

Examining the Effect of Machine-Learning Programming
Simulator on Student Performance and Student Anxiety

Tansa Trisna Astono Putri 1, Wan Ahmad Jaafar Wan Yahaya 2,*, Nur Azlina Mohamed Mokmin 2,
 and Sriadhi Sriadhi 1

1Information Technology and Computer Education Study Program of Universitas Negeri Medan, Medan, Indonesia

2Centre for Instructional Technology and Multimedia of Universiti Sains Malaysia, Penang, Malaysia
Email: tansatrisna@unimed.ac.id (T.T.A.P.); wajwy@usm.my (W.A.J.W.Y.); nurazlina@usm.my (N.A.M.M.);

sriadhi@unimed.ac.id (S.S.)
*Corresponding author

Abstract—Acquiring programming skills can be a complex

and daunting challenge for novice university students.
Mastering the syntax of programming languages is not just a
superficial endeavor; it requires students to develop a robust set
of principles to tackle specific problem scenarios. Machine
learning technology has the potential to be beneficial across
various industries; however, its application in educational tools
remains inadequate. Therefore, this project aims to implement
machine learning technology in a simulator designed to assist
students in evaluating their programming courses. This study
developed a machine-learning programming simulator and
explored its impact on students with varying levels of anxiety.
Educational Data Mining (EDM) refers to the application of
data mining techniques to extract valuable information and
insights from extensive data repositories within the education
sector. The primary goal of this approach is to evaluate student
performance in programming courses. To assess the effects of
technology on academic performance, the study employed
Analysis of Variance (ANOVA) and Analysis of Covariance
(ANCOVA) methodologies. The findings suggest that both
students with high levels of anxiety and those with low levels of
anxiety benefit from exposure to machine learning technology.
By utilizing a machine learning programming simulator,
students’ performance in programming courses can
significantly improve, irrespective of their anxiety levels.

Keywords—programming, university students, performance,
anxiety, machine-learning simulator

I. INTRODUCTION

Programming abilities are becoming increasingly
important for students in today’s world. Skills in
programming are highly sought after across many fields,
including software development, finance, healthcare, and
even the entertainment industry. Students majoring in
computer programming have access to a wide range of job
opportunities. To find effective solutions, they must utilize
both critical and creative thinking skills. Furthermore, these
abilities are useful beyond the realm of computer science,
impacting many other areas of life.

As technology continues to advance and permeate every
aspect of our lives, programming skills will remain in high
demand. Learning to code today can help students secure
future employment. Computational thinking, which involves
breaking down complex issues into simpler components, is a
skill that students can develop through programming
education. This competency can also benefit various other
fields and areas of life.

Students who enroll in programming classes may discover
a new avenue for creative expression by developing original

software, video games, and websites. Engaging in coding can
enhance their creativity and problem-solving abilities.

According to the US Bureau of Labor Statistics, a 10%
decline in the employment of computer programmers is
projected from 2021 to 2031 [1]. Nevertheless, they
anticipate that around 9600 new programming jobs will
emerge annually, largely due to professionals leaving the
field for other opportunities or retiring. While programming
roles are diminishing, automation is a significant contributing
factor. Many individuals whose jobs were once reliant on
performing simple or repetitive tasks are finding themselves
increasingly unemployed as companies automate these
activities.

On the flip side, this shift creates new opportunities for
individuals with diverse skill sets. Although more complex
tasks may become automated, strategic positions will
continue to be in high demand. To remain competitive in this
evolving landscape, programmers must continually refine
their skills to effectively tackle these challenging roles.

Technology Assessment and Application Agency of
Indonesia [2] indicates that Indonesia needs around 600,000
programmers in 2025. Currently, the number of available
programmers in Indonesia is around 100,000 individuals.
This situation indicates that the country is significantly far
from reaching its established goals. As a result, decisive
measures are required to address the human resources
dilemma in the programming sector. More supervision
during lecture sessions is essential to help students develop
strong programming skills and competency. The number of
highly educated programmers graduating from higher
education institutions is expected to rise as a result of the
increased integration of technology into programming
courses.

Moreover, a growing number of companies have adopted
information systems as a means to enhance their operations.
To streamline their processes, modern businesses have
integrated these systems into their workflows. As a result,
there is high demand for programmers whenever companies
seek to implement information systems. Unfortunately, the
number of programmers in Indonesia remains low. Therefore,
it is essential to provide additional guidance during lectures
to cultivate competent programmers.

The incorporation of technology in programming classes is
expected to increase the number of skilled programmers
graduating from universities. Various technological
approaches, such as gamification, assessment tools, and
visualization, can also enhance the learning experience in

International Journal of Information and Education Technology, Vol. 15, No. 7, 2025

1530doi: 10.18178/ijiet.2025.15.7.2354

Manuscript received December 20, 2024; revised February 6, 2025; accepted March 13, 2025; published July 18, 2025

https://orcid.org/0000-0001-5319-4804
https://orcid.org/0000-0002-8605-0062
https://orcid.org/0000-0003-1411-5557
https://orcid.org/0000-0001-7738-7272

programming courses.
Undergraduate computer science courses equip students

with a solid foundation in the field. After graduation, students
can apply this knowledge in their professional endeavors.
However, those who lack proficiency in computer
programming principles may face challenges in securing
employment, particularly in development and software
engineering roles. Consequently, programming is a
mandatory subject for computer science majors. All
computer science majors are now expected to have a basic
understanding of computing, as well as foundational skills in
reading, writing, and basic math [3]. To thrive as computer
science majors in university and keep pace with their
professors and course materials, students must develop
certain skills.

Research published in 2016 found that only a small
percentage of university students achieve academic success,
while a staggering 65% either fail the course or choose not to
continue. Globally, over 30% of computer science
undergraduates either fail to complete the course or do not
pass the programming component [4]. The diploma was
canceled because the introductory program was not
released [5]. Institutions, educators, and students alike must
contend with the alarmingly high rates of failure and dropout.
The reluctance of students to attend required classes, a core
part of computer science programs, is problematic as it often
leads to failure and delayed graduation. While lectures and
labs demand significant time and energy, they play a crucial
role in helping students develop programming skills.
However, these efforts may seem futile when weighed
against the steep costs associated with failure and attrition.
Many Indonesian university students appear to face similar
challenges in their computer science courses, with a lack of
familiarity with specific programming languages being a
major obstacle to mastering fundamental programming
concepts [6]. Students should also work on developing their
skills in the three interconnected aspects of programming:
grammar, design, and structure. Public university students in
Indonesia face similar challenges when trying to learn
computer programming. For those majoring in electronics
engineering, programming is a required subject. However,
for first-year students, mastering programming can be a
daunting task. Learning programming languages is only the
first step in this complex process. Additionally, learning
programming requires university students to develop the
ability to formulate a plan for solving a given problem [7].
Some fundamental concepts that students encounter in class
include variables, arrays, and iteration. In their haste to earn a
passing grade on an assignment, students often resort to poor
programming practices.

Machine Learning (ML) technology has the potential to
benefit various fields; however, its application in educational
tools remains limited. This study integrates ML into a
simulator designed to assist students in evaluating
programming courses. ML can support decision-making, and
in this system, it aids students in making informed choices
while learning programming. The machine receives coding
syntax as input from students, processes and analyzes it using
pre-existing knowledge, and then provides feedback on the
syntax. Based on this feedback, students can make decisions
regarding their learning. The simulator employs the cosine

similarity algorithm as its core technique. This algorithm
assumes that features are conditionally independent given the
class label. While this assumption may not always hold in
practice, cosine similarity still produces reliable results and
performs well on many real-world datasets.

This study investigates whether there is a difference in
performance between high-anxiety and low-anxiety students
when using a Machine-Learning (ML) simulator versus a
non-ML programming simulator. It is hypothesized that
students with high anxiety may benefit more from an
ML-based simulator due to its adaptive and supportive
features, which could enhance their learning experience.
Conversely, low-anxiety students might perform similarly
across both types of simulators, as they may require less
external support. The study also explores whether the ML
simulator mitigates the negative effects of anxiety, leading to
improved performance compared to traditional simulators. If
a significant difference is found, it could provide insights into
designing more personalized educational tools for diverse
learners. Ultimately, the findings may contribute to the
optimization of programming education by addressing the
impact of anxiety on student performance.

II. LITERATURE REVIEW

A. Performance in Programming

The term ‘performance’ refers to how well a person
performs after completing a course of study or receiving
therapeutic intervention. In computer science classes,
common methods for evaluating students’ progress include
exams, quizzes, and homework. For example, evaluating
students’ progress highlighted the potential of using a
simulator to support cognitive growth through
self-experimentation, enhancing their understanding of the
provided content. According to a study by Novak [8],
students’ preferences for reading the textbook, working in
small groups with classmates, and completing course tasks
showed a significant correlation with their post-test
performance scores, suggesting that simulation-based
learning could improve student performance. Additionally,
students rated the simulation as more enjoyable than most
other course components, including lectures, textbooks,
homework, and group projects.

Research by Chernikova et al. [9] found that simulations
using contemporary technologies had a significantly greater
impact. There is no better approach to constructing learning
environments in higher education than using simulations,
which provide numerous opportunities for practice.
Simulation-based learning can be integrated into academic
programs at an early stage due to its effectiveness for students
at all levels of study. According to a study by Isiaq and
Jamil [10], engaging simulator-driven programming classes
are linked to related careers and job opportunities. Students
also described the classroom atmosphere as more welcoming
and conducive to open discussion.

B. Anxiety in Programming

First-year computer science students often struggle to
develop reliable mental models of how programs work.
Another challenge they face is expanding their coding
abilities beyond what they have learned so far. Many students

International Journal of Information and Education Technology, Vol. 15, No. 7, 2025

1531

experience a growing aversion to programming after starting
computer science courses, as these courses often alter their
perception of the subject.

In the early days of computing, when computers were
manually operated, programming languages were primarily
used to organize simple operations. However, with the advent
of object-oriented programming and procedural abstraction,
computer intelligence advanced significantly. As a result,
some students feel anxious about programming because,
rather than modifying data through individual,
straightforward actions, they must manage a series of
processes as a unified whole. This anxiety negatively impacts
academic performance and, in turn, affects student retention
rates.

Uncontrolled anxiety negatively impacts students’
academic performance, resulting in low achievement and
high dropout rates [11]. Computing anxiety refers to the fear
of performing poorly on computer-related tasks. It occurs
when students have experienced or anticipate a loss of
self-esteem in computing situations [12, 13]. Even as
students gain experience, some still experience varying
degrees of computer anxiety [13], which significantly hinders
their ability to use computers efficiently. Speier et al. [14]
found a correlation between high levels of anxiety before
beginning computer learning and poor performance [14].
Students who fear computers tend to perform poorly
academically and develop negative attitudes toward them.

An improper or erroneous perception of circumstances
relieves anxiety. Students experience programming anxiety
as a result of their incorrect belief in their own skills to master
computer programming. This occurs due to the failure of the
activation process [15], preventing students’ mental schemas
from providing the necessary foundation for solving
programming challenges. Many freshmen struggle with
computer programming because they may not have fully
developed the cognitive models essential for the task. Several
studies have examined the factors that influence a student’s
ability to learn computer programming.

However, some of these skills may not be fully developed
when students begin their undergraduate programs, making
them anxious about learning to code. In addition to feeling
inadequate, students may experience increased anxiety when
they receive negative feedback from computers, such as
errors caused by improper program compilation. Anxieties
about programming, a subset of computer anxiety, were
assessed in this study by categorizing students’ mean CPAQ
(Computer Programming Anxiety Questionnaire) scores.
However, to gain deeper insight into students’ emotional
states during programming activities, interviews or
qualitative data could complement this approach. A low
mean score suggests higher anxiety, while a high mean score
indicates lower anxiety.

C. Constructivism in Teaching and Learning
Programming

If students find learning programming challenging, their
motivation, engagement, and classroom performance may
decline. The majority of university students in this study
struggled to create the correct syntax or code for several
assigned challenges. They struggled to adapt to new
problems because they had merely memorized the code

provided by the professor. According to the study of
Radosevic et al. [16], some students also wrote large amounts
of software code without following proper syntax or
conducting logical tests. This resulted in a high number of
errors and discouraged them from continuing with
programming Therefore, instructors need to completely
revamp the way students learn. With the increasing use of
technology and self-education in the modern world, applying
constructivism in the classroom has become essential.
Previous research indicates that constructivism enhances the
learning environment, making it particularly valuable for
programming courses [17–19]. Collaboration cognitive load
theory offers a method to enhance cognitive processing by
leveraging shared working memory, as explained by
Looker [17], hen the complexity of a task exceeds an
individual’s working memory capacity.

Zhu [20] cites constructivist learning theory as the
foundation for the idea that students actively and effectively
learn by constructing mental models of their learning
objectives. In other words, learning is an internal cognitive
process in which students acquire new information by
integrating it with their existing knowledge [21]. This
learning philosophy centers on prioritizing the learner to
achieve more personalized learning outcomes. In a
constructivist classroom, students actively engage in
expanding their understanding rather than passively
absorbing information from their surroundings [22]. Instead
of simply imparting factual information, teachers serve as
guides while students learn. The content of textbooks
becomes secondary to the goal of helping students build
meaningful lives beyond school. Rather than merely assisting
educators in delivering information, learning media foster the
development of collaborative learning environments. One
way students collaborate and learn through exploration is
through conversation.

D. Persuasive Technology

The use of technological resources is more powerful than
any persuasive ideology, as it offers new possibilities for
alternative development in all its forms. Instead of viewing
analytical technologies as mere tools, Pretto and Cláudio [23]
stresses their significance. Each subject in education carries
its own unique set of values, social practices, conventions,
and traditions, which shape human-to-human interactions
[24]. Every person’s actions stem from their unique fears and
aspirations or their response to predetermined goals [25]. As
a major component of assessing motivation and competence,
this study’s approach examines behavior. The reason is that
people learn to react in particular ways based on their culture.
Consequently, certain actions can be anticipated and
influenced accordingly. According to Cialdini [26],
persuasive communication is a method of persuasion that
involves communicating with the goal of getting someone to
adopt a certain behavior, concept, or belief system by making
use of logical-rational or symbolic resources.

Both the world and technology have undergone significant
changes since Carl Hovland began researching persuasive
communication in the 1950s [27]. Technology has
revolutionized communication, and computers have become
indispensable in modern life. However, the art of persuasion
remains unchanged. Today, persuasive computing systems

International Journal of Information and Education Technology, Vol. 15, No. 7, 2025

1532

are used to influence people’s thoughts and behaviors.
Persuasive technology refers to systems that rely on social
influence and persuasion—rather than force or coercion—to
shape opinions and actions Persuasive technology’s impacts
are intended rather than unanticipated.

The term ‘persuasive technology’ refers to any computer
program or information system designed to encourage a
change in attitude or behavior without relying on deception or
coercion.

A persuasive system consists of three main
components [27]. The first step in developing such a system
is understanding the fundamental issues that provide its
context. The second component involves examining the
context of the persuasive system itself. This includes not only
the event and strategy used but also the system’s overall goal.
Intention plays a key role, encompassing both the type of
change being pursued and the persuader’s role in influencing
it. Every aspect of the event is shaped by the user’s context,
the technology’s context, and its application. It is essential to
distinguish between the strategic environment, the message,
and its method of dissemination.

The final stage involves evaluating system attributes, both
for newly developed persuasive technologies and for
assessing features in existing systems. These system
attributes ultimately determine the effectiveness of the
persuasive technology. Evaluation of an existing system’s
qualities is the intended use of system attributes. According
to Oinas-Kukkonen [28], this level is all about helping with
main tasks and conversations, making the system more
credible, and having social support.

Persuasive technology is not a new concept in education.
Its use in this field dates back quite some time. Recognizing
its potential in education, BJ Fogg became a pioneer in
persuasive technology. To teach students about the dangers
of unsafe sexual behavior, Fogg [27] employs the games HIV
Roulette and Baby Think It Over, the latter of which
encourages young women to delay having children. Both
approaches aim to educate and inspire university students,
ultimately influencing their actions. In this study, persuasive
techniques are employed to enhance students’ motivation,
engagement, and performance. Educational tools such as
Google Classroom, Edmodo, and iTunes U serve as valuable
learning aids.

Computers have become an integral part of human life, and
technological advancements significantly impact
communication. As a result, persuasion is also deeply
embedded in modern technology. We are currently living in
an era of persuasive technology—interactive computer
systems designed to influence people’s thoughts and
behaviors. Persuasive technology refers to systems that alter
user attitudes or behaviors through social influence and
persuasion rather than force. Its outcomes are not unintended
byproducts but rather its primary objectives.

Persuasive technology can be categorized into three main
types. To classify how individuals experience and interact
with computer technology, Fogg [27] introduces the
Functional Triad. Computers can function in three primary
roles: as tools, as social actors, and as mediums. These roles
can operate individually or in combination, depending on the
context. Technology facilitates reorganization processes,
enhancing people’s ability to engage in desired activities.

Interactive and narrative-driven media can create immersive
experiences that promote behavior practice, develop empathy,
or establish causal relationships. Additionally, technology
can act as a social agent, influencing the behavior of those it
is designed to support. It achieves this through social cues
such as language, the assumption of social roles, and physical
presence.

The primary tool developed for this research is the
ML-programming simulator, designed to assist students with
their programming coursework. Rather than relying on
coercion, the ML-programming simulator leverages social
influence and persuasion to shape users’ habits and
perspectives. It is expected that using the simulator will
enhance students’ learning outcomes.

Additionally, the ML-programming simulator was built
upon established theories and principles known to boost
student engagement and motivation. As a result, its use is
intended to foster these qualities. Students actively engage
with the simulator throughout three phases: pre-class,
in-class, and post-class. The researcher carefully selected the
learning components in collaboration with an academic
expert in the field. The simulator is designed to inspire
students through its rich collection of educational resources.
The overarching goal of its development was to enhance
student engagement, performance, and motivation to learn.

Persuasive technology in education consists of two main
branches: the theoretical branch, which explores the literature
on the subject, and the practical branch, which applies the
technology as a tool to support both instructors and students.

III. METHODOLOGY

This study’s research population was selected using a
non-probability sampling method designed to be
representative. The participants were undergraduate students
in Indonesian computer science programs who were required
to take programming classes. Because both the students
enrolled in these classes and the participating lecturers were
readily available and under the researchers’ control, a
representative sample was used. To validate and analyze the
data collection process, the study involved three lecturers
with over a decade of experience teaching programming.

Sampling refers to the process of selecting a subset of a
population to obtain a statistically valid cross-section [29].
Since the target population is typically too large to include in
its entirety, sampling is a crucial technique in scientific
research. A well-chosen sample provides a sufficiently large
subset of the target population to effectively answer the
study’s research question.

For this study, the people of Medan are considered
representative of all Indonesians. Universitas Negeri Medan
was selected through careful selection as the university with
the attribute of having programming as a mandatory course.

In this study, universities were selected using a purposeful
sampling method, while undergraduate participants were
chosen through random sampling. The study participants
were limited to university freshmen. Each class in the
experiment consisted of students from the preceding two
years, 2021 and 2022, resulting in a total sample of
approximately 120 university students. All participants were
computer science undergraduates selected at random.

One objective of descriptive analysis is to objectively

International Journal of Information and Education Technology, Vol. 15, No. 7, 2025

1533

characterize the type and intensity of sensory qualities. This
approach was revolutionary as it provided a scientific
foundation for sensory evaluation by generating objective,
statistically sound, and analyzable data. It remains an
essential method in modern sensory analysis and has led to
the development of various descriptive analytic techniques.
Traditional descriptive methods, such as profiling-based
approaches and quantitative descriptive analysis, involve
trained expert panels who subjectively assess the quality and
intensity of sensory properties in samples. In recent years,
there has been a rise in faster descriptive techniques,
including polarized sensory placement, projective mapping,
and overall similarity/variation analysis, which rely on
inexperienced consumers to evaluate sensory attributes. Due
to its effectiveness and adaptability, descriptive analysis
continues to be widely used. Descriptive analysis provides
sensory data that is thorough, accurate, reliable, and objective.
It relies on human assessors in highly controlled settings to
minimize bias. Assessors with exceptional sensory abilities
are carefully selected and undergo a rigorous six-month
training program in traditional methodologies, including
profiling-based approaches and Quantitative Descriptive
Analysis (QDA), to ensure the generation of validated data.
According to Alessi and Stanley [30], individuals who
complete this training can consistently rate perceived
intensity and quality, both independently and in comparison
with other evaluators. Advanced methods such as Free
Choice Profiling (FCP), flash profiling, sorting, projective
mapping, and Polarized Sensory Positioning (PSP) may
involve untrained consumers who lack prior knowledge or
experience. These methods categorize products based on
broad similarities or differences. Measurements can be
conducted after product identification and labeling, or
products can be categorized before being assigned group
names [31].

Descriptive analysis is a valuable tool in
quasi-experimental research, where it is used to meticulously
describe a scenario or topic of interest. Quasi-experimental
research aims to establish a cause-and-effect relationship
between two variables (independent and dependent) without
employing random assignment. Instead, subjects are
categorized based on predefined criteria. This approach is
particularly useful when true experimental conditions are not
feasible due to constraints such as limited funding,
scheduling difficulties, or the absence of randomized
controlled trials. To better understand the characteristics and
current state of relevant variables in quasi-experimental
research, descriptive analysis is applied within the study’s
design framework. Common descriptive research methods
used in quasi-experimental studies include population
surveys, public opinion polls, status studies, surveys and
interviews, observational studies, job descriptions, literature
reviews, documentary analyses, anecdotal records, critical
incident reports, test score analyses, and normative data
collection.

When random assignment of participants is not possible,
researchers attempt to replicate true experimental conditions
as closely as possible. Within these constraints, they must
acknowledge and account for any compromises to the study’s
internal validity. Several quasi-experimental designs have
gained prominence, including pre-posttest, interrupted

time-series, and nonequivalent groups. Finally,
quasi-experimental research relies heavily on descriptive
analysis, which provides a detailed understanding of the
situation or issue under investigation. It helps researchers
assess the characteristics and status of variables within the
study’s framework, informing future research and
interventions while offering critical insights into the
relationships between variables.

A. Research Instruments

This study utilizes an instrument to measure students’
performance in a programming class based on the questions
set by instructors for the final exam. The researcher
administered the same assessment at both stages to evaluate
learning progress. The test consists of five questions derived
from the material covered in a one-hour programming class,
specifically focusing on looping. Identical questions are used
in both the pre-test and post-test [32]. Computer
programming lecturers verified the accuracy of the
instrument’s content, ensuring that the questions effectively
assessed students’ understanding of programming
concepts—particularly looping—before approving them.

When students are unable to appropriately analyze a
situation, our anxiety levels remain elevated. Due to an
inaccurate assessment of their ability to learn computer
programming, university students often experience
programming anxiety. When the activation process fails to
occur, students are unable to develop the necessary mental
schemas to analyze programming challenges and formulate
solutions [15]. While most freshmen have a basic
understanding of computer programming fundamentals, they
may lack the fully developed cognitive models required for
advanced programming. This study investigates the variables
that influence a learner’s proficiency in computer
programming.

Additionally, students may feel unprepared for the
challenge of learning programming if they have not fully
developed specific skills before entering their undergraduate
program. Frequent negative feedback from computers—such
as repeated compilation errors—can cause students to doubt
their competence in certain areas. In this study, programming
anxiety, a subset of computer anxiety, refers specifically to
situational anxiety experienced in programming-related
tasks.

B. Design and Development

The application is currently in the design phase of
development, where concepts are transformed into a
preliminary sketch. According to Ashmore et al. [29], the
design process includes the following steps: (i) brainstorming
potential topics, (ii) analyzing tasks and concepts, and (iii)
outlining the program.

1) Initial content ideas

Generating content ideas early is essential for establishing
foundational concepts related to the appropriate material and
learning techniques used in application development. This
section outlines the strategic approaches for delivering
content within the application, known as Persuasive Design
Principles. Additionally, the researcher explores the
implementation of Jonassen’s Constructivist Learning
Environments (CLEs) in greater detail [33]. The

International Journal of Information and Education Technology, Vol. 15, No. 7, 2025

1534

programming topic that was selected in this study is Looping.

2) The elements of effective design

Persuasive Technology is the study of attitudes and the
methods used to influence them [26]. The macro approach to
multimedia design in this study is based on three key
principles: similarity, suggestion, and tailoring.

3) The similarity principle

According to Cialdini [26], university students are more
influenced by AI systems that share certain characteristics
with them. Based on this insight, the researcher developed a
program functionally equivalent to the tools students
commonly use in class. In programming courses, students
frequently work with text editors such as Sublime Text or
Notepad++. To maintain familiarity, the researcher designed
the software to allow students to write syntax in the same way
they do during class, eliminating the need for additional time
to learn a new interface. Unlike traditional class tools, where
users must first enable XAMPP to execute code and check for
syntax errors, the researcher developed a simulator software
that allows students to run their syntax and receive immediate
feedback. This enhancement streamlines the coding process
and improves the learning experience as shown in Fig. 1.

Fig. 1. Screenshot of online editor in programming simulator.

4) The basics of proposal

According to Cialdini [26], a computer program’s
persuasiveness can be enhanced by strategically timing its
suggestions. The Suggestion Principle was applied in the
development of this programming simulator to support
students in learning programming. When the simulator
detects syntax errors, it provides tailored suggestions based
on students’ previous mistakes. As illustrated in Fig. 2, the
simulator also offers advice and tips for correcting syntax
errors.

Fig. 2. Screenshot of the suggestion from programming simulator.

5) Tailoring principle

The Tailoring Concept suggests that an application’s

persuasiveness increases when its content is designed and
adapted to meet the user’s needs, interests, personality traits,
and context. Following Loranger’s guidelines, the researcher
developed a programming simulator based on these
principles. These guidelines are particularly useful for
creating applications that effectively support students’
learning. One key strategy involves using familiar terms and
concepts that align with the students’ prior knowledge.
Additionally, students appreciate the software’s simple and
user-friendly interface as shown in Fig. 3.

Fig. 3. Screenshot of programming simulator using Indonesian languages.

6) Learning environment based on constructivism

In 1999, Jonassen introduced the concept of Constructivist
Learning Environments (CLEs), which emphasize
problem-based learning. This approach encourages students
to solve problems by drawing from various resources,
including the problem itself, similar cases, informational
materials, cognitive tools, discussion and collaboration
platforms, and social contextual support.

To ensure that the programming simulator fosters
problem-solving skills and cognitive development, this study
modified four out of the six CLE components. These
components are outlined below.

7) Problem

Students often struggle with looping, a fundamental
concept in computer programming. According to the
researcher’s previous problem analysis, looping is one of the
most challenging concepts for students to master. Thus, the
researcher in this study focuses on looping as a topic to assist
students’ comprehension using this simulator.

This programming simulator is ideal for teaching trainees
loop syntax because the simulator provides immediate
feedback on whether the code is correct. If the syntax is valid,
it displays the code’s output. If an error is detected, the
simulator highlights the issue and specifies its location.

8) Cases that are relevant

Fig. 4. Screenshot of video tutorial of coding using looping.

This program highlights similar scenarios through video

tutorials and an online editor. To facilitate case-based
reasoning and enhance cognitive flexibility, learners should

International Journal of Information and Education Technology, Vol. 15, No. 7, 2025

1535

be exposed to relevant examples or worked solutions [32]. In
this programming simulator, related scenarios demonstrate
how loops are implemented in code.

Providing examples that closely align with students’ own
challenges, contexts, and expected outcomes strengthens
their memory scaffolds. To find the correct solution, students
are encouraged to compare the highlighted examples to the
issues they are currently facing. As illustrated in Fig. 4, the
programming simulator includes video tutorials on looping as
related case examples.

9) Data storage services

Students can also access a wealth of informational
resources through this app. According to Witzel et al. [32],
designers should provide only the most relevant information
to help students solve problems and refine their
understanding. Based on their proficiency level, students can
prioritize syntax related to the looping topic as shown in Fig.
5. Additionally, they can revisit previously provided syntax
as needed for reinforcement.

Fig. 5. Screenshot of theories of while—looping.

10) Cognitive resources

Key components that support the development of essential
skills include cognitive tools such as information-gathering
tools, problem-modeling tools, performance support tools,
and knowledge modeling techniques [32]. According to
Kommers et al., cognitive tools are generalizable computer
programs designed to facilitate and engage cognitive
processes.

In this study, the programming simulator functions as a
problem-representation tool, helping learners construct
mental models of how code behaves and interacts.
Additionally, it serves as a knowledge modeling tool,
enabling students to demonstrate their understanding of
programming concepts.

C. Task and Concept Analysis

After establishing the preliminary concept for the program
content, task and concept analyses were conducted in this
study. Task analysis involves identifying the data flow,
inputs, and decision-making processes required to perform a
specific action. Access to relevant information enables the
researcher to gain a comprehensive and precise
understanding of the problem.

A programming expert contributed to the concept analysis
in this study. Based on this analysis, the researcher identified
a key programming challenge to address in the simulator:
enhancing students’ performance, engagement, and
perceived motivation in programming courses, particularly in
the topic of looping.

D. Program Description

This study utilized a custom-built programming simulator
to enhance students’ knowledge and perceived motivation,
thereby increasing engagement in a programming course.
The target population consists of university students from the
2020 and 2021 cohorts, aged 17 to 20 years.

The programming simulator was designed to improve
students’ performance, engagement, and perceived
motivation in programming. It comprises four main
components, detailed as follows:
1) What is Looping? Provides a definition of looping,

explains its execution process, and presents examples.
2) The Framework of Iteration: Educates students on the

structure and implementation of loops in programming.
3) Instruction: Includes video tutorials demonstrating how to

code loops.
4) Task: Contains simulator-based reinforcement exercises

designed to strengthen students’ understanding and
motivation.

IV. RESULTS AND DISCUSSION

With this study, the researcher examined how the
dependent variable was influenced by two independent
factors: the ML programming simulator and the noML
(non-Machine-Learning) programming simulator. To
determine whether the presentation method significantly
affected student performance, a one-way Analysis of
Variance (ANOVA) was conducted. Each group’s pre- and
post-test results were averaged, and their variability was
assessed before computing the computer’s performance. As
shown in Table 1 of the descriptive statistics, 60 students
used an ML programming simulator, while 60 students were
in a control group that did not use an ML programming
simulator. After using the ML programming simulator, the
average score increased from 74.20 on the pretest to 87.45 on
the posttest. The average pre- and post-test scores for all ML
programming simulator users were 74.34 and 84.98,
respectively. When comparing the ML programming
simulator with the noML programming simulator, the
average difference between the two sets of scores was 10.64
points, whereas the ML programming simulator group
exhibited a mean difference of 13.20 points. These results
suggest that students who used the ML programming
simulator performed better than those who used the noML
programming simulator. Fig. 6 presents a bar graph
contrasting the performance of each mode (NoML, ML, and
Total) on the pretest and posttest. The standard deviations are
shown by error bars.

Fig. 6. Graph of students performance using ML and noML programming

simulator.

International Journal of Information and Education Technology, Vol. 15, No. 7, 2025

1536

Table 1. Results of students’ performance of NoML programming simulator
and ML-programming simulator

Mode Unit
Pretest

Perf
Posttest

Perf

NoML
Programming

Simulator

N
Mean

Std. Deviation
Std. Error of Mean

60
74.34
4.06

0.524

60
84.98
3.28

0.424

ML
Programming

Simulator

N
Mean

Std. Deviation
Std. Error of Mean

60
74.20
4.49

0.579

60
87.45
2.33

0.300

Total

N
Mean

Std. Deviation
Std. Error of Mean

120
74.27
4.26

0.389

120
86.22
3.09

0.282
N = sample size
Std. Deviation = Standard Deviation
Std. Error of Mean = Standart Error of Mean

However, while the findings highlight a notable

improvement in student performance with the ML
programming simulator, it remains unclear whether this
improvement is due to the simulator itself or potential
artifacts arising from its implementation. Factors such as
differences in instructional design, unintended biases in
simulator behavior, or variations in user interaction with the
simulators may have influenced the results. Future studies
should carefully examine these variables to ensure that the
observed differences are genuinely attributable to the ML
programming simulator rather than extraneous factors

inherent to the experimental setup.
As a result, the hypothesis of this study, which stated that

there is no difference in student performance when using an
ML programming simulator versus a noML programming
simulator, is rejected. This suggests that university students
instructed using an ML programming simulator
outperformed those who were not. The ANOVA test results
in Table 2, indicate a statistically significant difference
between the two groups, with an F-value of 22.518 and a
p-value of 0.001, which is well below the 0.05 threshold.
These results confirm that students using the ML
programming simulator performed significantly better than
those using the NoML programming simulator. The
independent samples T-test further supports this conclusion
as shown in Table 3, with a Sig. (2-tailed) value of 0.001,
indicating that the difference between the two groups is not
due to chance. However, given the potential for
implementation-related artifacts, additional research is
needed to rule out alternative explanations for the observed
performance improvements.

In addition, the output table above reveals a “Mean
Difference” value of −2.468. This value, which falls within
the 95% confidence interval of the difference between the
two groups, represents the difference in average student
learning outcomes between the ML programming simulator
group and the noML programming simulator group.

Table 3. t-test of performance score

t-test for Equality of Means

t df Sig. (2-tailed)
Mean

Difference
Std. Error Difference

95% Confidence Interval of the Difference
Lower Upper

Posttest Perf −4.745 118 <0.001 −2.468 0.520 −3.498 −1.438
t = t-value; df = Degrees of Freedom; Sig. = Significance Value

These results have important implications for

programming education. While traditional programming
simulators are effective, ML-based simulators may offer
advantages in interactivity and adaptability. However, to
ensure that the observed improvements are truly due to the
ML enhancements rather than implementation artifacts,
future research should explore additional factors influencing
student success, such as instructional methods, user
interactions, and software biases. Moreover, incorporating
qualitative measures, such as student feedback and
behavioral observations, could provide deeper insights into
how ML-driven simulators affect student motivation and
problem-solving skills.

V. CONCLUSION

The study results indicate that students using a ML
Programming Simulator outperformed those who did not,
supporting the first hypothesis. Additionally, a significant
difference was observed in student performance between the
control group without a ML programming simulator and the
treatment group with a ML programming simulator. Students

in the treatment group demonstrated significantly higher
levels of performance with the material compared to those in
the control group.

These findings highlight the role of machine learning in
fostering active participation in programming classes. As a
result, two distinct types of programming simulators emerged
in this study: the ML programming simulator and the noML
programming simulator. Performance test results further
confirmed that students who used the ML programming
simulator achieved significantly higher scores than those who
did not.

The study underscores the transformative impact of ML
programming simulator on student performance and learning
outcomes in programming classes. Students with greater
exposure to ML programming simulator exhibited higher
leverls of performance than their peers using traditional
simulator.

Simulator, in genereal, replicate real-world conditions and
processes, serving as step-by-step guides through various
system occurences. Different simulation programs and
techniques exist across various fields, each designed to

International Journal of Information and Education Technology, Vol. 15, No. 7, 2025

1537

Table 2. Anova test of performance score

Source Type III Sum of Squares Df Mean Square F Sig.

Corrected Model 182.732a 1 182.732 22.518 <0.001

Intercept 892104.617 1 892104.617 109932.484 <0.001

GROUP 182.732 1 182.732 22.518 <0.001
Error 957.573 118 8.115

Total 893244.921 120
Corrected Total 1140.305 119

df = Degrees of Freedom; F = F-Value; Sig. = Significance Value; a = R Squared = 0.219 (Adjusted R Squared = 0.214)

enhance learning experiences. Despite challenges in
understanding assembly and programming, simulations have
proven effective in creating meaningful and engaging
learning environments across multiple educational domains.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

Author Wan Ahmad Jaafar Wan Yahaya conceptualized
the study, designed the methodology, and supervised the
overall project. Author Tansa Trisna Astono Putri conducted
the data collection, performed the initial analysis and
contributed to drafting the manuscript. Author Nur Azlina
Mohamed Mokmin assisted with data interpretation,
statistical analysis and provided critical revisions to the
content. Author Sriadhi Sriadhi managed the literature
review and participated in the final editing and formatting of
the manuscript. All authors read and approved the final
version of the article.

ACKNOWLEDGMENT

The authors would like to express their sincere gratitude to
the Centre for Instructional Technology and Multimedia,
Universiti Sains Malaysia, and the Information Technology
and Computer Education Study Program, Universitas Negeri
Medan, for their valuable support and collaboration. Their
contributions and facilitation were instrumental in enabling
this research to be successfully conducted.

REFERENCES
[1] Bureau of Labor Statistics. (September 2022). Employment projections:

2021–2031 summary. Bureau of Labor Statistics. [Online]. Available:
https://www.bls.gov/news.release/ecopro.nr0.htm

[2] M. Primayunita. (March 2023). Indonesian programmer salary 2023:
Promising career opportunities. Dicoding. [Online]. Available:
https://www.dicoding.com/blog/gaji-programmer-indonesia-2023-pel
uang-karier-menjanjikan/ (in Indonesian)

[3] C. Angeli and N. Valanides, “Computers in human behavior
developing young children’s computational thinking with educational
robotics: An interaction effect between gender and scaffolding
strategy,” Computers in Human Behavior, vol. 105, 105954, 2020.

[4] U. Nikula, O. Gotel, and J. Kasurinen, “A motivation guided holistic
rehabilitation of the first programming course,” ACM Transactions on
Computing Education, vol. 11, no. 4, pp. 1–38, Nov. 2011.

[5] M. Corney, D. Teague, and R. Thomas, “Engaging students in
programming,” in Proc. Twelfth Australasian Computing Education
Conf., 2010, pp. 63–72

[6] A. Baist and A. S. Pamungkas, “Analysis of student difficulties in
computer programming,” VOLT: Jurnal Ilmiah Pendidikan Teknik
Elektro, vol. 2, no. 2, pp. 81–92, Oct. 2017.

[7] I. N. Umar and T. H. Hui, “Learning style, metaphor and pair
programming: Do they influence performance?” Procedia-Social and
Behavioral Sciences, vol. 46, pp. 5603–5609, 2012.

[8] E. Novak, “Effects of simulation-based learning on students’ statistical
factual, conceptual and application knowledge,” Journal of Computer
Assisted Learning, vol. 30, no. 2, pp. 148–158, July 2013.

[9] O. Chernikova et al., “Simulation-based learning in higher education:
A meta-analysis,” Review of Educational Research, vol. 90, no. 4, pp.
499–541, June 2020.

[10] O. Isiaq and M. G. Jamil. (2017). Exploring student engagement in
programming sessions using a simulator. ICICTE. [Online]. pp.
206–215. Available: http://www.icicte.org/ICICTE_2017_Proceed
ings/6.3_Isiaq%20_%20Jamil.pdf

[11] M. J. Acelejado. (2003). The impact of using technology on students’
achievement, attitude and anxiety in mathematics. [Online]. Available:
https://acasestudy.com/the-impact-of-using-technology-on-students-a
chievement-attitude-and-anxiety-in-mathematics/

[12] V. McInerney, “Computer anxiety: Assessment and treatment,” Ph.D.
dissertation, Western Sydney University, New South Wales, 1997.

[13] G. A. Marcoulides, “The relationship between computer anxiety and
computer achievement,” Journal of Educational Computing Research,
vol. 4, no. 2, pp. 151–158, May 1988.

[14] C. Speier, M. G. Morris, and C. M. Briggs, “Attitudes toward
computers: The impact on performance,” in Proc. AMCIS 1995, 1995,
p. 43.

[15] R. E. Mayer, “The psychology of how novices learn computer
programming,” ACM Computing Surveys (CSUR), vol. 13, no. 1, pp.
121–141, Mar. 1981.

[16] D. Radosevic, T. Orehovacki, and A. Lovrencic, “Verificator:
Educational tool for learning programming,” Informatics in Education,
vol. 8, no. 2, pp. 261–280, Oct. 2009.

[17] N. Looker, “A pedagogical framework for teaching computer
programming: A social constructivist and cognitive load theory
approach,” in Proc. 17th ACM Conf. on International Computing Edu
Cation Research, 2021, pp. 415–416.

[18] F. J. Agbo et al., “Examining theoretical and pedagogical foundations
of computational thinking in the context of higher education,” in Proc.
2021 IEEE Frontiers in Education Conf. (FIE), 2021, pp. 1–8.

[19] C. S. González-González et al., “COEDU-IN project: An inclusive
co-educational project for teaching computational thinking and digital
skills at early ages,” in Proc. 2021 International Symposium on
Computers in Education (SIIE), 2021, pp. 1–4.

[20] C. Zhu, “E-learning, constructivism and knowledge building,”
Educational Technology, vol. 48, no. 6, pp. 29–31, 2008.

[21] S. O. Bada, “Constructivism learning theory: A paradigm for teaching
and learning,” Journal of Research and Method in Education, vol. 5, no.
6, pp. 66–70, Dec. 2015.

[22] Z. Xu and Y. Shi, “Application of constructivist theory in flipped
classroom—Take university english teaching as a case study,” Theory
and Practice in Language Studies, vol. 8, no. 7, pp. 880–887, July
2018.

[23] N. Pretto and C. P. D. Cláudio, “Technologies and new educations,”
Brazilian Journal of Education, vol. 11, pp. 19–30, 2006.

[24] R. D. Santos, “Three fundamental relationships in higher education,”
Revista Iberoamericana de Educacion, vol. 36, no. 9, pp.1–9, Sep.
2005. (in Portuguese)

[25] K. Hogan, The Psychology of Persuasion: How to Persuade Others to
Your Way of Thinking, Louisiana: Pelican Publishing, 1996, ch. 1.

[26] R. B. Cialdini, The Weapons of Persuasion: How to Influence and Not
Be Influenced, Rio de Janeiro: Editora Sextante, 2012, ch. 1.

[27] B. J. Fogg, “Computers as persuasive social actors,” Persuasive
Technology; Using Computers to Change What We Think and Do,
Massachusetts: Morgan Kaufmann, 2002, ch. 1, pp. 89–120.

[28] H. Oinas-Kukkonen, “Requirements for measuring the success of
persuasive technology applications,” in Proc. 7th International Conf.
on Methods and Techniques in Behavioral Research, 2010, pp. 1–4.

[29] R. Ashmore, R. Calinescu, and C. Paterson, “Assuring the machine
learning lifecycle: Desiderata, methods, and challenges,” ACM
Computing Surveys (CSUR), vol. 54, no. 5, pp. 1–39, May 2021.

[30] S. M. Alessi and R. T. Stanley, Multimedia for Learning: Methods and
Development, Boston: Allyn & Bacon, Inc., 2000, ch. 1.

[31] M. G. Jamil and S. O. Isiaq, “Teaching technology with technology:
Approaches to bridging learning and teaching gaps in simulation-based
programming education,” International Journal of Educational
Technology in Higher Education, vol. 16, no. 1, p. 25, Aug. 2019.

[32] B. S. Witzel, C. D. Mercer, and M. D. Miller, “Teaching algebra to
students with learning difficulties: An investigation of an explicit
instruction model,” Learning Disabilities Research and Practice, vol.
18, no. 2, pp. 121–131, April 2003.

[33] D. H. Jonassen and L. R. Murphy, “Activity theory as a framework for
designing constructivist learning environments,” Educational
Technology Research and Development, vol. 47, pp. 61–79, Mar. 1999.

Copyright © 2025 by the authors. This is an open access article distributed
under the Creative Commons Attribution License which permits unrestricted
use, distribution, and reproduction in any medium, provided the original
work is properly cited (CC BY 4.0).

International Journal of Information and Education Technology, Vol. 15, No. 7, 2025

1538

	IJIET-V15N7-2354-IJIET-16184

