
A Debugging Method Support System Using Past Error
Information in Programming Exercises with the Same

Teaching Materials

Keiichi Takahashi

Humanity-Oriented Science and Engineering, Kindai University, Iizuka, Japan
Email: ktakahas@fuk.kindai.ac.jp (K.T.)

Abstract—This study proposes a Debugging Method
Suggestion System (DMSS) using past error information to
address the difficulties faced by learners when solving bugs in
programming-learning environments. The DMSS automatically
collects error information generated when students work on
assignments, allowing instructors to add annotations describing
the causes and solutions for these errors. When other students
using the same programming materials encounter similar
errors, the system presents them with the accumulated similar
error information and advice. This system was implemented to
assist students in developing a learning web application using
the Ruby on Rails framework. Its effectiveness was verified by
an experiment involving 53 university students. The results
showed that the debugging success rate when using the DMSS
for unknown errors was more than twice that of cases where
DMSS was not used, with particularly significant support
effects for first-time errors. However, differences in
effectiveness based on error difficulty and prior knowledge
were observed, suggesting that content and quality of advice are
more important for complex errors.

Keywords—programming education, debugging support
system, error information, ruby on rails, web application
development, educational technology, collaborative learning

I. INTRODUCTION

In recent years, programming skills have become
increasingly important. It is recognized as a means to develop
software and as a skill that contributes to problem-solving
abilities and logical thinking development [1, 2].
Programming education has been widely incorporated from
elementary to higher education and even into adult
education [3, 4].

Despite the expansion of programming education, the
learning difficulties faced by beginners remain a significant
challenge [5, 6]. A major factor is bugs (program defects)
caused by input errors or logical mistakes [7]. While these
bugs are unavoidable in the learning process, they can be
substantial barriers for beginners [8]. In particular, learners
who lack the ability to identify, diagnose, and fix errors often
lose motivation and abandon programming when faced with
bugs [9, 10].

Several common features explain why beginners struggle
with bug fixation. First, they are unfamiliar with the syntax
and basic structure of programming languages, which makes
it difficult to interpret error messages correctly. These
messages, designed for language designers and developers,
often contain advanced technical terms and abstract
expressions. Consequently, beginners frequently struggle to
understand error messages and find appropriate
solutions [11–13]. Second, beginners typically encounter

syntax, type, and logical errors while learning. However, they
often struggle to identify the specific causes of these errors,
leading to time-consuming troubleshooting. In particular,
when errors in one part affect other parts of the program,
beginners find it difficult to identify the root cause [14–16].
Such repeated situations hinder learning progress and cause
significant frustration. Third, feedback during the error
correction process is generally insufficient for beginners.
Traditional programming education typically involves the
direct support of instructors. However, individual instruction
opportunities have decreased with the spread of online
education and diversification of learners. Consequently,
learners are isolated when fixing errors, thus, impeding
efficient learning [17, 18].

To address these challenges various technical approaches
for supporting programming learning have been proposed.
For instance, many online programming platforms provide
features that analyze learner-written code in real time and
immediately identify errors, allowing for early detection and
on-the-spot correction [19, 20]. Systems that analyze
learners’ coding patterns and advise them on predicted errors
and correction methods have also been developed [21]. In
addition, research is progressing regarding tools that translate
error messages into beginner-friendly explanations. Recently,
systems using Large Language Models (LLMs) have been
proposed to provide beginners with natural language error
explanations and code completion [22, 23]. The generative
capabilities of LLMs offer clear explanations of typical errors
and provide appropriate correction suggestions [24, 25].
Attempts are also being made to analyze learners’ progress in
real time and provide feedback based on individual
weaknesses [26], which are expected to help beginners better
understand their errors and improve their learning efficiency.

Although many technical approaches to programming
learning debugging support systems have been proposed,
customization according to specific teaching materials is
necessary to use these research outcomes in an educational
environment [27–29]. Customization requires information on
programming learning materials and potential exercise data
from students who have used these materials. Preparing such
information is time-consuming for users of research
outcomes. Additionally, programming classes often use the
same material repeatedly. Automatic collection and sharing
of error information from students working with these
materials can minimize the customization costs for classroom
support tools.

This study proposes a debugging support system based on
past error information generated when identical

International Journal of Information and Education Technology, Vol. 15, No. 8, 2025

1539doi: 10.18178/ijiet.2025.15.8.2355

Manuscript received March 10, 2025; revised April 3, 2025; accepted May 16, 2025; published August 7, 2025

programming materials are used. Specifically, it
automatically collects error information generated while
students work on assignments, and instructors annotate this
information using error causes and debugging methods.
When other students using the same programming materials
encounter errors, the system presents the most similar past
error information, encouraging the self-resolution of the bugs.
This study used Ruby on Rails (Rails) as the programming
environment [30]. It is a leading web application
development framework that adopts the
model-view-controller architecture and requires multiple
files to implement a single function. This environment was
selected to verify the effectiveness of error information
debugging in a realistic application-development setting. As
Rails has influenced various frameworks currently in use, we
expect the findings of this research to be applicable to other
frameworks.

II. PROPOSED SYSTEM

A. Proposed System Schematic

We propose a system that automatically collects the error
information encountered by students when working on
programming assignments and provides debugging advice.
Fig. 1 shows the configuration of the system. The Error
Information Collector (EIC) automatically collects error
information when Student A works on assignments based on
programming materials (Fig. 1-(1)). When the EIC detects an
error, it sends related information, including the user ID, IP
address, error messages, and files updated by the student to
the Debugging Method Suggestion System (DMSS). This
information is extracted from the log files of the web
application server and transmitted after serialization.

The DMSS stores the received information in a database
called the Debug Database (DD). This error information is
referenced and annotated with the cause of the error and
solution methods (Fig. 1-(2)). When Student B encounters an
error, the system extracts the most similar error from the DD
and presents its advice to Student B (Fig. 1-(3)). This tool is
called the Debugging Method Suggester (DMS) [31].

Fig. 1. Overall schematic of the DMSS.

B. Typical Use-Case

This section presents a typical DMSS use-case and
explains the functions and roles of the DMSS user interface.
Fig. 2 presents the use-case scenario flow, which consists of

eight scenarios (S1 to S8). The operational procedures and
screens of the DMSS are explained according to this
scenario.

Fig. 2. Flowchart of a typical use-case scenario for the DMSS.

First, Student A creates a program for an assignment
(Fig. 1-(1)). As the program is a web application, it is
accessed and executed via a web browser. Fig. 3 illustrates an
example of an execution screen. In this example, there is no
error in the program entered by the student. However, there is
an error because there is no table intended for use in the
application. The cause of this is forgetting to execute the
procedure to create the table.

Fig. 3. Example of an error page owing to forgotten procedure.

S1 and S2: If Student A can solve the problem
independently after seeing the error message, they debug it
without using the DMSS. If they cannot understand the
problem, they use the DMSS (Fig. 4). Fig. 4 shows the user
ID, error occurrence time, and error message collected by the
EIC. The text “No advice on the error yet” indicates that the
error information is not registered in the DD.

Fig. 4. Webpage where Student A checks for advice after encountering an
error in the DMSS.

S3: The student informs the instructor that advice is

International Journal of Information and Education Technology, Vol. 15, No. 8, 2025

1540

required to debug the error by selecting “HELP” from the
menu and press the Send button (Fig. 5).

Fig. 5. Example of requesting advice from the instructor.

S4: When the instructor accesses the DMSS, a notification

appears at the top of the screen, indicating that the student has
requested support (Fig. 6). This notification appears in real
time during class or when the instructor logs into the DMSS
outside class hours. The notification does not disappear until
it is clicked, thereby preventing oversight. When the
instructor clicks on the student ID, the detailed error
information is displayed.

Fig. 6. Web page displayed when an instructor logs into the DMSS.

S5: Fig. 7 shows the detailed error information. This

screen is similar to the screen seen by Student A (Fig. 4);
however, the instructor’s screen allows the deletion and edit
of erroneous information. The instructor clicks on the edit
icon to write advice.

Fig. 7. Example of instructor operation when annotating advice in DMSS.

Fig. 8. Example of the instructor’s advice on the web page.

Fig. 8 shows the screen on which the instructor enters the
advice. They can view the related code to identify the cause
of the error. We omitted this explanation here to save space.
The instructor enters the cause of the error and investigation
methods into the advice field. When required, the instructor
can paste part of the source code into the Error Code Snippet
field to explain the cause to students. In this case, there is no
error in the source code; therefore, it is left blank.

S6: When the instructor finishes entering the advice, a
notification appears automatically at the top of Student A’s
screen, allowing the student to check it (Fig. 9).

Fig. 9. Example web page of Student A when checking the instructor’s

response.

S7: Suppose Student B makes the same mistake as Student
A. The error information encountered by Student B is
automatically sent to the DMSS by the EIC.

S8: As advice regarding that error is registered in the DD,
when Student B accesses the DMSS, the same advice is
displayed (Fig. 10). Therefore, they can fix the program
according to the correct advice.

Fig. 10. Example web page displayed when Student B accesses the DMSS.

III. EXPERIMENTS

A. Experimental Method

The aim of this experiment was to determine whether
advice presented to students through the DMSS could
effectively improve their debugging success rates. As the
DMSS is intended to fulfill the role of an instructor providing
individual guidance to students, the advice prepared in
advance for the DMSS mirrored the natural guidance that
instructors would provide during class. Additionally, as some
students might not require assistance, the use of the DMSS
was made optional. The experimental methodology is
described below.

The Department of Information and Computer Science at
Kindai University offers a course on Rails programming to
third-year students. This course consists of 15 sessions, each

International Journal of Information and Education Technology, Vol. 15, No. 8, 2025

1541

lasting 180 min. The present experiment was conducted
during the 15th session. Therefore, the participants had
acquired the basics of Rails programming before the
experiment. Among the course attendees, 53 students
consented to participate in this experiment.

Even when using the same teaching materials, the types
and locations of programming input errors varied among the
students. As studying the corrections for different errors
would make it difficult to compare the results, programs
containing deliberately inserted errors were prepared to
compare the possibility of error correction and effectiveness
of advice under identical conditions. The debugging tasks
assigned to the students consisted of four problems, labeled
Ex1, Ex2, Ex3, and Ex4 (Table 1). These problems were
selected based on the instructor’s experience with frequently
asked questions from students who had previously required
guidance. These errors were either “forgetting one
procedure” or “typos of 2–3 characters in the program.”

Table 1. Test descriptions of debugging problems used in the experiment

Experiment ID Test Description

Ex1
After executing the “rails generate” command to create a
controller and a model, verify that the top page is
displayed correctly.

Ex2
After implementing the feature to list bookmarks
retrieved from the database, verify that the registered
bookmarks are correctly displayed on the page.

Ex3
After implementing the feature to enter a new bookmark,
verify that the entry page is displayed correctly.

Ex4
After entering bookmark information on the entry page,
verify that the data are successfully stored in the database
and displayed on the list page.

B. Experimental Procedure

The Rails application that the participants debugged in the
experiment was a small application that managed bookmark
data. It saves the titles and URL of bookmarks entered by
users into a database and displays a list of these bookmarks.
All participants had experience creating this application two
weeks before the experiment. Thus, the creation procedure
was known and some participants may have already
experienced errors.

For the experiment, an application containing bugs was
downloaded to the participants’ computers using Git, a
version of the control software. Each problem (Ex1–Ex4)
could be instantly switched using the Git “checkout”
command. After switching to a problem, the participants had
10 min to verify the operation of each problem’s test
description. These were debugged by examining the
displayed error messages and programs. The participants
could decide whether to use the DMSS during debugging.
After 10 min, they answered a questionnaire prepared in
Google Forms within 5 min and then switched to the next
problem to prepare for the experiment. In this experiment, the
participants’ use of the DMSS corresponded to operations S7
and S8, as described in Section II.B.

The following questionnaire was administered to the
students after they completed debugging tasks Ex1–Ex4:

Q1. Was the debugging process successful? (Yes/No)
Respondents who answered “Yes” to Q1 only:

Q2. Please provide a detailed description of the cause of
the error.

Q3. Have you encountered similar errors in the past?
(Yes/No)

Q4. Did you use the DMSS? (Yes/No)
Q5. Was the advice provided by the DMSS helpful?

(Yes/No)

C. Instructor-Annotated Advice

From an instructor’s perspective, the goal is to encourage
students to understand how Rails works and help them to
identify errors by following Rails’ execution flow. Therefore,
from an educational perspective, instructors do not directly
indicate the program correction points or methods but
encourage students to verify whether the execution flow is
functioning correctly.

Table 2 lists the advice annotated for each problem. The
underlines indicate the parts of each advice that should be
noted. The advice for Ex1 shows specific procedures and
executing these procedures allows for bug fixing. Contrarily,
the advice for Ex2–Ex4 indicate locations to check, but do
not include correction methods. This implies that bug fixing
based on advice alone is difficult for such problems.

Table 2. Examples of advice for debugging problems used in the experiment
Experiment

ID
Advice

Ex1
You have run rails g model, but then you have not run “rails
db:migrate”. Run “rails db:migrate” in your rails directory.

Ex2

The error message is “ActionController::RoutingError
(uninitialized constant BookmarkController).” The term
“Bookmark” is used in the error message, whereas it should be
“Bookmarks.” The system appears to be attempting to access
“Bookmark” instead of “Bookmarks,” which suggests a
mismatch. Given that the error is a RoutingError, it is likely
that there is an issue in the routing configuration
(config/routes.rb) causing this problem.
Please verify whether any instance of bookmark exists where it
should instead be bookmarks in the routes.rb file.

Ex3

The error message is “ActionView::Template::Error (First
argument in form cannot contain nil or be empty).”
 1: <%= form_for @bookmark, url: {action: :create} do
|f| %>
 2: <%= f.label :title, 'title' %>
 3: <%= f.text_field :title %>
 4: <%= f.label :url, 'URL' %>
app/views/bookmarks/new.html.erb:1. The error message
said, “The first argument in form_for cannot contain nil or be
empty”. This means that the value of @bookmark is nil. Where
do you set the value of @bookmark?
Please check the value of @bookmark. Even if it is set, if the
variable name is different, it cannot be passed on and may
become nil, so please check.

Ex4

The error message is “NoMethodError (undefined method '[]'
for nil:NilClass):
app/controllers/bookmarks_controller.rb:11:in create.” This
indicates that an error occurs on line 11 of the
bookmarks_controller.rb file. The relevant line of code is
shown below:
011: bookmark = Bookmark.new(title:
params[:bookmarks][:title], url: params[:bookmarks][:url])
The error suggests that params[:bookmarks] is nil, resulting in
a failure when attempting to access [:title]. This implies that
params[:bookmarks] is empty or not properly initialized.
Investigate why params[:bookmarks] is empty to identify the
root cause of the issue.

IV. RESULTS

Fig. 11 shows the debugging success rate and DMSS usage
rate for each problem. Participants were considered
successful at debugging only if they answer Yes to Q1 and
provided the correct reason in Q2 in the questionnaire. The
debugging success rate calculated from all experimental data
was 64%. In Ex1 and Ex2, more than 80% of participants
successfully debugged their problems. However, the

International Journal of Information and Education Technology, Vol. 15, No. 8, 2025

1542

debugging success rate for Ex3 was less than 30%. This
indicates that debugging difficulty varies according to a
problem.

The DMSS usage rate calculated from the experimental
data was 69%. That is, the percentage of participants who
answered Yes to Q4. The DMSS usage rate was
approximately 70% for all problems. The participants used
the DMSS regardless of the problem difficulty.

Fig. 11. Comparison of debugging success rates and DMSS usage rates
across problems, showing consistent approximately 70% usage despite
varying success rates.

Fig. 12 shows the percentage of debugging problems

already known to the students. Problems Ex1–Ex4 were
selected based on the instructor’s subjective judgment. These
data validate the appropriateness of subjective selection. The
results indicated that Ex1 and Ex2 were errors that many
students had previously experienced. In contrast, Ex3 and
Ex4 were errors that most students were encountering for the
first time.

Fig. 12. Prior experience with similar errors by problem (Q3), revealing Ex1
and Ex2 were familiar to many participants while other problems were
generally novel.

Table 3 shows the debugging success rates tabulated based
on the responses to Q3 and Q4. When the bug was already
known, the debugging success rate was very high at 96%
even without using DMSS. However, when the bug was
unknown, the use of the DMSS doubled the debugging
success rate (“All” row, Table 3). The success rates for the
individual problems are analyzed in Section V.

Table 3. Debugging success rates tabulated based on responses to Q3 and Q4

of the questionnaire

Experiment ID
Known Error Unknown Error

With
DMSS

Without
DMSS

With
DMSS

Without
DMSS

All 81% 96% 61% 28%
Ex1 91% 92% 89% 38%
Ex2 96% 100% 91% 50%
Ex3 50% NA1 29% 20%
Ex4 65% 100% 57% 27%

1 Not Applicable

Fig. 13 presents the results to Q5. For Ex1 and Ex2, the
rate was nearly 100%, indicating that the advice presented by
the DMSS was helpful for debugging. For Ex4, the rate was
84%, suggesting that the advice was helpful for students who
understood it. By contrast, the response rate for Ex3 was 63%.
The advice recommended checking the execution flow of the
program, because the initial values of the program variables
were not set. However, Ex3 pertained to forgetting to input
the method, which set the initial value of the variable. For
students who did not understand Rails’ execution flow, it was
likely difficult to identify the cause, even after receiving the
advice.

Fig. 13. Perceived helpfulness of DMSS advice by problem (Q5), with

notably lower effectiveness for Ex3 compared to other problems.

Fig. 14. Correct error cause explanation rates when using DMSS (Q2, Q4),
showing lower understanding for Ex3 corresponding to its reduced perceived
helpfulness in Fig. 13.

Fig. 14 displays the percentage of participants who used
the DMSS and correctly explained the cause of the error.
These data were obtained from questionnaire items Q2 and
Q4. The results showed nearly the same trend as Fig. 13. This
indicates that many participants who reported that the advice
was helpful were able to use the DMSS to understand the
cause of the bug properly. The results in Fig. 13 show that
only 63% of the students could understand the DMSS advice
for Ex3, which is considerably lower than for other problems.
Consequently, the percentage of Ex3 in Fig. 14 was also low.

V. DISCUSSIONS

A. Interaction Between Problem Difficulty and Various
Factors

The impact of the problem difficulty on the debugging
success rates was significant (Fig. 11). Ex1 and Ex2 had
success rates of 83% and 90%, respectively, indicating that
they were relatively simple. In contrast, Ex3 and Ex4 had
lower success rates of 29% and 56%, respectively, suggesting
a higher difficulty. Notably, problem difficulty had the

International Journal of Information and Education Technology, Vol. 15, No. 8, 2025

1543

following effects (Table 3). For simple problems such as Ex1
and Ex2, the DMSS achieved high success rates regardless of
prior knowledge. The success rates of Ex1 were 91%, 89%,
and for Ex2, they were 96%, and 91%, respectively. However,
for difficult problems, such as Ex3 and Ex4, the success rates
dropped significantly, even with prior knowledge and DMSS.
The success rates for Ex3 and Ex4 were 50% and 65%,
respectively. The rates were even lower under the “unknown
error with DMSS” condition, with Ex3 at 29% and Ex4 at
57%. These results suggest that a higher problem difficulty
lowers success rates, making prior knowledge and quality of
the DMSS advice crucial.

B. Impact of Prior Knowledge

As shown in Table 3, the debugging success rate is
strongly influenced by whether the errors are known. Across
all the problems, the success rate for known errors was 81%
with DMSS and 96% without DMSS. In contrast, the success
rates for unknown errors were significantly lower at 61%
with DMSS and 28% without DMSS. This result indicates
that prior experience and knowledge of specific errors
significantly enhance problem-solving abilities in
programming learning. Notably, students achieved a high
debugging success rate of 96% for known errors, even
without using the DMSS, suggesting that they developed the
ability to effectively handle errors they had previously
encountered. Interestingly, the success rate of known errors
was higher without DMSS (96%) than with DMSS (81%).
An important consideration here is that when participants
responded “known” to Q3, it remained unclear whether they
had previously succeeded in debugging the error. Participants
who reported errors as known but did not use the DMSS
likely had prior successful debugging experiences and
understood Rails well. Conversely, there were participants
who likely, despite recognizing the error, had no prior
successful debugging experience and were able to debug
successfully by referring to the DMSS advice. Their
debugging success rate would naturally be lower than that of
participants with a better understanding. Additionally, the
debugging success rate for Ex3 was particularly low at 50%
even when the error was known and the DMSS was used,
which significantly reduced the overall debugging success
rate for known errors with DMSS usage. This resulted in a
lower debugging success rate when using the DMSS.

C. Analysis of DMSS Usage Rate

The usage rates of the DMSS varied depending on the
problem, with 67% for Ex1, 72% for Ex2, 67% for Ex3, and
66% for Ex4. Notably, the DMSS usage rate for Ex3, the
most difficult problem (debugging success rate: 29%), did
not differ significantly from that for Ex2, the simplest
problem (debugging success rate: 90%). This suggests that
students referred to the advice at a consistent rate, regardless
of the difficulty or knowledge of the problem. It is also
noteworthy that many students consulted the advice, even for
errors with which they were already familiar. This may
indicate a lack of confidence in their knowledge or a need to
confirm their understanding. Particularly, for challenging
problems such as Ex3, where all students who identified the
error as known still referred to the advice, they seemed to
seek additional support when they perceived the problem as
more difficult.

D. Effect of the DMSS Advice

The impact of the DMSS advice was significant, especially
for unknown errors. For these errors, the debugging success
rate with advice was 61%, which was more than twice that
observed without advice (28%). This highlights the
importance of providing appropriate guidance for errors
encountered for the first time. By contrast, the effects of
advice on known errors showed more complex patterns.
Overall, the success rate for known errors was higher without
DMSS (96%) than with DMSS (81%). However, when
examined by problem, Ex1 showed nearly identical success
rates under both conditions (91% without advice and 92%
with advice), whereas for Ex3, the data were available only
for the DMSS condition. These results suggest that the
effectiveness of advice for known errors depends on the type
of error and difficulty of the problem.

E. Generalizability beyond Ruby on Rails

This study used Rails as the web application framework.
Other frameworks and programming languages are also
available for the development of web applications.
Educational institutions often provide instructions using Java
or Python. This section discusses the possibility of using the
DMSS in these environments. As shown in Fig. 1, the EIC
detects errors and transmits the error information to the
DMSS, which functions as an application server. The errors
are detected based on error messages output to log files.
While the EIC needs to be prepared individually for different
programming languages and frameworks because it differs
across environments, the DMSS can be used as is because it
operates as independent software. Therefore, the applicability
is determined based on whether a mechanism exists for
outputting error messages to log files. We investigated
commonly used frameworks other than Rails, including Flask,
Django, Spring Boot, Laravel, Symfony, and Express.js. The
results showed that these frameworks, had the required
mechanisms for outputting error information to log files.
Although it is necessary to specify the log file name in the
configuration files, the DMSS proposed in this study can be
used as is.

F. Limitations

This study has several limitations. First, the four problems
used in the experiment did not represent all programming
errors. In particular, the lack of data for the known error
without advice condition in Ex3 indicates room for
improvement in problem selection and data collection.
Additionally, students’ self-reported judgments of
“known/unknown” may not accurately reflect their actual
knowledge state. Furthermore, no detailed analysis has been
conducted on the content, quality, or presentation method of
advice. Therefore, it remains unclear which types of advice
are most effective.

VI. CONCLUSION

This study focused on the difficulties that programming
beginners face with debugging, and developed and evaluated
a new debugging assistance system (DMSS). It automatically
collects error information generated by students, stores
solutions annotated by teachers in a database, and presents
similar error information and solutions to other students

International Journal of Information and Education Technology, Vol. 15, No. 8, 2025

1544

using the same programming materials.
In a learning environment for beginners in Rails, important

findings regarding the effectiveness of DMSS were obtained
from an experiment involving 53 university students. In
particular, the success rate when using the DMSS for
unknown errors was more than twice that when not using the
DMSS, indicating a significant supporting effect for errors
encountered for the first time. However, for known errors, the
students showed high self-solving abilities, and the effect of
the DMSS was limited. The experimental results revealed
that problem difficulty, prior knowledge, and advice quality
interact in complex ways to influence the debugging success
rates. For simple problems, high success rates were achieved
using the DMSS, regardless of prior knowledge, whereas for
complex problems, success rates decreased even when using
the DMSS, despite having prior knowledge. This suggests
that as problem difficulty increases, the quality and content of
advice become more important. The usage rate of the DMSS
remained constant at approximately 70%, regardless of
problem difficulty, indicating that students tended to refer to
advice regardless of their knowledge state. In particular, the
fact that many students referenced advice even for known
errors suggests that they did not have complete confidence in
their knowledge, or wanted to confirm their knowledge
through advice.

In future research, additional experiments are necessary to
validate the findings of this study. For instance, to verify the
validity of the results, specific data for qualitative and
quantitative analysis can be collected and analyzed, such as
statistics on student feedback for different types of
suggestions. Additionally, data on student interactions with
the DMSS can be obtained to supplement the engagement
metrics. Furthermore, there is a need to address more diverse
error patterns, optimize the quality and content of advice, and
develop personalized support methods based on learners’
knowledge levels and learning styles. Specifically,
debugging success rates vary depending on the quality and
content of advice. Future experiments should examine
changes in success rates when different types of advice are
provided, to explore more appropriate methods of delivering
advice. The DMSS developed in this study can be applied to
other programming languages and frameworks, and is
expected to be implemented in various programming learning
environments.

CONFLICT OF INTEREST

The author declares no conflict of interest.

FUNDING

This work was supported by JSPS KAKENHI Grant
Number 21K02758, Japan.

REFERENCES
[1] J. Nouri, L. Zhang, L. Mannila, and E. Norén, “Development of

computational thinking, digital competence and 21st century skills
when learning programming in K-9,” Education Inquiry, vol. 11, pp.
1–7, 2019.

[2] G. Wong and H. Cheung, “Exploring children’s perceptions of
developing twenty-first century skills through computational thinking
and programming,” Interactive Learning Environments, vol. 28, pp.
438–450, 2018.

[3] M. Guzdial, “Computing education as a foundation for 21st century
literacy,” in Proc. Technical Symposium on Computer Science
Education, Minneapolis MN, USA, 27 Feb. 2019, pp. 502–503.

[4] S. Huang and Y. Xu, “A comparative study on programming
education—Based on China and America,” Journal of Education,
Humanities and Social Sciences, vol. 15, pp. 220–231, 2023.

[5] J. Figueiredo and F. J. García-Peñalvo, “Design science research
applied to difficulties of teaching and learning initial programming,”
Universal Access in the Information Society, vol. 23, pp. 1151–1161,
2022.

[6] Y. Qian and J. Lehman, “Students’ misconceptions and other
difficulties in introductory programming,” ACM Transactions on
Computing Education (TOCE), vol. 18, pp. 1–24, 2017.

[7] D. Radaković and W. Steingartner, “Common errors in high school
novice programming,” IPSI Transactions on Internet Research, vol. 20,
no. 1, pp. 47–59, 2024.

[8] C. S. Cheah, “Factors contributing to the difficulties in teaching and
learning of computer programming: A literature review,”
Contemporary Educational Technology, vol. 12, ep272, 2020.

[9] H. Du, W. Xing, and Y. Zhang, “A debugging learning trajectory for
text-based programming learners,” in Proc. 2021 ACM Conference,
Virtual Event Germany, June 2021, 645.

[10] M. Ahmadzadeh, D. Elliman, and C. Higgins, “An analysis of patterns
of debugging among novice computer science students,” in Proc.
Annual Conference on Innovation and Technology in Computer
Science Education, Caparica, Portugal, Jun. 2005.

[11] J. Ko, B. A. Myers, and D. H. Chau, “A linguistic analysis of how
people describe software problems,” in Proc. Visual Languages and
Human-Centric Computing (VL/HCC’06), Brighton, UK, Sep. 2006

[13] T. D. LaToza, G. Venolia, and R. DeLine, “Maintaining mental models:
A study of developer work habits,” in Proc. 28th International
Conference on Software Engineering, May 2006, pp. 492–501.

[14] A. J. Ko and B. A. Myers, “Finding causes of program output with the
Java Whyline,” in Proc. SIGCHI Conference on Human Factors in
Computing Systems, Boston MA, USA, April 2009, pp. 1569–1578.

[15] S. Fitzgerald et al., “Debugging: Finding, fixing and flailing, a
multi-institutional study of novice debuggers,” Computer Science
Education, vol. 18, pp. 93–116, 2008.

[16] S. Fitzgerald, R. McCauley, B. Hanks, L. Murphy, B. Simon, and C.
Zander, “Debugging from the student perspective,” IEEE Transactions
on Education, vol. 53, pp. 390–396, 2010.

[17] S. Marwan, A. Dombe, and T. W. Price, “Unproductive help-seeking in
programming: What it is and how to address it,” in Proc. 2020 ACM
Conference on Innovation and Technology in Computer Science
Education, Trondheim, Norway, June 2020, pp. 54–60.

[18] U. Ahmed, N. Srivastava, R. Sindhgatta, and A. Karkare,
“Characterizing the pedagogical benefits of adaptive feedback for
compilation errors by novice programmers,” in Proc. IEEE/ACM 42nd
International Conference on Software Engineering: Software
Engineering Education and Training (ICSE-SEET), Seoul South,
Korea, Jun. 2020, pp. 139–150.

[19] J. Kim, Y. Sun, and F. Zhang, “ReCodez: An intelligent and intuitive
online coding editor using machine learning and AI,” Computer
Science & Information Technology (CS & IT), Sydney, Australia, Oct.
2020, pp. 157–164.

[20] R. Chenartha and C. Safitri, “Web-based realtime course platform with
integrated live coding interface,” IT for Society: Journal of Information
Technology, vol. 9, no. 1, 2024.

[21] A. Gupta, M. Jindal, and A. Goyal, “Identification of student
programming patterns through clickstream data,” in Proc. 2024 IEEE
International Conference on Computing, Power and Communication
Technologies (IC2PCT), Greater Noida, India, Feb. 2024.

[22] J. Leinonen et al., “Using large language models to enhance
programming error messages,” in Proc. 54th ACM Technical
Symposium on Computer Science Education, Toronto ON, Canada,
Mar. 2023.

[23] F. Assiri and H. Elazhary, “Automated Java exceptions explanation
using natural language generation techniques,” Computer Applications
in Engineering Education, vol. 28, pp. 626–644, 2020.

[24] A. Amburle, C. Almeida, N. Lopes, and O. Lopes, “AI based code error
explainer using gemini model,” in Proc. 2024 3rd International
Conference on Applied Artificial Intelligence and Computing
(ICAAIC), Salem, India, Jun. 2024.

[25] A. Taylor, A. Vassar, J. Renzella, and H. A. Pearce, “dcc--help:
Transforming the role of the compiler by generating context-aware
error explanations with large language models,” in Proc. 55th ACM

International Journal of Information and Education Technology, Vol. 15, No. 8, 2025

1545

[12] T. Barik et al., “Do developers read compiler error messages?” in Proc.

IEEE/ACM 39th International Conference on Software Engineering

(ICSE), Buenos Aires, Argentina, May 2017.

Technical Symposium on Computer Science Education, Portland OR,
USA, Mar. 2024.

[26] S. Schacht, S. Barkur, and C. Lanquillon, “Generative agents to
support students learning progress,” in Proc. 5th edition of the annual
International Conference on Business meets Technology, Valencia,
Spain, July 2023.

[27] E. Paikari, B. Sun, G. Ruhe, and E. Livani, “Customization support for
CBR-based defect prediction,” in Proc. 7th International Conference
on Predictive Models in Software Engineering, Alberta, Canada, Sep.
2011.

[28] M. Velez, P. Jamshidi, N. Siegmund, S. Apel, and C. Kästner, “On
debugging the performance of configurable software systems:
Developer needs and tailored tool support,” in Proc. 44th International
Conference on Software Engineering, Pennsylvania, USA, May 2022,
pp. 1571–1583.

[29] D. Oliveira et al., “The untold story of code refactoring customizations
in practice,” in Proc. IEEE/ACM 45th International Conference on
Software Engineering (ICSE), Melbourne Victoria, Australia, May
2023, pp. 108–120.

[30] Ruby on Rails. [Online]. Available: https://rubyonrails.org/
[31] K. Takahashi and N. Suzuki, “Learning status report tool for

programming learning services,” Procedia Computer Science, vol. 207,
pp. 1562–1570, 2022.

Copyright © 2025 by the authors. This is an open access article distributed
under the Creative Commons Attribution License which permits unrestricted
use, distribution, and reproduction in any medium, provided the original
work is properly cited (CC BY 4.0).

International Journal of Information and Education Technology, Vol. 15, No. 8, 2025

1546

	IJIET-V15N8-2355-IJIET-17014

