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Abstract—This study proposes a Debugging Method 
Suggestion System (DMSS) using past error information to 
address the difficulties faced by learners when solving bugs in 
programming-learning environments. The DMSS automatically 
collects error information generated when students work on 
assignments, allowing instructors to add annotations describing 
the causes and solutions for these errors. When other students 
using the same programming materials encounter similar 
errors, the system presents them with the accumulated similar 
error information and advice. This system was implemented to 
assist students in developing a learning web application using 
the Ruby on Rails framework. Its effectiveness was verified by 
an experiment involving 53 university students. The results 
showed that the debugging success rate when using the DMSS 
for unknown errors was more than twice that of cases where 
DMSS was not used, with particularly significant support 
effects for first-time errors. However, differences in 
effectiveness based on error difficulty and prior knowledge 
were observed, suggesting that content and quality of advice are 
more important for complex errors. 

Keywords—programming education, debugging support 
system, error information, ruby on rails, web application 
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I. INTRODUCTION

In recent years, programming skills have become 
increasingly important. It is recognized as a means to develop 
software and as a skill that contributes to problem-solving 
abilities and logical thinking development [1, 2]. 
Programming education has been widely incorporated from 
elementary to higher education and even into adult 
education [3, 4]. 

Despite the expansion of programming education, the 
learning difficulties faced by beginners remain a significant 
challenge [5, 6]. A major factor is bugs (program defects) 
caused by input errors or logical mistakes [7]. While these 
bugs are unavoidable in the learning process, they can be 
substantial barriers for beginners [8]. In particular, learners 
who lack the ability to identify, diagnose, and fix errors often 
lose motivation and abandon programming when faced with 
bugs [9, 10]. 

Several common features explain why beginners struggle 
with bug fixation. First, they are unfamiliar with the syntax 
and basic structure of programming languages, which makes 
it difficult to interpret error messages correctly. These 
messages, designed for language designers and developers, 
often contain advanced technical terms and abstract 
expressions. Consequently, beginners frequently struggle to 
understand error messages and find appropriate 
solutions [11–13]. Second, beginners typically encounter 

syntax, type, and logical errors while learning. However, they 
often struggle to identify the specific causes of these errors, 
leading to time-consuming troubleshooting. In particular, 
when errors in one part affect other parts of the program, 
beginners find it difficult to identify the root cause [14–16]. 
Such repeated situations hinder learning progress and cause 
significant frustration. Third, feedback during the error 
correction process is generally insufficient for beginners. 
Traditional programming education typically involves the 
direct support of instructors. However, individual instruction 
opportunities have decreased with the spread of online 
education and diversification of learners. Consequently, 
learners are isolated when fixing errors, thus, impeding 
efficient learning [17, 18]. 

To address these challenges various technical approaches 
for supporting programming learning have been proposed. 
For instance, many online programming platforms provide 
features that analyze learner-written code in real time and 
immediately identify errors, allowing for early detection and 
on-the-spot correction [19, 20]. Systems that analyze 
learners’ coding patterns and advise them on predicted errors 
and correction methods have also been developed [21]. In 
addition, research is progressing regarding tools that translate 
error messages into beginner-friendly explanations. Recently, 
systems using Large Language Models (LLMs) have been 
proposed to provide beginners with natural language error 
explanations and code completion [22, 23]. The generative 
capabilities of LLMs offer clear explanations of typical errors 
and provide appropriate correction suggestions [24, 25]. 
Attempts are also being made to analyze learners’ progress in 
real time and provide feedback based on individual 
weaknesses [26], which are expected to help beginners better 
understand their errors and improve their learning efficiency. 

Although many technical approaches to programming 
learning debugging support systems have been proposed, 
customization according to specific teaching materials is 
necessary to use these research outcomes in an educational 
environment [27–29]. Customization requires information on 
programming learning materials and potential exercise data 
from students who have used these materials. Preparing such 
information is time-consuming for users of research 
outcomes. Additionally, programming classes often use the 
same material repeatedly. Automatic collection and sharing 
of error information from students working with these 
materials can minimize the customization costs for classroom 
support tools. 

This study proposes a debugging support system based on 
past error information generated when identical 
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programming materials are used. Specifically, it 
automatically collects error information generated while 
students work on assignments, and instructors annotate this 
information using error causes and debugging methods. 
When other students using the same programming materials 
encounter errors, the system presents the most similar past 
error information, encouraging the self-resolution of the bugs. 
This study used Ruby on Rails (Rails) as the programming 
environment [30]. It is a leading web application 
development framework that adopts the 
model-view-controller architecture and requires multiple 
files to implement a single function. This environment was 
selected to verify the effectiveness of error information 
debugging in a realistic application-development setting. As 
Rails has influenced various frameworks currently in use, we 
expect the findings of this research to be applicable to other 
frameworks. 

II. PROPOSED SYSTEM

A. Proposed System Schematic

We propose a system that automatically collects the error
information encountered by students when working on 
programming assignments and provides debugging advice. 
Fig. 1 shows the configuration of the system. The Error 
Information Collector (EIC) automatically collects error 
information when Student A works on assignments based on 
programming materials (Fig. 1-(1)). When the EIC detects an 
error, it sends related information, including the user ID, IP 
address, error messages, and files updated by the student to 
the Debugging Method Suggestion System (DMSS). This 
information is extracted from the log files of the web 
application server and transmitted after serialization. 

The DMSS stores the received information in a database 
called the Debug Database (DD). This error information is 
referenced and annotated with the cause of the error and 
solution methods (Fig. 1-(2)). When Student B encounters an 
error, the system extracts the most similar error from the DD 
and presents its advice to Student B (Fig. 1-(3)). This tool is 
called the Debugging Method Suggester (DMS) [31]. 

Fig. 1. Overall schematic of the DMSS. 

B. Typical Use-Case

This section presents a typical DMSS use-case and
explains the functions and roles of the DMSS user interface. 
Fig. 2 presents the use-case scenario flow, which consists of 

eight scenarios (S1 to S8). The operational procedures and 
screens of the DMSS are explained according to this 
scenario. 

Fig. 2. Flowchart of a typical use-case scenario for the DMSS. 

First, Student A creates a program for an assignment 
(Fig. 1-(1)). As the program is a web application, it is 
accessed and executed via a web browser. Fig. 3 illustrates an 
example of an execution screen. In this example, there is no 
error in the program entered by the student. However, there is 
an error because there is no table intended for use in the 
application. The cause of this is forgetting to execute the 
procedure to create the table. 

Fig. 3. Example of an error page owing to forgotten procedure. 

S1 and S2: If Student A can solve the problem 
independently after seeing the error message, they debug it 
without using the DMSS. If they cannot understand the 
problem, they use the DMSS (Fig. 4). Fig. 4 shows the user 
ID, error occurrence time, and error message collected by the 
EIC. The text “No advice on the error yet” indicates that the 
error information is not registered in the DD. 

Fig. 4. Webpage where Student A checks for advice after encountering an 
error in the DMSS. 

S3: The student informs the instructor that advice is 
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required to debug the error by selecting “HELP” from the 
menu and press the Send button (Fig. 5). 

 

 
Fig. 5. Example of requesting advice from the instructor. 

 
S4: When the instructor accesses the DMSS, a notification 

appears at the top of the screen, indicating that the student has 
requested support (Fig. 6). This notification appears in real 
time during class or when the instructor logs into the DMSS 
outside class hours. The notification does not disappear until 
it is clicked, thereby preventing oversight. When the 
instructor clicks on the student ID, the detailed error 
information is displayed. 

 

 
Fig. 6. Web page displayed when an instructor logs into the DMSS. 

 
S5: Fig. 7 shows the detailed error information. This 

screen is similar to the screen seen by Student A (Fig. 4); 
however, the instructor’s screen allows the deletion and edit 
of erroneous information. The instructor clicks on the edit 
icon to write advice. 

 

 
Fig. 7. Example of instructor operation when annotating advice in DMSS. 

 

 
Fig. 8. Example of the instructor’s advice on the web page. 

Fig. 8 shows the screen on which the instructor enters the 
advice. They can view the related code to identify the cause 
of the error. We omitted this explanation here to save space. 
The instructor enters the cause of the error and investigation 
methods into the advice field. When required, the instructor 
can paste part of the source code into the Error Code Snippet 
field to explain the cause to students. In this case, there is no 
error in the source code; therefore, it is left blank. 

S6: When the instructor finishes entering the advice, a 
notification appears automatically at the top of Student A’s 
screen, allowing the student to check it (Fig. 9). 

 

  
Fig. 9. Example web page of Student A when checking the instructor’s 

response. 
 

S7: Suppose Student B makes the same mistake as Student 
A. The error information encountered by Student B is 
automatically sent to the DMSS by the EIC.  

S8: As advice regarding that error is registered in the DD, 
when Student B accesses the DMSS, the same advice is 
displayed (Fig. 10). Therefore, they can fix the program 
according to the correct advice. 

 

 
Fig. 10. Example web page displayed when Student B accesses the DMSS. 

III. EXPERIMENTS 

A. Experimental Method 

The aim of this experiment was to determine whether 
advice presented to students through the DMSS could 
effectively improve their debugging success rates. As the 
DMSS is intended to fulfill the role of an instructor providing 
individual guidance to students, the advice prepared in 
advance for the DMSS mirrored the natural guidance that 
instructors would provide during class. Additionally, as some 
students might not require assistance, the use of the DMSS 
was made optional. The experimental methodology is 
described below. 

The Department of Information and Computer Science at 
Kindai University offers a course on Rails programming to 
third-year students. This course consists of 15 sessions, each 
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lasting 180 min. The present experiment was conducted 
during the 15th session. Therefore, the participants had 
acquired the basics of Rails programming before the 
experiment. Among the course attendees, 53 students 
consented to participate in this experiment. 

Even when using the same teaching materials, the types 
and locations of programming input errors varied among the 
students. As studying the corrections for different errors 
would make it difficult to compare the results, programs 
containing deliberately inserted errors were prepared to 
compare the possibility of error correction and effectiveness 
of advice under identical conditions. The debugging tasks 
assigned to the students consisted of four problems, labeled 
Ex1, Ex2, Ex3, and Ex4 (Table 1). These problems were 
selected based on the instructor’s experience with frequently 
asked questions from students who had previously required 
guidance. These errors were either “forgetting one 
procedure” or “typos of 2–3 characters in the program.” 

 
Table 1. Test descriptions of debugging problems used in the experiment 

Experiment ID  Test Description 

Ex1 
After executing the “rails generate” command to create a 
controller and a model, verify that the top page is 
displayed correctly. 

Ex2 
After implementing the feature to list bookmarks 
retrieved from the database, verify that the registered 
bookmarks are correctly displayed on the page. 

Ex3 
After implementing the feature to enter a new bookmark, 
verify that the entry page is displayed correctly. 

Ex4 
After entering bookmark information on the entry page, 
verify that the data are successfully stored in the database 
and displayed on the list page. 

 

B. Experimental Procedure 

The Rails application that the participants debugged in the 
experiment was a small application that managed bookmark 
data. It saves the titles and URL of bookmarks entered by 
users into a database and displays a list of these bookmarks. 
All participants had experience creating this application two 
weeks before the experiment. Thus, the creation procedure 
was known and some participants may have already 
experienced errors. 

For the experiment, an application containing bugs was 
downloaded to the participants’ computers using Git, a 
version of the control software. Each problem (Ex1–Ex4) 
could be instantly switched using the Git “checkout” 
command. After switching to a problem, the participants had 
10 min to verify the operation of each problem’s test 
description. These were debugged by examining the 
displayed error messages and programs. The participants 
could decide whether to use the DMSS during debugging. 
After 10 min, they answered a questionnaire prepared in 
Google Forms within 5 min and then switched to the next 
problem to prepare for the experiment. In this experiment, the 
participants’ use of the DMSS corresponded to operations S7 
and S8, as described in Section II.B. 

The following questionnaire was administered to the 
students after they completed debugging tasks Ex1–Ex4: 

Q1. Was the debugging process successful? (Yes/No) 
Respondents who answered “Yes” to Q1 only: 

Q2. Please provide a detailed description of the cause of 
the error. 

Q3. Have you encountered similar errors in the past? 
(Yes/No)  

Q4. Did you use the DMSS? (Yes/No)  
Q5. Was the advice provided by the DMSS helpful? 

(Yes/No) 

C. Instructor-Annotated Advice 

From an instructor’s perspective, the goal is to encourage 
students to understand how Rails works and help them to 
identify errors by following Rails’ execution flow. Therefore, 
from an educational perspective, instructors do not directly 
indicate the program correction points or methods but 
encourage students to verify whether the execution flow is 
functioning correctly. 

Table 2 lists the advice annotated for each problem. The 
underlines indicate the parts of each advice that should be 
noted. The advice for Ex1 shows specific procedures and 
executing these procedures allows for bug fixing. Contrarily, 
the advice for Ex2–Ex4 indicate locations to check, but do 
not include correction methods. This implies that bug fixing 
based on advice alone is difficult for such problems. 

 
Table 2. Examples of advice for debugging problems used in the experiment 
Experiment 

ID  
Advice 

Ex1 
You have run rails g model, but then you have not run “rails 
db:migrate”. Run “rails db:migrate” in your rails directory. 

Ex2 

The error message is “ActionController::RoutingError 
(uninitialized constant BookmarkController).” The term 
“Bookmark” is used in the error message, whereas it should be 
“Bookmarks.” The system appears to be attempting to access 
“Bookmark” instead of “Bookmarks,” which suggests a 
mismatch. Given that the error is a RoutingError, it is likely 
that there is an issue in the routing configuration 
(config/routes.rb) causing this problem.  
Please verify whether any instance of bookmark exists where it 
should instead be bookmarks in the routes.rb file. 

Ex3 

The error message is “ActionView::Template::Error (First 
argument in form cannot contain nil or be empty).”  
    1: <%= form_for @bookmark, url: {action: :create} do 
|f| %> 
    2: <%= f.label :title, 'title' %> 
    3: <%= f.text_field :title %> 
    4: <%= f.label :url, 'URL' %> 
app/views/bookmarks/new.html.erb:1. The error message 
said, “The first argument in form_for cannot contain nil or be 
empty”. This means that the value of @bookmark is nil. Where 
do you set the value of @bookmark?  
Please check the value of @bookmark. Even if it is set, if the 
variable name is different, it cannot be passed on and may 
become nil, so please check. 

Ex4 

The error message is “NoMethodError (undefined method '[]' 
for nil:NilClass): 
app/controllers/bookmarks_controller.rb:11:in create.” This 
indicates that an error occurs on line 11 of the 
bookmarks_controller.rb file. The relevant line of code is 
shown below: 
011: bookmark = Bookmark.new(title: 
params[:bookmarks][:title], url: params[:bookmarks][:url]) 
The error suggests that params[:bookmarks] is nil, resulting in 
a failure when attempting to access [:title]. This implies that 
params[:bookmarks] is empty or not properly initialized.  
Investigate why params[:bookmarks] is empty to identify the 
root cause of the issue. 

IV. RESULTS 

Fig. 11 shows the debugging success rate and DMSS usage 
rate for each problem. Participants were considered 
successful at debugging only if they answer Yes to Q1 and 
provided the correct reason in Q2 in the questionnaire. The 
debugging success rate calculated from all experimental data 
was 64%. In Ex1 and Ex2, more than 80% of participants 
successfully debugged their problems. However, the 
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debugging success rate for Ex3 was less than 30%. This 
indicates that debugging difficulty varies according to a 
problem. 

The DMSS usage rate calculated from the experimental 
data was 69%. That is, the percentage of participants who 
answered Yes to Q4. The DMSS usage rate was 
approximately 70% for all problems. The participants used 
the DMSS regardless of the problem difficulty. 

 

 
Fig. 11. Comparison of debugging success rates and DMSS usage rates 
across problems, showing consistent approximately 70% usage despite 
varying success rates. 

 
Fig. 12 shows the percentage of debugging problems 

already known to the students. Problems Ex1–Ex4 were 
selected based on the instructor’s subjective judgment. These 
data validate the appropriateness of subjective selection. The 
results indicated that Ex1 and Ex2 were errors that many 
students had previously experienced. In contrast, Ex3 and 
Ex4 were errors that most students were encountering for the 
first time. 

 

 
Fig. 12. Prior experience with similar errors by problem (Q3), revealing Ex1 
and Ex2 were familiar to many participants while other problems were 
generally novel. 
 

Table 3 shows the debugging success rates tabulated based 
on the responses to Q3 and Q4. When the bug was already 
known, the debugging success rate was very high at 96% 
even without using DMSS. However, when the bug was 
unknown, the use of the DMSS doubled the debugging 
success rate (“All” row, Table 3). The success rates for the 
individual problems are analyzed in Section V. 
 
Table 3. Debugging success rates tabulated based on responses to Q3 and Q4 

of the questionnaire 

Experiment ID  
Known Error Unknown Error 

With 
DMSS 

Without 
DMSS 

With 
DMSS 

Without 
DMSS 

All 81% 96% 61% 28% 
Ex1 91% 92% 89% 38% 
Ex2 96% 100% 91% 50% 
Ex3 50% NA1 29% 20% 
Ex4 65% 100% 57% 27% 

1 Not Applicable 

Fig. 13 presents the results to Q5. For Ex1 and Ex2, the 
rate was nearly 100%, indicating that the advice presented by 
the DMSS was helpful for debugging. For Ex4, the rate was 
84%, suggesting that the advice was helpful for students who 
understood it. By contrast, the response rate for Ex3 was 63%. 
The advice recommended checking the execution flow of the 
program, because the initial values of the program variables 
were not set. However, Ex3 pertained to forgetting to input 
the method, which set the initial value of the variable. For 
students who did not understand Rails’ execution flow, it was 
likely difficult to identify the cause, even after receiving the 
advice. 

 

 
Fig. 13. Perceived helpfulness of DMSS advice by problem (Q5), with 

notably lower effectiveness for Ex3 compared to other problems. 
 

 
Fig. 14. Correct error cause explanation rates when using DMSS (Q2, Q4), 
showing lower understanding for Ex3 corresponding to its reduced perceived 
helpfulness in Fig. 13.  
 

Fig. 14 displays the percentage of participants who used 
the DMSS and correctly explained the cause of the error. 
These data were obtained from questionnaire items Q2 and 
Q4. The results showed nearly the same trend as Fig. 13. This 
indicates that many participants who reported that the advice 
was helpful were able to use the DMSS to understand the 
cause of the bug properly. The results in Fig. 13 show that 
only 63% of the students could understand the DMSS advice 
for Ex3, which is considerably lower than for other problems. 
Consequently, the percentage of Ex3 in Fig. 14 was also low. 

V. DISCUSSIONS 

A. Interaction Between Problem Difficulty and Various 
Factors 

The impact of the problem difficulty on the debugging 
success rates was significant (Fig. 11). Ex1 and Ex2 had 
success rates of 83% and 90%, respectively, indicating that 
they were relatively simple. In contrast, Ex3 and Ex4 had 
lower success rates of 29% and 56%, respectively, suggesting 
a higher difficulty. Notably, problem difficulty had the 
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following effects (Table 3). For simple problems such as Ex1 
and Ex2, the DMSS achieved high success rates regardless of 
prior knowledge. The success rates of Ex1 were 91%, 89%, 
and for Ex2, they were 96%, and 91%, respectively. However, 
for difficult problems, such as Ex3 and Ex4, the success rates 
dropped significantly, even with prior knowledge and DMSS. 
The success rates for Ex3 and Ex4 were 50% and 65%, 
respectively. The rates were even lower under the “unknown 
error with DMSS” condition, with Ex3 at 29% and Ex4 at 
57%. These results suggest that a higher problem difficulty 
lowers success rates, making prior knowledge and quality of 
the DMSS advice crucial. 

B. Impact of Prior Knowledge 

As shown in Table 3, the debugging success rate is 
strongly influenced by whether the errors are known. Across 
all the problems, the success rate for known errors was 81% 
with DMSS and 96% without DMSS. In contrast, the success 
rates for unknown errors were significantly lower at 61% 
with DMSS and 28% without DMSS. This result indicates 
that prior experience and knowledge of specific errors 
significantly enhance problem-solving abilities in 
programming learning. Notably, students achieved a high 
debugging success rate of 96% for known errors, even 
without using the DMSS, suggesting that they developed the 
ability to effectively handle errors they had previously 
encountered. Interestingly, the success rate of known errors 
was higher without DMSS (96%) than with DMSS (81%). 
An important consideration here is that when participants 
responded “known” to Q3, it remained unclear whether they 
had previously succeeded in debugging the error. Participants 
who reported errors as known but did not use the DMSS 
likely had prior successful debugging experiences and 
understood Rails well. Conversely, there were participants 
who likely, despite recognizing the error, had no prior 
successful debugging experience and were able to debug 
successfully by referring to the DMSS advice. Their 
debugging success rate would naturally be lower than that of 
participants with a better understanding. Additionally, the 
debugging success rate for Ex3 was particularly low at 50% 
even when the error was known and the DMSS was used, 
which significantly reduced the overall debugging success 
rate for known errors with DMSS usage. This resulted in a 
lower debugging success rate when using the DMSS.  

C. Analysis of DMSS Usage Rate 

The usage rates of the DMSS varied depending on the 
problem, with 67% for Ex1, 72% for Ex2, 67% for Ex3, and 
66% for Ex4. Notably, the DMSS usage rate for Ex3, the 
most difficult problem (debugging success rate: 29%), did 
not differ significantly from that for Ex2, the simplest 
problem (debugging success rate: 90%). This suggests that 
students referred to the advice at a consistent rate, regardless 
of the difficulty or knowledge of the problem. It is also 
noteworthy that many students consulted the advice, even for 
errors with which they were already familiar. This may 
indicate a lack of confidence in their knowledge or a need to 
confirm their understanding. Particularly, for challenging 
problems such as Ex3, where all students who identified the 
error as known still referred to the advice, they seemed to 
seek additional support when they perceived the problem as 
more difficult. 

D. Effect of the DMSS Advice 

The impact of the DMSS advice was significant, especially 
for unknown errors. For these errors, the debugging success 
rate with advice was 61%, which was more than twice that 
observed without advice (28%). This highlights the 
importance of providing appropriate guidance for errors 
encountered for the first time. By contrast, the effects of 
advice on known errors showed more complex patterns. 
Overall, the success rate for known errors was higher without 
DMSS (96%) than with DMSS (81%). However, when 
examined by problem, Ex1 showed nearly identical success 
rates under both conditions (91% without advice and 92% 
with advice), whereas for Ex3, the data were available only 
for the DMSS condition. These results suggest that the 
effectiveness of advice for known errors depends on the type 
of error and difficulty of the problem. 

E. Generalizability beyond Ruby on Rails 

This study used Rails as the web application framework. 
Other frameworks and programming languages are also 
available for the development of web applications. 
Educational institutions often provide instructions using Java 
or Python. This section discusses the possibility of using the 
DMSS in these environments. As shown in Fig. 1, the EIC 
detects errors and transmits the error information to the 
DMSS, which functions as an application server. The errors 
are detected based on error messages output to log files. 
While the EIC needs to be prepared individually for different 
programming languages and frameworks because it differs 
across environments, the DMSS can be used as is because it 
operates as independent software. Therefore, the applicability 
is determined based on whether a mechanism exists for 
outputting error messages to log files. We investigated 
commonly used frameworks other than Rails, including Flask, 
Django, Spring Boot, Laravel, Symfony, and Express.js. The 
results showed that these frameworks, had the required 
mechanisms for outputting error information to log files. 
Although it is necessary to specify the log file name in the 
configuration files, the DMSS proposed in this study can be 
used as is. 

F. Limitations 

This study has several limitations. First, the four problems 
used in the experiment did not represent all programming 
errors. In particular, the lack of data for the known error 
without advice condition in Ex3 indicates room for 
improvement in problem selection and data collection. 
Additionally, students’ self-reported judgments of 
“known/unknown” may not accurately reflect their actual 
knowledge state. Furthermore, no detailed analysis has been 
conducted on the content, quality, or presentation method of 
advice. Therefore, it remains unclear which types of advice 
are most effective. 

VI. CONCLUSION 

This study focused on the difficulties that programming 
beginners face with debugging, and developed and evaluated 
a new debugging assistance system (DMSS). It automatically 
collects error information generated by students, stores 
solutions annotated by teachers in a database, and presents 
similar error information and solutions to other students 
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using the same programming materials.  
In a learning environment for beginners in Rails, important 

findings regarding the effectiveness of DMSS were obtained 
from an experiment involving 53 university students. In 
particular, the success rate when using the DMSS for 
unknown errors was more than twice that when not using the 
DMSS, indicating a significant supporting effect for errors 
encountered for the first time. However, for known errors, the 
students showed high self-solving abilities, and the effect of 
the DMSS was limited. The experimental results revealed 
that problem difficulty, prior knowledge, and advice quality 
interact in complex ways to influence the debugging success 
rates. For simple problems, high success rates were achieved 
using the DMSS, regardless of prior knowledge, whereas for 
complex problems, success rates decreased even when using 
the DMSS, despite having prior knowledge. This suggests 
that as problem difficulty increases, the quality and content of 
advice become more important. The usage rate of the DMSS 
remained constant at approximately 70%, regardless of 
problem difficulty, indicating that students tended to refer to 
advice regardless of their knowledge state. In particular, the 
fact that many students referenced advice even for known 
errors suggests that they did not have complete confidence in 
their knowledge, or wanted to confirm their knowledge 
through advice.  

In future research, additional experiments are necessary to 
validate the findings of this study. For instance, to verify the 
validity of the results, specific data for qualitative and 
quantitative analysis can be collected and analyzed, such as 
statistics on student feedback for different types of 
suggestions. Additionally, data on student interactions with 
the DMSS can be obtained to supplement the engagement 
metrics. Furthermore, there is a need to address more diverse 
error patterns, optimize the quality and content of advice, and 
develop personalized support methods based on learners’ 
knowledge levels and learning styles. Specifically, 
debugging success rates vary depending on the quality and 
content of advice. Future experiments should examine 
changes in success rates when different types of advice are 
provided, to explore more appropriate methods of delivering 
advice. The DMSS developed in this study can be applied to 
other programming languages and frameworks, and is 
expected to be implemented in various programming learning 
environments. 
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