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Abstract—Acquiring programming skills can be a complex 

and daunting challenge for novice university students. 
Mastering the syntax of programming languages is not just a 
superficial endeavor; it requires students to develop a robust set 
of principles to tackle specific problem scenarios. Machine 
learning technology has the potential to be beneficial across 
various industries; however, its application in educational tools 
remains inadequate. Therefore, this project aims to implement 
machine learning technology in a simulator designed to assist 
students in evaluating their programming courses. This study 
developed a machine-learning programming simulator and 
explored its impact on students with varying levels of anxiety. 
Educational Data Mining (EDM) refers to the application of 
data mining techniques to extract valuable information and 
insights from extensive data repositories within the education 
sector. The primary goal of this approach is to evaluate student 
performance in programming courses. To assess the effects of 
technology on academic performance, the study employed 
Analysis of Variance (ANOVA) and Analysis of Covariance 
(ANCOVA) methodologies. The findings suggest that both 
students with high levels of anxiety and those with low levels of 
anxiety benefit from exposure to machine learning technology. 
By utilizing a machine learning programming simulator, 
students’ performance in programming courses can 
significantly improve, irrespective of their anxiety levels. 
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I. INTRODUCTION 

Programming abilities are becoming increasingly 
important for students in today’s world. Skills in 
programming are highly sought after across many fields, 
including software development, finance, healthcare, and 
even the entertainment industry. Students majoring in 
computer programming have access to a wide range of job 
opportunities. To find effective solutions, they must utilize 
both critical and creative thinking skills. Furthermore, these 
abilities are useful beyond the realm of computer science, 
impacting many other areas of life. 

As technology continues to advance and permeate every 
aspect of our lives, programming skills will remain in high 
demand. Learning to code today can help students secure 
future employment. Computational thinking, which involves 
breaking down complex issues into simpler components, is a 
skill that students can develop through programming 
education. This competency can also benefit various other 
fields and areas of life. 

Students who enroll in programming classes may discover 
a new avenue for creative expression by developing original 

software, video games, and websites. Engaging in coding can 
enhance their creativity and problem-solving abilities. 

According to the US Bureau of Labor Statistics, a 10% 
decline in the employment of computer programmers is 
projected from 2021 to 2031 [1]. Nevertheless, they 
anticipate that around 9600 new programming jobs will 
emerge annually, largely due to professionals leaving the 
field for other opportunities or retiring. While programming 
roles are diminishing, automation is a significant contributing 
factor. Many individuals whose jobs were once reliant on 
performing simple or repetitive tasks are finding themselves 
increasingly unemployed as companies automate these 
activities. 

On the flip side, this shift creates new opportunities for 
individuals with diverse skill sets. Although more complex 
tasks may become automated, strategic positions will 
continue to be in high demand. To remain competitive in this 
evolving landscape, programmers must continually refine 
their skills to effectively tackle these challenging roles. 

Technology Assessment and Application Agency of 
Indonesia [2] indicates that Indonesia needs around 600,000 
programmers in 2025. Currently, the number of available 
programmers in Indonesia is around 100,000 individuals. 
This situation indicates that the country is significantly far 
from reaching its established goals. As a result, decisive 
measures are required to address the human resources 
dilemma in the programming sector. More supervision 
during lecture sessions is essential to help students develop 
strong programming skills and competency. The number of 
highly educated programmers graduating from higher 
education institutions is expected to rise as a result of the 
increased integration of technology into programming 
courses. 

Moreover, a growing number of companies have adopted 
information systems as a means to enhance their operations. 
To streamline their processes, modern businesses have 
integrated these systems into their workflows. As a result, 
there is high demand for programmers whenever companies 
seek to implement information systems. Unfortunately, the 
number of programmers in Indonesia remains low. Therefore, 
it is essential to provide additional guidance during lectures 
to cultivate competent programmers. 

The incorporation of technology in programming classes is 
expected to increase the number of skilled programmers 
graduating from universities. Various technological 
approaches, such as gamification, assessment tools, and 
visualization, can also enhance the learning experience in 
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programming courses. 
Undergraduate computer science courses equip students 

with a solid foundation in the field. After graduation, students 
can apply this knowledge in their professional endeavors. 
However, those who lack proficiency in computer 
programming principles may face challenges in securing 
employment, particularly in development and software 
engineering roles. Consequently, programming is a 
mandatory subject for computer science majors. All 
computer science majors are now expected to have a basic 
understanding of computing, as well as foundational skills in 
reading, writing, and basic math [3]. To thrive as computer 
science majors in university and keep pace with their 
professors and course materials, students must develop 
certain skills. 

Research published in 2016 found that only a small 
percentage of university students achieve academic success, 
while a staggering 65% either fail the course or choose not to 
continue. Globally, over 30% of computer science 
undergraduates either fail to complete the course or do not 
pass the programming component [4]. The diploma was 
canceled because the introductory program was not  
released [5]. Institutions, educators, and students alike must 
contend with the alarmingly high rates of failure and dropout. 
The reluctance of students to attend required classes, a core 
part of computer science programs, is problematic as it often 
leads to failure and delayed graduation. While lectures and 
labs demand significant time and energy, they play a crucial 
role in helping students develop programming skills. 
However, these efforts may seem futile when weighed 
against the steep costs associated with failure and attrition. 
Many Indonesian university students appear to face similar 
challenges in their computer science courses, with a lack of 
familiarity with specific programming languages being a 
major obstacle to mastering fundamental programming 
concepts [6]. Students should also work on developing their 
skills in the three interconnected aspects of programming: 
grammar, design, and structure. Public university students in 
Indonesia face similar challenges when trying to learn 
computer programming. For those majoring in electronics 
engineering, programming is a required subject. However, 
for first-year students, mastering programming can be a 
daunting task. Learning programming languages is only the 
first step in this complex process. Additionally, learning 
programming requires university students to develop the 
ability to formulate a plan for solving a given problem [7]. 
Some fundamental concepts that students encounter in class 
include variables, arrays, and iteration. In their haste to earn a 
passing grade on an assignment, students often resort to poor 
programming practices. 

Machine Learning (ML) technology has the potential to 
benefit various fields; however, its application in educational 
tools remains limited. This study integrates ML into a 
simulator designed to assist students in evaluating 
programming courses. ML can support decision-making, and 
in this system, it aids students in making informed choices 
while learning programming. The machine receives coding 
syntax as input from students, processes and analyzes it using 
pre-existing knowledge, and then provides feedback on the 
syntax. Based on this feedback, students can make decisions 
regarding their learning. The simulator employs the cosine 

similarity algorithm as its core technique. This algorithm 
assumes that features are conditionally independent given the 
class label. While this assumption may not always hold in 
practice, cosine similarity still produces reliable results and 
performs well on many real-world datasets. 

This study investigates whether there is a difference in 
performance between high-anxiety and low-anxiety students 
when using a Machine-Learning (ML) simulator versus a 
non-ML programming simulator. It is hypothesized that 
students with high anxiety may benefit more from an 
ML-based simulator due to its adaptive and supportive 
features, which could enhance their learning experience. 
Conversely, low-anxiety students might perform similarly 
across both types of simulators, as they may require less 
external support. The study also explores whether the ML 
simulator mitigates the negative effects of anxiety, leading to 
improved performance compared to traditional simulators. If 
a significant difference is found, it could provide insights into 
designing more personalized educational tools for diverse 
learners. Ultimately, the findings may contribute to the 
optimization of programming education by addressing the 
impact of anxiety on student performance. 

II. LITERATURE REVIEW 

A. Performance in Programming 

The term ‘performance’ refers to how well a person 
performs after completing a course of study or receiving 
therapeutic intervention. In computer science classes, 
common methods for evaluating students’ progress include 
exams, quizzes, and homework. For example, evaluating 
students’ progress highlighted the potential of using a 
simulator to support cognitive growth through 
self-experimentation, enhancing their understanding of the 
provided content. According to a study by Novak [8], 
students’ preferences for reading the textbook, working in 
small groups with classmates, and completing course tasks 
showed a significant correlation with their post-test 
performance scores, suggesting that simulation-based 
learning could improve student performance. Additionally, 
students rated the simulation as more enjoyable than most 
other course components, including lectures, textbooks, 
homework, and group projects.  

Research by Chernikova et al. [9] found that simulations 
using contemporary technologies had a significantly greater 
impact. There is no better approach to constructing learning 
environments in higher education than using simulations, 
which provide numerous opportunities for practice. 
Simulation-based learning can be integrated into academic 
programs at an early stage due to its effectiveness for students 
at all levels of study. According to a study by Isiaq and  
Jamil [10], engaging simulator-driven programming classes 
are linked to related careers and job opportunities. Students 
also described the classroom atmosphere as more welcoming 
and conducive to open discussion. 

B. Anxiety in Programming 

First-year computer science students often struggle to 
develop reliable mental models of how programs work. 
Another challenge they face is expanding their coding 
abilities beyond what they have learned so far. Many students 
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experience a growing aversion to programming after starting 
computer science courses, as these courses often alter their 
perception of the subject. 

In the early days of computing, when computers were 
manually operated, programming languages were primarily 
used to organize simple operations. However, with the advent 
of object-oriented programming and procedural abstraction, 
computer intelligence advanced significantly. As a result, 
some students feel anxious about programming because, 
rather than modifying data through individual, 
straightforward actions, they must manage a series of 
processes as a unified whole. This anxiety negatively impacts 
academic performance and, in turn, affects student retention 
rates. 

Uncontrolled anxiety negatively impacts students’ 
academic performance, resulting in low achievement and 
high dropout rates [11]. Computing anxiety refers to the fear 
of performing poorly on computer-related tasks. It occurs 
when students have experienced or anticipate a loss of 
self-esteem in computing situations [12, 13]. Even as 
students gain experience, some still experience varying 
degrees of computer anxiety [13], which significantly hinders 
their ability to use computers efficiently. Speier et al. [14] 
found a correlation between high levels of anxiety before 
beginning computer learning and poor performance [14]. 
Students who fear computers tend to perform poorly 
academically and develop negative attitudes toward them. 

An improper or erroneous perception of circumstances 
relieves anxiety. Students experience programming anxiety 
as a result of their incorrect belief in their own skills to master 
computer programming. This occurs due to the failure of the 
activation process [15], preventing students’ mental schemas 
from providing the necessary foundation for solving 
programming challenges. Many freshmen struggle with 
computer programming because they may not have fully 
developed the cognitive models essential for the task. Several 
studies have examined the factors that influence a student’s 
ability to learn computer programming. 

However, some of these skills may not be fully developed 
when students begin their undergraduate programs, making 
them anxious about learning to code. In addition to feeling 
inadequate, students may experience increased anxiety when 
they receive negative feedback from computers, such as 
errors caused by improper program compilation. Anxieties 
about programming, a subset of computer anxiety, were 
assessed in this study by categorizing students’ mean CPAQ 
(Computer Programming Anxiety Questionnaire) scores. 
However, to gain deeper insight into students’ emotional 
states during programming activities, interviews or 
qualitative data could complement this approach. A low 
mean score suggests higher anxiety, while a high mean score 
indicates lower anxiety. 

C. Constructivism in Teaching and Learning 
Programming 

If students find learning programming challenging, their 
motivation, engagement, and classroom performance may 
decline. The majority of university students in this study 
struggled to create the correct syntax or code for several 
assigned challenges. They struggled to adapt to new 
problems because they had merely memorized the code 

provided by the professor. According to the study of 
Radosevic et al. [16], some students also wrote large amounts 
of software code without following proper syntax or 
conducting logical tests. This resulted in a high number of 
errors and discouraged them from continuing with 
programming Therefore, instructors need to completely 
revamp the way students learn. With the increasing use of 
technology and self-education in the modern world, applying 
constructivism in the classroom has become essential. 
Previous research indicates that constructivism enhances the 
learning environment, making it particularly valuable for 
programming courses [17–19]. Collaboration cognitive load 
theory offers a method to enhance cognitive processing by 
leveraging shared working memory, as explained by  
Looker [17], hen the complexity of a task exceeds an 
individual’s working memory capacity. 

Zhu [20] cites constructivist learning theory as the 
foundation for the idea that students actively and effectively 
learn by constructing mental models of their learning 
objectives. In other words, learning is an internal cognitive 
process in which students acquire new information by 
integrating it with their existing knowledge [21]. This 
learning philosophy centers on prioritizing the learner to 
achieve more personalized learning outcomes. In a 
constructivist classroom, students actively engage in 
expanding their understanding rather than passively 
absorbing information from their surroundings [22]. Instead 
of simply imparting factual information, teachers serve as 
guides while students learn. The content of textbooks 
becomes secondary to the goal of helping students build 
meaningful lives beyond school. Rather than merely assisting 
educators in delivering information, learning media foster the 
development of collaborative learning environments. One 
way students collaborate and learn through exploration is 
through conversation. 

D. Persuasive Technology 

The use of technological resources is more powerful than 
any persuasive ideology, as it offers new possibilities for 
alternative development in all its forms. Instead of viewing 
analytical technologies as mere tools, Pretto and Cláudio [23] 
stresses their significance. Each subject in education carries 
its own unique set of values, social practices, conventions, 
and traditions, which shape human-to-human interactions 
[24]. Every person’s actions stem from their unique fears and 
aspirations or their response to predetermined goals [25]. As 
a major component of assessing motivation and competence, 
this study’s approach examines behavior. The reason is that 
people learn to react in particular ways based on their culture. 
Consequently, certain actions can be anticipated and 
influenced accordingly. According to Cialdini [26], 
persuasive communication is a method of persuasion that 
involves communicating with the goal of getting someone to 
adopt a certain behavior, concept, or belief system by making 
use of logical-rational or symbolic resources. 

Both the world and technology have undergone significant 
changes since Carl Hovland began researching persuasive 
communication in the 1950s [27]. Technology has 
revolutionized communication, and computers have become 
indispensable in modern life. However, the art of persuasion 
remains unchanged. Today, persuasive computing systems 
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are used to influence people’s thoughts and behaviors. 
Persuasive technology refers to systems that rely on social 
influence and persuasion—rather than force or coercion—to 
shape opinions and actions Persuasive technology’s impacts 
are intended rather than unanticipated.  

The term ‘persuasive technology’ refers to any computer 
program or information system designed to encourage a 
change in attitude or behavior without relying on deception or 
coercion. 

A persuasive system consists of three main  
components [27]. The first step in developing such a system 
is understanding the fundamental issues that provide its 
context. The second component involves examining the 
context of the persuasive system itself. This includes not only 
the event and strategy used but also the system’s overall goal. 
Intention plays a key role, encompassing both the type of 
change being pursued and the persuader’s role in influencing 
it. Every aspect of the event is shaped by the user’s context, 
the technology’s context, and its application. It is essential to 
distinguish between the strategic environment, the message, 
and its method of dissemination. 

The final stage involves evaluating system attributes, both 
for newly developed persuasive technologies and for 
assessing features in existing systems. These system 
attributes ultimately determine the effectiveness of the 
persuasive technology. Evaluation of an existing system’s 
qualities is the intended use of system attributes. According 
to Oinas-Kukkonen [28], this level is all about helping with 
main tasks and conversations, making the system more 
credible, and having social support. 

Persuasive technology is not a new concept in education. 
Its use in this field dates back quite some time. Recognizing 
its potential in education, BJ Fogg became a pioneer in 
persuasive technology. To teach students about the dangers 
of unsafe sexual behavior, Fogg [27] employs the games HIV 
Roulette and Baby Think It Over, the latter of which 
encourages young women to delay having children. Both 
approaches aim to educate and inspire university students, 
ultimately influencing their actions. In this study, persuasive 
techniques are employed to enhance students’ motivation, 
engagement, and performance. Educational tools such as 
Google Classroom, Edmodo, and iTunes U serve as valuable 
learning aids. 

Computers have become an integral part of human life, and 
technological advancements significantly impact 
communication. As a result, persuasion is also deeply 
embedded in modern technology. We are currently living in 
an era of persuasive technology—interactive computer 
systems designed to influence people’s thoughts and 
behaviors. Persuasive technology refers to systems that alter 
user attitudes or behaviors through social influence and 
persuasion rather than force. Its outcomes are not unintended 
byproducts but rather its primary objectives. 

Persuasive technology can be categorized into three main 
types. To classify how individuals experience and interact 
with computer technology, Fogg [27] introduces the 
Functional Triad. Computers can function in three primary 
roles: as tools, as social actors, and as mediums. These roles 
can operate individually or in combination, depending on the 
context. Technology facilitates reorganization processes, 
enhancing people’s ability to engage in desired activities. 

Interactive and narrative-driven media can create immersive 
experiences that promote behavior practice, develop empathy, 
or establish causal relationships. Additionally, technology 
can act as a social agent, influencing the behavior of those it 
is designed to support. It achieves this through social cues 
such as language, the assumption of social roles, and physical 
presence.  

The primary tool developed for this research is the 
ML-programming simulator, designed to assist students with 
their programming coursework. Rather than relying on 
coercion, the ML-programming simulator leverages social 
influence and persuasion to shape users’ habits and 
perspectives. It is expected that using the simulator will 
enhance students’ learning outcomes. 

Additionally, the ML-programming simulator was built 
upon established theories and principles known to boost 
student engagement and motivation. As a result, its use is 
intended to foster these qualities. Students actively engage 
with the simulator throughout three phases: pre-class, 
in-class, and post-class. The researcher carefully selected the 
learning components in collaboration with an academic 
expert in the field. The simulator is designed to inspire 
students through its rich collection of educational resources. 
The overarching goal of its development was to enhance 
student engagement, performance, and motivation to learn. 

Persuasive technology in education consists of two main 
branches: the theoretical branch, which explores the literature 
on the subject, and the practical branch, which applies the 
technology as a tool to support both instructors and students. 

III. METHODOLOGY 

This study’s research population was selected using a 
non-probability sampling method designed to be 
representative. The participants were undergraduate students 
in Indonesian computer science programs who were required 
to take programming classes. Because both the students 
enrolled in these classes and the participating lecturers were 
readily available and under the researchers’ control, a 
representative sample was used. To validate and analyze the 
data collection process, the study involved three lecturers 
with over a decade of experience teaching programming. 

Sampling refers to the process of selecting a subset of a 
population to obtain a statistically valid cross-section [29]. 
Since the target population is typically too large to include in 
its entirety, sampling is a crucial technique in scientific 
research. A well-chosen sample provides a sufficiently large 
subset of the target population to effectively answer the 
study’s research question. 

For this study, the people of Medan are considered 
representative of all Indonesians. Universitas Negeri Medan 
was selected through careful selection as the university with 
the attribute of having programming as a mandatory course.  

In this study, universities were selected using a purposeful 
sampling method, while undergraduate participants were 
chosen through random sampling. The study participants 
were limited to university freshmen. Each class in the 
experiment consisted of students from the preceding two 
years, 2021 and 2022, resulting in a total sample of 
approximately 120 university students. All participants were 
computer science undergraduates selected at random. 

One objective of descriptive analysis is to objectively 
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characterize the type and intensity of sensory qualities. This 
approach was revolutionary as it provided a scientific 
foundation for sensory evaluation by generating objective, 
statistically sound, and analyzable data. It remains an 
essential method in modern sensory analysis and has led to 
the development of various descriptive analytic techniques. 
Traditional descriptive methods, such as profiling-based 
approaches and quantitative descriptive analysis, involve 
trained expert panels who subjectively assess the quality and 
intensity of sensory properties in samples. In recent years, 
there has been a rise in faster descriptive techniques, 
including polarized sensory placement, projective mapping, 
and overall similarity/variation analysis, which rely on 
inexperienced consumers to evaluate sensory attributes. Due 
to its effectiveness and adaptability, descriptive analysis 
continues to be widely used. Descriptive analysis provides 
sensory data that is thorough, accurate, reliable, and objective. 
It relies on human assessors in highly controlled settings to 
minimize bias. Assessors with exceptional sensory abilities 
are carefully selected and undergo a rigorous six-month 
training program in traditional methodologies, including 
profiling-based approaches and Quantitative Descriptive 
Analysis (QDA), to ensure the generation of validated data. 
According to Alessi and Stanley [30], individuals who 
complete this training can consistently rate perceived 
intensity and quality, both independently and in comparison 
with other evaluators. Advanced methods such as Free 
Choice Profiling (FCP), flash profiling, sorting, projective 
mapping, and Polarized Sensory Positioning (PSP) may 
involve untrained consumers who lack prior knowledge or 
experience. These methods categorize products based on 
broad similarities or differences. Measurements can be 
conducted after product identification and labeling, or 
products can be categorized before being assigned group 
names [31]. 

Descriptive analysis is a valuable tool in 
quasi-experimental research, where it is used to meticulously 
describe a scenario or topic of interest. Quasi-experimental 
research aims to establish a cause-and-effect relationship 
between two variables (independent and dependent) without 
employing random assignment. Instead, subjects are 
categorized based on predefined criteria. This approach is 
particularly useful when true experimental conditions are not 
feasible due to constraints such as limited funding, 
scheduling difficulties, or the absence of randomized 
controlled trials. To better understand the characteristics and 
current state of relevant variables in quasi-experimental 
research, descriptive analysis is applied within the study’s 
design framework. Common descriptive research methods 
used in quasi-experimental studies include population 
surveys, public opinion polls, status studies, surveys and 
interviews, observational studies, job descriptions, literature 
reviews, documentary analyses, anecdotal records, critical 
incident reports, test score analyses, and normative data 
collection. 

When random assignment of participants is not possible, 
researchers attempt to replicate true experimental conditions 
as closely as possible. Within these constraints, they must 
acknowledge and account for any compromises to the study’s 
internal validity. Several quasi-experimental designs have 
gained prominence, including pre-posttest, interrupted 

time-series, and nonequivalent groups. Finally, 
quasi-experimental research relies heavily on descriptive 
analysis, which provides a detailed understanding of the 
situation or issue under investigation. It helps researchers 
assess the characteristics and status of variables within the 
study’s framework, informing future research and 
interventions while offering critical insights into the 
relationships between variables. 

A. Research Instruments 

This study utilizes an instrument to measure students’ 
performance in a programming class based on the questions 
set by instructors for the final exam. The researcher 
administered the same assessment at both stages to evaluate 
learning progress. The test consists of five questions derived 
from the material covered in a one-hour programming class, 
specifically focusing on looping. Identical questions are used 
in both the pre-test and post-test [32]. Computer 
programming lecturers verified the accuracy of the 
instrument’s content, ensuring that the questions effectively 
assessed students’ understanding of programming 
concepts—particularly looping—before approving them. 

When students are unable to appropriately analyze a 
situation, our anxiety levels remain elevated. Due to an 
inaccurate assessment of their ability to learn computer 
programming, university students often experience 
programming anxiety. When the activation process fails to 
occur, students are unable to develop the necessary mental 
schemas to analyze programming challenges and formulate 
solutions [15]. While most freshmen have a basic 
understanding of computer programming fundamentals, they 
may lack the fully developed cognitive models required for 
advanced programming. This study investigates the variables 
that influence a learner’s proficiency in computer 
programming. 

Additionally, students may feel unprepared for the 
challenge of learning programming if they have not fully 
developed specific skills before entering their undergraduate 
program. Frequent negative feedback from computers—such 
as repeated compilation errors—can cause students to doubt 
their competence in certain areas. In this study, programming 
anxiety, a subset of computer anxiety, refers specifically to 
situational anxiety experienced in programming-related 
tasks. 

B. Design and Development 

The application is currently in the design phase of 
development, where concepts are transformed into a 
preliminary sketch. According to Ashmore et al. [29], the 
design process includes the following steps: (i) brainstorming 
potential topics, (ii) analyzing tasks and concepts, and (iii) 
outlining the program. 

1) Initial content ideas 

Generating content ideas early is essential for establishing 
foundational concepts related to the appropriate material and 
learning techniques used in application development. This 
section outlines the strategic approaches for delivering 
content within the application, known as Persuasive Design 
Principles. Additionally, the researcher explores the 
implementation of Jonassen’s Constructivist Learning 
Environments (CLEs) in greater detail [33]. The 
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programming topic that was selected in this study is Looping. 

2) The elements of effective design 

Persuasive Technology is the study of attitudes and the 
methods used to influence them [26]. The macro approach to 
multimedia design in this study is based on three key 
principles: similarity, suggestion, and tailoring. 

3) The similarity principle 

According to Cialdini [26], university students are more 
influenced by AI systems that share certain characteristics 
with them. Based on this insight, the researcher developed a 
program functionally equivalent to the tools students 
commonly use in class. In programming courses, students 
frequently work with text editors such as Sublime Text or 
Notepad++. To maintain familiarity, the researcher designed 
the software to allow students to write syntax in the same way 
they do during class, eliminating the need for additional time 
to learn a new interface. Unlike traditional class tools, where 
users must first enable XAMPP to execute code and check for 
syntax errors, the researcher developed a simulator software 
that allows students to run their syntax and receive immediate 
feedback. This enhancement streamlines the coding process 
and improves the learning experience as shown in Fig. 1. 

 

 
Fig. 1. Screenshot of online editor in programming simulator. 

 

4) The basics of proposal 

According to Cialdini [26], a computer program’s 
persuasiveness can be enhanced by strategically timing its 
suggestions. The Suggestion Principle was applied in the 
development of this programming simulator to support 
students in learning programming. When the simulator 
detects syntax errors, it provides tailored suggestions based 
on students’ previous mistakes. As illustrated in Fig. 2, the 
simulator also offers advice and tips for correcting syntax 
errors. 

 

 
Fig. 2. Screenshot of the suggestion from programming simulator. 

 

5) Tailoring principle 

The Tailoring Concept suggests that an application’s 

persuasiveness increases when its content is designed and 
adapted to meet the user’s needs, interests, personality traits, 
and context. Following Loranger’s guidelines, the researcher 
developed a programming simulator based on these 
principles. These guidelines are particularly useful for 
creating applications that effectively support students’ 
learning. One key strategy involves using familiar terms and 
concepts that align with the students’ prior knowledge. 
Additionally, students appreciate the software’s simple and 
user-friendly interface as shown in Fig. 3. 

 

 
Fig. 3. Screenshot of programming simulator using Indonesian languages. 

  

6) Learning environment based on constructivism 

In 1999, Jonassen introduced the concept of Constructivist 
Learning Environments (CLEs), which emphasize 
problem-based learning. This approach encourages students 
to solve problems by drawing from various resources, 
including the problem itself, similar cases, informational 
materials, cognitive tools, discussion and collaboration 
platforms, and social contextual support. 

To ensure that the programming simulator fosters 
problem-solving skills and cognitive development, this study 
modified four out of the six CLE components. These 
components are outlined below. 

7) Problem 

Students often struggle with looping, a fundamental 
concept in computer programming. According to the 
researcher’s previous problem analysis, looping is one of the 
most challenging concepts for students to master. Thus, the 
researcher in this study focuses on looping as a topic to assist 
students’ comprehension using this simulator.  

This programming simulator is ideal for teaching trainees 
loop syntax because the simulator provides immediate 
feedback on whether the code is correct. If the syntax is valid, 
it displays the code’s output. If an error is detected, the 
simulator highlights the issue and specifies its location. 

8) Cases that are relevant 
 

 
Fig. 4. Screenshot of video tutorial of coding using looping. 

  
This program highlights similar scenarios through video 

tutorials and an online editor. To facilitate case-based 
reasoning and enhance cognitive flexibility, learners should 
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be exposed to relevant examples or worked solutions [32]. In 
this programming simulator, related scenarios demonstrate 
how loops are implemented in code. 

Providing examples that closely align with students’ own 
challenges, contexts, and expected outcomes strengthens 
their memory scaffolds. To find the correct solution, students 
are encouraged to compare the highlighted examples to the 
issues they are currently facing. As illustrated in Fig. 4, the 
programming simulator includes video tutorials on looping as 
related case examples. 

9) Data storage services  

Students can also access a wealth of informational 
resources through this app. According to Witzel et al. [32], 
designers should provide only the most relevant information 
to help students solve problems and refine their 
understanding. Based on their proficiency level, students can 
prioritize syntax related to the looping topic as shown in Fig. 
5. Additionally, they can revisit previously provided syntax 
as needed for reinforcement. 

 

 
Fig. 5. Screenshot of theories of while—looping. 

 

10) Cognitive resources  

Key components that support the development of essential 
skills include cognitive tools such as information-gathering 
tools, problem-modeling tools, performance support tools, 
and knowledge modeling techniques [32]. According to 
Kommers et al., cognitive tools are generalizable computer 
programs designed to facilitate and engage cognitive 
processes. 

In this study, the programming simulator functions as a 
problem-representation tool, helping learners construct 
mental models of how code behaves and interacts. 
Additionally, it serves as a knowledge modeling tool, 
enabling students to demonstrate their understanding of 
programming concepts. 

C. Task and Concept Analysis 

After establishing the preliminary concept for the program 
content, task and concept analyses were conducted in this 
study. Task analysis involves identifying the data flow, 
inputs, and decision-making processes required to perform a 
specific action. Access to relevant information enables the 
researcher to gain a comprehensive and precise 
understanding of the problem. 

A programming expert contributed to the concept analysis 
in this study. Based on this analysis, the researcher identified 
a key programming challenge to address in the simulator: 
enhancing students’ performance, engagement, and 
perceived motivation in programming courses, particularly in 
the topic of looping. 

D. Program Description 

This study utilized a custom-built programming simulator 
to enhance students’ knowledge and perceived motivation, 
thereby increasing engagement in a programming course. 
The target population consists of university students from the 
2020 and 2021 cohorts, aged 17 to 20 years. 

The programming simulator was designed to improve 
students’ performance, engagement, and perceived 
motivation in programming. It comprises four main 
components, detailed as follows: 
1) What is Looping? Provides a definition of looping, 

explains its execution process, and presents examples. 
2) The Framework of Iteration: Educates students on the 

structure and implementation of loops in programming. 
3) Instruction: Includes video tutorials demonstrating how to 

code loops. 
4) Task: Contains simulator-based reinforcement exercises 

designed to strengthen students’ understanding and 
motivation. 

IV. RESULTS AND DISCUSSION 

With this study, the researcher examined how the 
dependent variable was influenced by two independent 
factors: the ML programming simulator and the noML 
(non-Machine-Learning) programming simulator. To 
determine whether the presentation method significantly 
affected student performance, a one-way Analysis of 
Variance (ANOVA) was conducted. Each group’s pre- and 
post-test results were averaged, and their variability was 
assessed before computing the computer’s performance. As 
shown in Table 1 of the descriptive statistics, 60 students 
used an ML programming simulator, while 60 students were 
in a control group that did not use an ML programming 
simulator. After using the ML programming simulator, the 
average score increased from 74.20 on the pretest to 87.45 on 
the posttest. The average pre- and post-test scores for all ML 
programming simulator users were 74.34 and 84.98, 
respectively. When comparing the ML programming 
simulator with the noML programming simulator, the 
average difference between the two sets of scores was 10.64 
points, whereas the ML programming simulator group 
exhibited a mean difference of 13.20 points. These results 
suggest that students who used the ML programming 
simulator performed better than those who used the noML 
programming simulator. Fig. 6 presents a bar graph 
contrasting the performance of each mode (NoML, ML, and 
Total) on the pretest and posttest. The standard deviations are 
shown by error bars. 

 

 
Fig. 6. Graph of students performance using ML and noML programming 

simulator. 
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Table 1. Results of students’ performance of NoML programming simulator 
and ML-programming simulator 

Mode Unit  
Pretest 

Perf 
Posttest 

Perf 

NoML 
Programming 

Simulator 

N 
Mean 

Std. Deviation 
Std. Error of Mean 

60 
74.34 
4.06 

0.524 

60 
84.98 
3.28 

0.424 

ML 
Programming 

Simulator 

N 
Mean 

Std. Deviation 
Std. Error of Mean 

60 
74.20 
4.49 

0.579 

60 
87.45 
2.33 

0.300 

Total 

N 
Mean 

Std. Deviation 
Std. Error of Mean 

120 
74.27 
4.26 

0.389 

120 
86.22 
3.09 

0.282 
N = sample size 
Std. Deviation = Standard Deviation 
Std. Error of Mean = Standart Error of Mean 

 
However, while the findings highlight a notable 

improvement in student performance with the ML 
programming simulator, it remains unclear whether this 
improvement is due to the simulator itself or potential 
artifacts arising from its implementation. Factors such as 
differences in instructional design, unintended biases in 
simulator behavior, or variations in user interaction with the 
simulators may have influenced the results. Future studies 
should carefully examine these variables to ensure that the 
observed differences are genuinely attributable to the ML 
programming simulator rather than extraneous factors 

inherent to the experimental setup. 
As a result, the hypothesis of this study, which stated that 

there is no difference in student performance when using an 
ML programming simulator versus a noML programming 
simulator, is rejected. This suggests that university students 
instructed using an ML programming simulator 
outperformed those who were not. The ANOVA test results 
in Table 2, indicate a statistically significant difference 
between the two groups, with an F-value of 22.518 and a 
p-value of 0.001, which is well below the 0.05 threshold. 
These results confirm that students using the ML 
programming simulator performed significantly better than 
those using the NoML programming simulator. The 
independent samples T-test further supports this conclusion 
as shown in Table 3, with a Sig. (2-tailed) value of 0.001, 
indicating that the difference between the two groups is not 
due to chance. However, given the potential for 
implementation-related artifacts, additional research is 
needed to rule out alternative explanations for the observed 
performance improvements. 

In addition, the output table above reveals a “Mean 
Difference” value of −2.468. This value, which falls within 
the 95% confidence interval of the difference between the 
two groups, represents the difference in average student 
learning outcomes between the ML programming simulator 
group and the noML programming simulator group. 

 

Table 3. t-test of performance score 

 
t-test for Equality of Means   

t df Sig. (2-tailed) 
Mean 

Difference 
Std. Error Difference 

95% Confidence Interval of the Difference 
Lower Upper 

Posttest Perf −4.745 118 <0.001 −2.468 0.520 −3.498 −1.438 
t = t-value; df = Degrees of Freedom; Sig. = Significance Value 

 
These results have important implications for 

programming education. While traditional programming 
simulators are effective, ML-based simulators may offer 
advantages in interactivity and adaptability. However, to 
ensure that the observed improvements are truly due to the 
ML enhancements rather than implementation artifacts, 
future research should explore additional factors influencing 
student success, such as instructional methods, user 
interactions, and software biases. Moreover, incorporating 
qualitative measures, such as student feedback and 
behavioral observations, could provide deeper insights into 
how ML-driven simulators affect student motivation and 
problem-solving skills. 

V. CONCLUSION 

The study results indicate that students using a ML 
Programming Simulator outperformed those who did not, 
supporting the first hypothesis. Additionally, a significant 
difference was observed in student performance between the 
control group without a ML programming simulator and the 
treatment group with a ML programming simulator. Students 

in the treatment group demonstrated significantly higher 
levels of performance with the material compared to those in 
the control group. 

These findings highlight the role of machine learning in 
fostering active participation in programming classes. As a 
result, two distinct types of programming simulators emerged 
in this study: the ML programming simulator and the noML 
programming simulator. Performance test results further 
confirmed that students who used the ML programming 
simulator achieved significantly higher scores than those who 
did not. 

The study underscores the transformative impact of ML 
programming simulator on student performance and learning 
outcomes in programming classes. Students with greater 
exposure to ML programming simulator exhibited higher 
leverls of performance than their peers using traditional 
simulator. 

Simulator, in genereal, replicate real-world conditions and 
processes, serving as step-by-step guides through various 
system occurences. Different simulation programs and 
techniques exist across various fields, each designed to 
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Table 2. Anova test of performance score

Source Type III Sum of Squares Df Mean Square F Sig.

Corrected Model 182.732a 1 182.732 22.518 <0.001

Intercept 892104.617 1 892104.617 109932.484 <0.001

GROUP 182.732 1 182.732 22.518 <0.001
Error 957.573 118 8.115

Total 893244.921 120
Corrected Total 1140.305 119

df = Degrees of Freedom; F = F-Value; Sig. = Significance Value; a = R Squared = 0.219 (Adjusted R Squared = 0.214)



  

enhance learning experiences. Despite challenges in 
understanding assembly and programming, simulations have 
proven effective in creating meaningful and engaging 
learning environments across multiple educational domains. 
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