process due to the randomness introduced [22].

Fig. 5. The diagram of SGD.

Since SGD processes only small batches of data (or

individual samples) in each iteration rather than the entire

dataset, the optimization path it follows tends to be noisier

compared to the gradient descent algorithm. As a result, SGD

typically requires a higher number of iterations to converge

to the local minimum. While this increases the overall

computation time, the computational cost per iteration

remains significantly lower than that of gradient descent.

Therefore, even with more iterations, the total computational

expense of SGD is still less than that of batch gradient descent.

In conclusion, if you are working with extremely large

datasets and computational efficiency is a critical factor,

stochastic gradient descent is generally a better choice than

batch gradient descent.

Algorithm 1 : SGD algorithm

Inputs: Initial vector 𝜃, Learning rate 𝜂,

 Maximum number of iterations max_iter

Begin:

 𝑘 ← 0

 While (not converged and 𝑘 ≤ max_iter) do:

 Shuffle the dataset

 For each observation i in the

 dataset do:

 Compute the gradient 𝛻𝑓 (𝜃),
 for observation i

 Compute the step: step ← 𝜂 × 𝛻𝑓 (𝜃)

 Update 𝜃: 𝜃 ← 𝜃 + step

 𝑘 ← 𝑘 + 1

 End While

 End

D. Stochastic Gradient Descent with Momentum (SGDM)

As discussed earlier, stochastic gradient descent (SGD)

follows a much noisier path compared to the gradient descent

algorithm when optimizing deep learning models. This noise

results in a higher number of iterations being required to

reach the optimal minimum, which in turn slows down the

computation time. To address this issue, we use Stochastic

Gradient Descent with Momentum. This enhanced algorithm

incorporates the concept of momentum, which helps

accelerate convergence by smoothing the update path.

Momentum achieves this by accumulating a fraction of the

past gradients, effectively reducing oscillations and allowing

the optimizer to move more consistently toward the minimum.

This makes the training process faster and more stable

compared to standard SGD.

Momentum accelerates the convergence of the loss

function by addressing the oscillations commonly seen in

stochastic gradient descent (SGD). In standard SGD, the

updates to the weights can oscillate significantly, as the

algorithm follows the gradient’s direction in each iteration.

By incorporating momentum, a fraction of the previous

update is added to the current update, which helps smooth out

these oscillations and allows the optimizer to move more

consistently toward the minimum. This results in faster

convergence.

However, when using momentum, it’s important to

remember that the learning rate should be reduced if a high

momentum term is applied. This is because a high momentum

term can cause the updates to overshoot the optimal minimum

if the learning rate is too large. Balancing the learning rate

and momentum is key to achieving stable and efficient

training.

Fig. 6. Comparison of SGD algorithms without and with momentum.

In the Fig. 6, the left side illustrates the convergence path

of the standard stochastic gradient descent (SGD) algorithm,

while the right side demonstrates SGD with momentum. By

comparing the two, it’s clear that the addition of momentum

results in a smoother and more direct path toward

convergence, significantly reducing the time required to

reach the optimal minimum.

You might consider using a large momentum and learning

rate to further speed up the process. However, it’s important

to note that increasing the momentum too much can lead to

overshooting the optimal minimum. This can cause the

algorithm to miss the best solution, resulting in poor accuracy

and even increased oscillations. Therefore, finding the right

balance between momentum and learning rate is crucial to

ensure efficient and stable convergence without

compromising the model’s performance [23].

In this variation of gradient descent, the loss function is

computed using a subset of the training data rather than the

International Journal of Information and Education Technology, Vol. 15, No. 6, 2025

1294

entire dataset. Fewer rounds are required because we are

using a chunk of data rather than the entire dataset. Because

of this, the mini-batch gradient descent algorithm

outperforms the batch and stochastic gradient descent

techniques. Compared to the previous gradient descent

variations, this algorithm is more reliable and efficient. The

procedure is more efficient to implement since the algorithm

uses batching, which eliminates the need to put all of the

training data into memory. Additionally, the mini-batch

gradient descent algorithm’s cost function is smoother than

the stochastic gradient descent technique’s but noisier than

the batch gradient descent algorithm. Mini-batch gradient

descent is therefore perfect since it offers a decent trade-off

between accuracy and speed.

Despite all that, the mini-batch gradient descent algorithm

has some downsides too. It needs a hyperparameter that is

“mini-batch-size”, which needs to be tuned to achieve the

required accuracy. Although, the batch size of 32 is

considered to be appropriate for almost every case. Also, in

some cases, it results in poor final accuracy. Due to this, there

needs a rise to look for other alternatives too.

Algorithm 2 : SGD with Momentum
Inputs: learning rate 𝜂, momentum coefficient 𝛽,

 initial parameters 𝜃, Initial velocity 𝑚

Begin:

while stopping criteria is not met do:

compose a minibatch {θ⁽ⁱ⁾, y⁽ⁱ⁾} from

the dataset

 compute the gradient estimate:

 𝑔 ←
1

𝑛
𝛻𝜃 ∑ 𝐽(𝑓(𝜃(𝑖); 𝜃)𝑖 , 𝑦(𝑖))

update the velocity:

𝑚 ← 𝛽𝑚 − 𝜂. 𝑔

apply the update to parameters:

𝜃 ← 𝜃 + 𝑚

End While

Return 𝜃

End

E. Adaptive Gradient Descent Deep Learning Optimizer

(Adagrad)

Despite its advantages, the mini-batch gradient descent

algorithm also has some drawbacks. One key limitation is the

need to tune the **”mini-batch size”** hyperparameter to

achieve the desired accuracy. While a batch size of 32 is

generally considered suitable for most cases, this may not

always hold true, requiring experimentation to find the

optimal size. Additionally, in certain scenarios, mini-batch

gradient descent can lead to suboptimal final accuracy, which

can be a significant drawback depending on the application.

These limitations highlight the importance of exploring other

optimization alternatives to address specific challenges and

improve performance [24].

𝑤𝑡 = 𝑤𝑡−1 − 𝜂𝑡
′ 𝜕𝐿

𝜕𝜔(⊢−1)
 (2)

𝜂𝑡
′ =

𝜂

√𝛼𝑡+𝜖
 (3)

The Adagrad optimizer offers a significant advantage by

eliminating the need to manually adjust the learning rate. It is

more robust and reliable compared to standard gradient

descent and its variants, and it often achieves convergence

faster. However, Adagrad has a notable drawback: it reduces

the learning rate aggressively and monotonically over time.

This occurs because the squared gradients in the denominator

of the update rule continuously accumulate, causing the

denominator to grow larger with each iteration. As a result,

the learning rate can become excessively small, potentially

reaching a point where the model can no longer learn

effectively. This stagnation in learning compromises the

model’s accuracy, making it less suitable for tasks requiring

prolonged training or fine-tuning.

Algorithm 3 : Adagrad
Algorithm 3 : AdaGrad algorithm

Inputs: learning rate 𝜂 , small constant 𝛽(10−7)

 initial parameters 𝜃

Initialize:

Gradient accumulation variable 𝑟 ← 0

Begin:

while stopping criteria is not met do:

 compose a minibatch {𝜃(𝑖)⁾, 𝑦(𝑖)}

 from the dataset

 apply an intermediate update:

 𝜃̃ ← 𝜃 + 𝜂. 𝑚

 compute the gradient estimate:

 𝑔 ←
1

𝑛
𝛻𝜃 ∑ 𝐽(𝑓(𝜃(𝑖); 𝜃)

𝑖

, 𝑦(𝑖))

 accumulate the squares of gradients:

 𝑟 ← 𝑟 + 𝑔. 𝑔

 calculate the update:

 𝑚 ← −
𝜂

√𝑟 + 𝛽
⨀ 𝑔

 apply the update to parameters:

 𝜃 ← 𝜃 + 𝑚

End While

Return 𝜃

End

F. Root Mean Square Deep Learning Optimizer

(RMSProp)

RMSprop is a widely popular optimizer among deep

learning practitioners, despite not being formally published in

a research paper. It is well-regarded in the community and is

considered an extension of the RMSprop algorithm.

RMSprop addresses the issue of varying gradients, where

some gradients may be very small while others are large,

making it challenging to define a single global learning rate.

RMSprop solves this by adapting the step size individually

for each weight based on the sign of the gradients. It compares

the signs of two consecutive gradients: if they are the same,

it increases the step size slightly, indicating that the

optimization is moving in the right direction. If the signs are

opposite, it decreases the step size to avoid overshooting.

After adjusting the step size, it is clipped to stay within a

reasonable range, and the weight update is performed.

RMSprop builds on this idea but uses a different approach to

adapt the learning rate, making it more efficient and robust

International Journal of Information and Education Technology, Vol. 15, No. 6, 2025

1295

for training deep neural networks. It is particularly effective

in handling non-stationary objectives and noisy gradients,

which are common in deep learning tasks [25].

The issue with RMSprop is that it struggles with large

datasets and mini-batch updates, limiting its effectiveness in

such scenarios. The goal of combining the robustness of

RMSprop with the efficiency of mini-batch updates led to the

development of improved optimization techniques. RMSprop

itself is an enhancement over the AdaGrad optimizer,

addressing AdaGrad’s key limitation: the monotonically

decreasing learning rate. While AdaGrad accumulates

squared gradients, causing the learning rate to shrink

excessively over time, RMSprop introduces a decay factor to

control this accumulation. This adjustment prevents the

learning rate from becoming too small, allowing for more

stable and efficient training. However, further advancements

were still needed to fully address the challenges of large-scale

datasets and mini-batch optimization [25].

The RMSprop algorithm primarily aims to accelerate the

optimization process by reducing the number of function

evaluations required to reach the local minimum. It achieves

this by maintaining a moving average of squared

gradients for each weight. During each update, the gradient is

divided by the square root of this mean square, which helps

normalize the step size. This approach effectively adapts the

learning rate for each parameter, addressing the issue of

varying gradient magnitudes. By doing so, RMSprop ensures

more stable and efficient convergence, particularly in

scenarios with noisy or non-stationary gradients. This makes

it a popular choice for optimizing deep learning models.

𝜗(𝑤, 𝑡) ≔ 𝛾𝜗(𝑤, 𝑡 − 1) + (1 − 𝛾)(𝛻𝑄𝑖(𝜔))
2

 (4)

where gamma is the forgetting factor. Weights are updated by

the below formula

 𝜔 ≔ 𝑤 −
𝜂

√𝑣(𝑤,𝑡)
𝛻𝑄𝑖(𝑤) (5)

In simpler terms, RMSprop works by penalizing updates to

parameters that cause significant oscillations in the cost

function. For example, imagine you built a model to classify

different types of fish, and the model heavily relies on the

feature “color” to make predictions. This over-reliance on a

single feature leads to many errors. RMSprop addresses this

by penalizing the parameter associated with “color,”

encouraging the model to consider other features as well. This

prevents the algorithm from adapting too quickly to changes

in the “color” parameter compared to others, ensuring a more

balanced learning process.

Compared to earlier gradient descent algorithms,

RMSprop offers several advantages. It converges faster and

requires less hyperparameter tuning, making it more user-

friendly and efficient. By adaptively adjusting the learning

rate for each parameter, RMSprop provides a more stable and

robust optimization process, especially in scenarios with

noisy or imbalanced data [25].

The main drawback of RMSprop is that it requires

the learning rate to be set manually, and the default value may

not suit every application. This means users often need to

experiment to find the optimal learning rate, which can be

time-consuming. While RMSprop adapts the learning rate for

each parameter, the initial value remains crucial. If not set

properly, it can lead to slow convergence or poor

performance, highlighting the need for more advanced

optimizers with less manual tuning [25].

Algorithm 4 : RMSprop
Inputs: learning rate 𝜂 , small constant 𝛽(10−7)

 initial parameters 𝜃

Initialize:

Gradient accumulation variable 𝑟 ← 0

Begin:

while stopping criteria is not met do:

 compose a minibatch {𝜃(𝑖)⁾, 𝑦(𝑖)}

 from the dataset

 apply an intermediate update:

 𝜃̃ ← 𝜃 + 𝜂. 𝑚

 compute the gradient estimate:

 𝑔 ←
1

𝑛
𝛻𝜃 ∑ 𝐽(𝑓(𝜃(𝑖); 𝜃)

𝑖

, 𝑦(𝑖))

 accumulate the squares of gradients:

 𝑟 ← 𝛽𝑟 + (1 − 𝛽)𝑔. 𝑔

 calculate the update:

 𝑚 ← −
𝜂

√𝑟 + 𝛽
⨀ 𝑔

 apply the update to parameters:

 𝜃 ← 𝜃 + 𝑚

End While

Return 𝜃

End

C. Adam Optimizer in Deep Learning

The Adam optimizer, short for Adaptive Moment

Estimation, is a widely-used optimization algorithm in deep

learning. It builds upon the stochastic gradient descent (SGD)

approach by dynamically adjusting the weights of a neural

network during training. Adam combines the benefits of

momentum-based methods and adaptive learning rates, using

estimates of both the first and second moments of gradients

to update parameters efficiently. This results in faster

convergence, improved stability, and better performance

across a wide range of deep learning tasks. Its adaptability

and robustness have made Adam one of the most popular

optimizers in the field.

The Adam optimizer adaptively adjusts the learning rate

for each individual weight in a neural network. Unlike

Stochastic Gradient Descent (SGD), which uses a fixed,

global learning rate for all parameters, Adam dynamically

computes unique learning rates for every parameter during

training. This is achieved by maintaining and utilizing two

key pieces of information:

1) The first moment (mean) of past gradients, which

provides momentum-like acceleration.

2) The previous gradients’ second instant (uncentered

variance), which aids in adaptively scaling the learning

rate.

By leveraging these moments, Adam ensures efficient and

stable optimization, making it a powerful and widely-used

optimizer in deep learning.

In order to create a very efficient optimizer, the Adam

optimizer’s developers integrated the advantages of several

optimization algorithms, including RMSProp and AdaGrad.

International Journal of Information and Education Technology, Vol. 15, No. 6, 2025

1296

Similar to RMSProp, Adam takes into account the gradients’

second moment, which aids in adjusting the learning rate for

every parameter. Adam, in contrast to RMSProp, determines

the gradients’ uncentered variance (without deducting the

mean). Adam can dynamically modify learning rates and

attain faster convergence using this method with the addition

of momentum (initial instant of gradients). By combining

these characteristics, Adam offers a reliable and effective

optimization technique that performs better on deep learning

tasks than many conventional algorithms.

The Adam optimizer creates an adaptive learning rate that

effectively traverses the optimization landscape during

training by taking into account both the gradients’ first

moment (mean) and second moment (uncentered variance).

This flexibility allows for quicker convergence and improves

the neural network’s overall performance.

In conclusion, by dynamically modifying learning rates for

specific weights, the Adam optimizer provides a

sophisticated optimization technique that builds upon

Stochastic Gradient Descent (SGD). By utilizing adaptive

learning rates and momentum, it combines the advantages of

RMSProp and AdaGrad to deliver effective and efficient

network weight updates. Because of this, Adam is a strong

and popular deep learning optimizer that strikes a balance

between performance, stability, and speed.

Because of its many advantages, the Adam optimizer is

widely utilized. As a default optimization approach, it is

suggested and modified as a benchmark for deep learning

research. In addition, the technique requires less tuning than

any other optimization algorithm, is easy to build, and runs

faster and uses less memory [26].

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1) [
𝛿𝐿

𝛿𝜔𝑡
] (6)

 𝜗𝑡 = 𝛽2𝜗𝑡−1 + (1 − 𝛽2) [
𝛿𝐿

𝛿𝜔𝑡
]

2

 (7)

Fig. 7. The variety of SGD optimizers.

While the Adam optimizer combines the strengths of

various algorithms and is often considered one of the best

optimizers available, it is not universally suitable for every

application. Adam prioritizes faster computation and efficient

convergence, but this can sometimes come at the cost of

generalization performance. Algorithms like Stochastic

Gradient Descent (SGD), though slower, often generalize

better because they focus more on individual data points

during training. This makes SGD a better choice for tasks

where generalization is critical, even if it requires more

computation time [27].

From the above, we have represented several types of SGD

algorithms to see the differences between them as shown in

Fig. 7 and to see the functionality of each one.

Algorithm 5 : Adam
Inputs: Learning rate 𝜂

Decay rates 𝛽1 and 𝛽2 , Small

constant 𝛼 (10−7),
Initialize:

1st moment vector 𝑚0 ← 0

2nd moment vector 𝑣0 ← 0

Time step 𝑡 ← 0

Gradient accumulation variable 𝑟 ← 0

Begin:

While 𝜃𝑡 not converged do:

 𝑡 ← 𝑡 + 1

 Compute gradients for step t:

 𝑔𝑡 ← 𝛻𝜃𝐽𝑡(𝜃𝑡−1)

 Update biased 1st moment estimate:

 𝑚𝑡 ← 𝛽1𝑚𝑡−1 − (1 − 𝛽1) 𝑔𝑡

 Update biased 2nd raw moment

 estimate:

 𝑣𝑡 ← 𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔𝑡
2

 Accumulate the squares of gradients:

 𝑟 ← 𝛽𝑟 + (1 − 𝛽)𝑔. 𝑔

 Compute bias-corrected 1st moment

 estimate:

 𝑚𝑡̂ ← 𝑚𝑡/(1 − 𝛽1
𝑡)

 Compute bias-corrected 2nd moment 4

 estimate:

 𝑣𝑡̂ ← 𝑣𝑡/(1 − 𝛽2
𝑡)

 Update parameters:

 𝜃𝑡 ← 𝜃𝑡−1 + 𝜂 𝑚𝑡̂/(√ 𝑣𝑡̂ + 𝛼)

End While

Return 𝜃𝑡
End

IV. EXPERIMENTAL RESULTS

A. Evaluation Metrics

The suggested method’s performance was evaluated using

several metrics derived from the tested sample photographs’

categorization as shown in Fig. 8. These measurements were

computed using a contingency table called the confusion

matrix. The percentage of correctly classified image samples,

regardless of their class labels, is displayed by the accuracy

statistic. Specificity is the percentage of correctly classified

negative class samples, while sensitivity is the percentage of

correctly classified positive class samples in binary

classification, which is relevant to our study [19].

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (8)

𝑆𝑒𝑛𝑠ⅈ𝑡ⅈ𝑣ⅈ𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (9)

𝑆𝑝𝑒𝑐ⅈ𝑓ⅈ𝑐ⅈ𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑁
 (10)

International Journal of Information and Education Technology, Vol. 15, No. 6, 2025

1297

Fig. 8. The experiments flowchart.

B. Algorithms Best Parameters

Several variables, including learning rate, batch size,

optimizer selection, loss function, activation functions, and

the number of epochs, are considered optimal parameters for

GRU algorithms. The adjustment of these parameters

depends on the specific network architecture as shown in Fig.

9, the characteristics of the dataset, and the desired task. The

ideal parameters identified for our pre-trained GRU model

are presented in Table 1 [20].

Table 1. The best hyper-parameters used for the TL models in training
phase of different optimizers

Network
Learning

rate

Batch

Size
Optimiser

Loss

Function
Epochs

RNNs

model

1.00e10-7
10 SGD

momentum

Mean-

Squared-
Error

140

1.00e10-7 10 Adagrad

Mean-

Squared-
Error

140

1.00e10-7 10 RMSProp

Mean-

Squared-
Error

140

1.00e10-7 10 Adam

Mean-

Squared-

error
140

C. Training and Testing Results

Figs. 10, 11, and 12 show that the GRU model using the

RMSprop optimizer, starting from epoch 30, yields

satisfactory results, as the training and validation curves

converge. However, between epochs 80 and 140, these curves

begin to diverge, indicating a decline in performance. On the

other hand, for the Adagrad and Adam optimizers, the

training and validation curves gradually converge from epoch

30 to epoch 140, suggesting that these optimizers deliver

better results for the GRU model. Among them, the Adam

optimizer stands out as the most effective for this model.

Fig. 9. Architecture of the proposed model.

Fig. 10. The accuracy obtained by training and evaluating the GRU model

based on RMSProp optimizer.

Fig. 11. The accuracy obtained by training and evaluating the GRU model

based on Adagrad optimizer.

International Journal of Information and Education Technology, Vol. 15, No. 6, 2025

1298

Fig. 12. The accuracy obtained by training and evaluating the GRU model

based on Adam optimizer.

Figs. 13, 14, and 15 show that the LSTM model using the

RMSprop optimizer yields good results from epoch 0 to

epoch 30. However, after epoch 30, the curves begin to

diverge, indicating that this optimizer is not the most suitable

choice for LSTM models in this specific case and with the

data used. On the other hand, for the Adagrad and Adam

optimizers, the training and validation curves converge

progressively from epoch 30 to epoch 140, suggesting that

both optimizers deliver better results for the LSTM model.

Among them, the Adam optimizer remains the best choice for

this model, as well as for the GRU model.

Fig. 13. The accuracy obtained by training and evaluating the LSTM model

based on RMSProp optimizer.

Fig. 14. The accuracy obtained by training and evaluating the LSTM model

based on Adagrad optimizer.

Fig. 15. The accuracy obtained by training and evaluating the LSTM model

based on Adam optimizer.

D. Discussion

International Journal of Information and Education Technology, Vol. 15, No. 6, 2025

1299

Initially, a day-wise deep learning model known as the

GRU (Gated Recurrent Unit) model was developed to

forecast students’ performance across multiple classes. This

model was specifically designed to predict the performance

category of students in a multi-class format. The GRU model

achieved an accuracy of 88% on the validation dataset, which

was comparable to its performance on the training dataset.

Notably, it provided the most precise predictions regarding

students’ performance compared to other evaluated models,

such as the LSTM model. The primary objective of the study

was to assess the GRU model against other state-of-the-art

models.

On the one hand results indicated that the GRU model

consistently outperformed its counterparts. Specifically,

when incorporating clickstream and demographic data from

the final day of courses, the GRU model demonstrated

superior accuracy compared to the LSTM model. While the

GRU achieved an accuracy of 88%, the LSTM model lagged

behind at 63%. This performance gap can be attributed to the

GRU model’s ability to effectively retain long-term

relationships between parameters.

On the other hand, according to the figure we notice that

the Adam optimizer is always given better results by

comparing with the other optimizers either RMSProp or

Adagrad.

GRU model with adam optimizer is always better than

LSTM model with Adam optimizer. This explains that GRU

has fewer control ports and a state of the cell, which accounts

for its lower computational complexity and lower cutoff point

than LSTM.

V. CONCLUSION AND PERSPECTIVES

The use of deep learning to predict student performance

represents a significant advancement in the field of education.

By leveraging advanced neural network architectures, such as

Convolutional Neural Networks (CNNs), Recurrent Neural

Networks (RNNs), and Transformer-based models, deep

learning can effectively analyze complex and diverse datasets,

including academic records, learning behaviors, and

engagement metrics. These models excel at identifying

hidden patterns and correlations that traditional statistical

International Journal of Information and Education Technology, Vol. 15, No. 6, 2025

1300

methods often overlook, enabling more accurate and

personalized predictions.

The The application of various optimization algorithms,

such as Stochastic Gradient Descent (SGD), plays a critical

role in training these models. SGD, along with its variants

like SGD with momentum, Adagrad, RMSProp, and Adam,

allows for efficient adjustment of model parameters to

minimize the loss function and improve prediction accuracy.

Each of these algorithms offers specific advantages. This

paper proposed an application of RNNs models with different

optimization algorithms and obtained a precision of more

than 90%.

However, challenges remain, such as the need for high-

quality, well-annotated data, the interpretability of deep

learning models, and the risks of bias in training data. To

ensure responsible implementation, it is essential to employ

robust preprocessing techniques, improve model

transparency, and address ethical considerations, application

of other optimization method that I did not have time to apply

like ADadelta algorithm and others, that’s our future work.

In conclusion, deep learning, combined with optimization

algorithms like SGD and its variants, offers powerful tools

for predicting student performance. This approach has the

potential to transform educational systems by enabling data-

driven decision-making and improving learning outcomes.

With ongoing advancements in research and technology, the

integration of deep learning into education will open new

possibilities for teaching and learning.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

Abdelmajid El Hajoui conducted the research, analyzed the

data; and wrote the paper; Otmane Yazidi Alaoui check the

database and provide programming guidance; Omar El

Kharki provides feedback to properly apply the RNNS to our

database; Mustapha Maatouk provide important references

and check the writing; Miriam Wahbi corrects the English

writing and give advice on content; Hakim Boulaassal correct

the English writing give advice on content. All authors had

approved the final version.

REFERENCES

[1] I. Katib and M. Ragab, “Harnessing variable reduction approach with

deep recurrent neural network for student’s academic performance

analysis,” Alexandria Engineering Journal, vol. 118, pp. 393–405,
2025. doi: 10.1016/j.aej.2025.01.082

[2] G. Al-Tameemi, J. Xue, I. H. Ali, and S. Ajit, “A hybrid machine

learning approach for predicting student performance using multi-class
educational datasets,” Procedia Computer Science, vol. 238, pp. 888–

895, 2024. doi: 10.1016/j.procs.2024.06.108

[3] M. Adnan, A. A. S. Alarood, M. I. Uddin, and I. Ur Rehman, “Utilizing
grid search cross-validation with adaptive boosting for augmenting

performance of machine learning models,” PeerJ Computer Science,

vol. 8, p. e803, 2022. doi: 10.7717/peerj-cs.803
[4] F. A. Al-azazi and M. Ghurab, “ANN-LSTM: A deep learning model

for early student performance prediction in MOOC,” Heliyon, vol. 9,

no. 4, p. e15382, 2023. doi: 10.1016/j.heliyon.2023.e15382
[5] X. Chen, H. Xie, D. Zou, G. Cheng, X. Tao, and F. Lee Wang,

“Perceived MOOC satisfaction: A review mining approach using

machine learning and fine-tuned BERTs,” Computers and Education:
Artificial Intelligence, vol. 8, 100366, 2025. doi:

10.1016/j.caeai.2025.100366

[6] I. D. Mienye, T. G. Swart, and G. Obaido, “Recurrent neural networks:

A comprehensive review of architectures, variants, and applications,”
Information, vol. 15, no. 9, p. 517, 2024. doi: 10.3390/info15090517

[7] B. Pei and W. Xing, “An interpretable pipeline for identifying at-risk

students,” Journal of Educational Computing Research, vol. 60, no. 2,
pp. 380–405, 2022. doi: 10.1177/07356331211038168

[8] Y. Bee Wah et al., “Machine learning and synthetic minority

oversampling techniques for imbalanced data: Improving machine
failure prediction,” Computers, Materials & Continua, vol. 75, no. 3,

pp. 4821–4841, 2023. doi: 10.32604/cmc.2023.034470

[9] F. Qiu et al., “Predicting students’ performance in e-learning using
learning process and behaviour data,” Sci Rep, vol. 12, no. 1, p. 453,

2022. doi: 10.1038/s41598-021-03867-8

[10] J. Hao, J. Gan, and L. Zhu, “MOOC performance prediction and
personal performance improvement via Bayesian network,” Educ Inf

Technol, vol. 27, no. 5, pp. 7303–7326, 2022. doi: 10.1007/s10639-

022-10926-8
[11] F. Ouyang, L. Zheng, and P. Jiao, “Artificial intelligence in online

higher education: A systematic review of empirical research from 2011

to 2020,” Educ Inf Technol, vol. 27, no. 6, pp. 7893–7925, 2022. doi:
10.1007/s10639-022-10925-9

[12] A. Esteban, C. Romero, and A. Zafra, “Assignments as influential

factor to improve the prediction of student performance in online

courses,” Applied Sciences, vol. 11, no. 21, p. 10145, 2021. doi:

10.3390/app112110145

[13] B. K. Verma, D. N. Srivastava, and H. K. Singh, “Prediction of students’
performance in e-learning environment using data mining/machine

learning techniques,” J. Univ. Shanghai Sci. Technol, vol. 23, no. 05,

pp. 596–593, 2021. doi: 10.51201/JUSST/21/05179
[14] G. Vrbančič and V. Podgorelec, “Efficient ensemble for image-based

identification of Pneumonia utilizing deep CNN and SGD with warm

restarts,” Expert Systems with Applications, vol. 187, 115834, 2022. doi:
10.1016/j.eswa.2021.115834

[15] T. Tan, H. Xie, Y. Xia, X. Shi, and M. Shang, “Asynchronous SGD

with stale gradient dynamic adjustment for deep learning training,”
Information Sciences, vol. 681, 121220, 2024. doi:

10.1016/j.ins.2024.121220

[16] open_dataset. [Online]. Available:
https://analyse.kmi.open.ac.uk/open_dataset

[17] A. Sherstinsky, “Fundamentals of Recurrent Neural Network (RNN)
and Long Short-Term Memory (LSTM) network,” Physica D:

Nonlinear Phenomena, vol. 404, 132306, 2020. doi:

10.1016/j.physd.2019.132306
[18] J. Wang, J. Yan, C. Li, R. X. Gao, and R. Zhao, “Deep heterogeneous

GRU model for predictive analytics in smart manufacturing:

Application to tool wear prediction,” Computers in Industry, vol. 111,
pp. 1–14, 2019. doi: 10.1016/j.compind.2019.06.001

[19] B. C. Mateus, M. Mendes, J. T. Farinha, R. Assis, and A. M. Cardoso,

“Comparing LSTM and GRU models to predict the condition of a pulp
paper press,” Energies, vol. 14, no. 21, p. 6958, 2021. doi:

10.3390/en14216958

[20] N. Zafar, I. U. Haq, J.-R. Chughtai, and O. Shafiq, “Applying hybrid
LSTM-Gru model based on heterogeneous data sources for traffic

speed prediction in urban areas,” Sensors, vol. 22, no. 9, p. 3348, 2022.

doi: 10.3390/s22093348
[21] Y. Tian, Y. Zhang, and H. Zhang, “Recent advances in stochastic

gradient descent in deep learning,” Mathematics, vol. 11, no. 3, p. 682,

2023. doi: 10.3390/math11030682
[22] I. Dagal, K. Tanriöven, A. Nayir, and B. Akın, “Adaptive Stochastic

Gradient Descent (SGD) for erratic datasets,” Future Generation

Computer Systems, vol. 166, 107682, 2025. doi:

10.1016/j.future.2024.107682

[23] X. Zhou, Z. You, W. Sun, D. Zhao, and S. Yan, “Fractional-order

stochastic gradient descent method with momentum and energy for
deep neural networks,” Neural Networks, vol. 181, 106810, 2025. doi:

10.1016/j.neunet.2024.106810

[24] S. Bhakta, U. Nandi, C. Changdar, B. Paul, T. Si, and R. K. Pal, “aMacP:
An adaptive optimization algorithm for deep neural network,”

Neurocomputing, vol. 620, 129242, 2025. doi:

10.1016/j.neucom.2024.129242
[25] K. Bouanane, B. Dokkar, M. Allaoui, B. Meddour, M. L. Kherfi, and

R. Hedjam, “Behaviors of first-order optimizers in the context of sparse

data and sparse models: A comparative study,” Digital Signal
Processing, vol. 153, 104637, 2024. doi: 10.1016/j.dsp.2024.104637

[26] J. J. Jeong and G. Koo, “AdaLo: Adaptive learning rate optimizer with

loss for classification,” Information Sciences, vol. 690, 121607, 2025.
doi: 10.1016/j.ins.2024.121607

[27] B. Barati, M. Erfaninejad, and H. Khanbabaei, “Evaluation of effect of

optimizers and loss functions on prediction accuracy of brain tumor

International Journal of Information and Education Technology, Vol. 15, No. 6, 2025

1301

type using a Light neural network,” Biomedical Signal Processing and

Control, vol. 103, 107409, 2025. doi: 10.1016/j.bspc.2024.107409

Copyright © 2025 by the authors. This is an open access article distributed

under the Creative Commons Attribution License which permits unrestricted

use, distribution, and reproduction in any medium, provided the original

work is properly cited (CC BY 4.0).

https://creativecommons.org/licenses/by/4.0/

	IJIET-V15N6-2331-IJIET-16433

