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Abstract—Virtual Reality (VR) provides immersive, 

interactive, and personalized learning experiences, yet its 
integration with Knowledge Tracing (KT) remains 
underexplored. This systematic literature review synthesizes 27 
empirical studies on KT in VR learning environments published 
between 2015 and 2025. The findings reveal that most studies 
focus on higher education and vocational training, with medical 
and engineering disciplines being the most common application 
areas. Learning scenarios and tasks play a critical role in 
shaping learner interactions and generating meaningful data 
for effective KT in VR environments. Based on both manual 
coding and Latent Dirichlet Allocation (LDA) topic modeling, 
the learning tasks and educational scenarios identified in the 
studies involve multimodal knowledge state modeling and 
prediction, personalized and adaptive learning support systems, 
instructional design and learning outcome evaluation in VR, 
and KT applications targeting specific learner groups or 
contextual needs. Finally, this review identifies key challenges 
and proposes directions for future research on KT in VR 
environments. 
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I. INTRODUCTION 

The emergence of the metaverse, characterized by 
immersive, interconnected virtual spaces, has catalyzed 
renewed attention to Virtual Reality (VR) technologies and 
their educational applications [1]. VR, as an interactive 
medium that integrates multidisciplinary technological 
advances, has been recognized for its potential to reshape 
traditional learning paradigms by offering advantages in 
immersion, interactivity, and creative engagement [2, 3]. By 
providing a multisensory, immersive learning environment, 
VR facilitates the integration of learners’ visual, auditory, 
and behavioral information within a unified context, thereby 
supporting multilayered interactions with virtual objects, 
intelligent agents, avatars, and three-dimensional resources 
[4]. Such embodied and contextualized interactions have 
been shown to enhance cognitive engagement and facilitate 
both the construction and transfer of knowledge [5]. 
Furthermore, VR systems, with their wearable characteristics 
and compatibility with various sensing devices, are designed 
to synchronously capture learners’ behavioral trajectories, 
eye movements, speech, and physiological signals. These 
features offer distinct advantages for dynamic data 
acquisition and real-time learning assessment within 
educational contexts [6]. 

Knowledge Tracing (KT) is regarded as a core technique 
for dynamically inferring learners’ knowledge states and 
cognitive trajectories, playing a crucial role in learning 
analytics and personalized education. With the advancement 

of deep learning and machine learning techniques in recent 
years, KT has evolved from traditional probabilistic models, 
such as Bayesian Knowledge Tracing (BKT), to neural 
network-based approaches, including Deep Knowledge 
Tracing (DKT) and Self-Attentive Knowledge Tracing 
(SAKT) [7]. These models have been widely applied in 
adaptive learning systems, intelligent tutoring platforms, and 
online educational interventions, enabling accurate 
prediction of learners’ performance and supporting 
personalized instructional design. The availability of 
multimodal data in VR environments presents new 
opportunities to enhance and expand KT models. 

In recent years, an increasing number of researchers have 
applied KT techniques in VR environments to investigate 
learners’ knowledge acquisition and changes in cognitive 
states. Some studies have directly adopted KT techniques 
originally designed for online learning platforms in VR 
settings. These studies mainly use questionnaires and pre- 
and post-tests, with limited integration of VR-specific data 
like behavioral trajectories and multimodal interactions [8, 9]. 
Other studies have explored more advanced KT methods by 
incorporating multimodal data, including speech, semantic 
information, and physiological signals, to capture learners’ 
emotional states and cognitive engagement more 
comprehensively [10]. In addition, machine learning 
techniques have been utilized to model and classify these 
multimodal features, enhancing the prediction of learning 
outcomes [11]. 

KT plays a critical role in education by enabling the 
dynamic modeling of learners’ knowledge states, and its 
integration into immersive VR environments holds great 
potential for delivering personalized and adaptive learning 
experiences [12]. However, existing reviews on VR mainly 
focus on technical advancements or application scenarios 
across disciplines, whereas research specifically addressing 
KT within VR environments remains fragmented and limited. 
Current research is limited by the heterogeneity and 
under-explored integration of data sources, along with low 
model generalizability, which constrains the development of 
a comprehensive understanding in this emerging area [13]. In 
VR environments, learning scenarios and tasks lay the 
foundation for implementing KT and play a significant role in 
determining the performance and practical relevance of KT 
models. They define how learners interact with virtual 
content, generate multimodal behavioral data, and engage in 
cognitive processing [6]. A clear understanding of these 
elements is essential for designing effective KT systems that 
align with authentic educational needs. Therefore, this 
systematic literature review is conducted to synthesize the 
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current state of KT research in VR environments. While this 
review emphasizes learning scenarios and tasks, it also 
identifies broader research limitations that influence the 
advancement of KT in VR environments as a whole. 

II. LITERATURE REVIEW 

A. Theoretical Foundations for Applying VR in Education 

The application of VR in educational settings is grounded 
in multiple learning theories. Embodied Cognition Theory 
emphasizes the positive impact of physical interaction on 
higher-order cognitive processing [14]. Through the 
construction of highly interactive three-dimensional 
environments, VR enables learners to engage directly with 
virtual worlds through bodily movements, activating the 
coordinated functioning of sensory, motor, and cognitive 
systems. This process has been shown to enhance conceptual 
understanding, spatial reasoning, and problem-solving 
abilities. Moreover, learners’ embodied behaviors, including 
operational actions, movement trajectories, and gaze patterns, 
serve as important indicators of cognitive states, providing 
both a theoretical foundation and a data source for 
multimodal KT. For example, Walkington et al. [10] adopted 
a theoretical framework based on embodied cognition and 
employed the multimodal analysis of embodied technology 
approach to examine learners’ gestures, actions, movements, 
and eye gaze in a VR environment. Their findings 
demonstrated that students’ embodied behaviors indicate 
cognitive development and can serve as a foundation for 
understanding knowledge construction in immersive learning 
contexts. 

The Cognitive Affective Theory of Immersive Learning 
(CATIL) further explains that VR environments enhance 
learner agency through immersion, interactivity, and a 
heightened sense of realism [15]. By stimulating 
psychological factors such as learning interest, motivation, 
immersion, self-efficacy, and self-regulation, VR fosters 
increased engagement and deeper cognitive processing. This 
theory highlights the interaction between cognitive and 
affective components in immersive learning and suggests that 
researchers should closely monitor the dynamic evolution of 
cognitive-affective states during learning. Tracking learner 
states in immersive environments not only deepens 
understanding of how learning occurs but also supports 
personalized feedback and improved instructional design. 
Makransky et al. [16] conducted two between-subjects 
experiments comparing immersive virtual reality (IVR) with 
traditional video-based instruction for science learning. The 
results showed that IVR significantly enhanced learning 
outcomes in science, suggesting that the sense of immersion 
stimulates emotional value, which is then transformed into 
learning gains through cognitive strategies. This study 
provides empirical support for the CATIL and highlights the 
importance of tracking learners’ cognitive and emotional 
states in VR environments. 

B. KT in VR Environments 

KT originated from BKT, a model that dynamically 
estimates the probability of learners’ mastery of individual 
concepts based on their item response sequences [17]. With 
the increasing scale and complexity of online learning data, 

the limitations of BKT in terms of parameter flexibility and 
sequence length handling have become evident. To address 
these challenges, Piech et al. [18] introduced DKT, which 
uses recurrent neural networks to model learning sequences 
and significantly improves prediction accuracy. 
Subsequently, models such as the Dynamic Key-Value 
Memory Network (DKVMN) and the Sequential Key-Value 
Memory Network (SKVMN) have been developed to expand 
memory capacity, support conceptual relationship modeling, 
and enhance cross-task transferability, further boosting the 
predictive power of KT models [19]. As educational data 
sources have evolved from simple response records to 
include behavioral logs, physiological signals, speech, and 
video interactions, extensible DKT models have emerged to 
integrate heterogeneous data and better capture learning 
states and cognitive dynamics [7]. 

Traditional questionnaires and post-hoc tests are unable to 
capture, in real time, the immersive interaction and highly 
personalized learning trajectories that characterize VR-based 
learning [20]. VR systems, by integrating sensors such as eye 
trackers, motion capture devices, Electroencephalography 
(EEG), and Electrodermal Activity (EDA) sensors, provide 
KT with a rich foundation of high-frequency, multimodal 
data [21]. This enables researchers to infer learners’ 
knowledge states in real time from multiple modalities, 
including spatial behavior, visual attention, emotional 
responses, and physiological signals. Consequently, the 
evolution of KT reflects a shift from probabilistic to deep 
models, and from unimodal to multimodal data integration, 
while VR-based KT further extends the observability of the 
learning process. 

However, current research on KT in VR environments 
remains in its early stages. There is a lack of standardized 
procedures and technical protocols for multimodal data 
fusion, and deep models also face limitations in 
generalizability and interpretability when applied to 
heterogeneous data sources [22]. For instance, Dubovi [23] 
combined multimodal objective data, including blink rates, 
gaze patterns, and facial expressions, with subjective 
self-reports to predict learning outcomes in VR environments. 
The study demonstrated that multimodal data outperformed 
single data sources in predicting learning performance. 
However, the absence of standardized integration 
mechanisms and the technical instability of multimodal 
processing continue to pose significant challenges. Similarly, 
Walkington et al. [10] highlighted that, despite the potential 
of multimodal analysis in VR-based embodied learning, the 
absence of coordinated data processing and unified 
evaluation frameworks continues to limit the application of 
KT in such settings. These findings underscore the urgent 
need for improved data fusion algorithms, validation of 
model generalizability, and standardized evaluation systems 
to realize the potential of KT in VR. 

C. Reviews on VR and KT 

Existing reviews on VR primarily focus on technological 
features and their educational applications in contexts such as 
K-12, higher education, and vocational training [24–27]. 
Most of these reviews explore the relationship between 
technological features, learning contexts, and educational 
outcomes, while relatively few have examined the dynamic 
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modeling of learning processes. A small number of reviews 
have explored educational data mining within VR settings. 
For example, Lampropoulos and Evangelidis [6] reviewed 
learning analytics and educational data mining in AR, VR, 
and metaverse contexts, highlighting that methods such as 
BKT, clustering, traditional machine learning, and deep 
learning could analyze multimodal learning data. However, 
their review does not address approaches for constructing 
student models or predicting knowledge states and skill 
acquisition. Similarly, Shadiev and Li [28] systematically 
reviewed eye-tracking research in immersive environments, 
finding that the studies predominantly involve higher 
education participants and mainly use questionnaires and 
performance tests. Although the authors suggest integrating 
eye-tracking data with physiological measurements (such as 
EEG, ECG, and fNIRS) to improve cognitive-state 
recognition, their analysis is restricted to single-modal 
statistics, without discussing sequential modeling or 
real-time assessment of learning processes. 

KT has typically been reviewed in terms of model 
development, algorithmic comparisons, data adaptation, and 
evaluation metrics, with recent reviews increasingly 
highlighting the integration of multimodal data and deep 
learning approaches [29, 30]. Empirical KT studies in 
educational contexts have largely relied on online platforms 
or intelligent tutoring systems [31, 32]. Yan et al. [33] 
collected learner behavior logs from learning management 
systems (such as MOOCs) and applied various methods, 
including BKT, IRT and DKT, to predict learners’ 
knowledge states. They comprehensively compared the 
predictive accuracy of multiple models and discussed 
connections to self-directed learning design. Similarly, Trifa 
et al. [34] integrated KT models into intelligent tutoring 
systems to analyze data from online practices and 
interactions, dynamically predicting students’ knowledge 
mastery and enhancing personalized learning experiences 
through intelligent feedback mechanisms. 

Currently, few KT studies focus on immersive and 
interactive VR learning environments. The limited research 
in this area often employs multimodal analysis to model 
learners’ cognitive changes and learning trajectories. These 
approaches aim to capture fluctuations in knowledge states 
throughout immersive learning processes. 

In summary, although the educational advantages of VR 
and the diagnostic potential of KT are well recognized, 
systematic integration of the two remains underexplored. 
Therefore, this study presents a systematic review of existing 
KT research conducted in VR environments, providing an 
integrated analysis of data collection methods, modeling 
approaches, and evaluation strategies. This paper aims to 
clarify the research landscape, identify typical 
methodological approaches, and highlight promising avenues 
for future research. 

Specifically, this study addresses the following research 
questions: 

RQ1: What research contexts and design features 
characterize KT studies conducted in VR environments? 

RQ2: What types of learning tasks and educational 
scenarios have been targeted by KT applications in VR? 

RQ3: What are the main limitations identified in existing 
research, and what future directions can be proposed for 

advancing KT within VR-based education?  

III. METHODS 

A. Identification 

This study followed the PRISMA 2020 guidelines to 
systematically identify and review prior research [35]. 
Studies were included if they met the following criteria: 

1) Eligibility criteria 

Studies were conducted on learners within VR 
environments specifically designed for educational or 
training purposes, with empirical analyses of knowledge 
mastery or cognitive states. Two types of studies were 
considered eligible. First, classic KT research explicitly 
aimed at modeling learners’ knowledge states. Second, we 
also included studies that indirectly addressed knowledge 
mastery or cognitive states through intermediate variables 
such as attention, cognitive load, or motivation, even if they 
did not explicitly employ KT models. Additionally, studies 
that indirectly inferred cognitive changes or trends in 
knowledge acquisition through statistical analysis of learner 
behavior or performance data were also included. Such 
studies provide evidence relevant to understanding learning 
processes and informing future modeling efforts. 

2) Exclusion criteria 

Studies focusing solely on VR hardware or learning 
environment development without empirical assessment of 
learners’ cognitive or knowledge states were excluded. 

3) Publication types 

Only peer-reviewed journal articles or conference papers 
published in English with accessible full-text versions were 
included. 

4) Publication dates 

Considering the rapid advancements in consumer-grade 
VR technology since 2015, especially with the emergence of 
devices such as Oculus Rift and HTC Vive, the review 
specifically focused on literature published within the past 
decade. 

 

 
Fig. 1. PRISMA literature selection process. 
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A comprehensive literature search was conducted in the 
Web of Science Core Collection and Scopus databases using 
the following combination of keywords: (“knowledge 
tracking” OR “knowledge tracing”) AND (“virtual reality” 
OR “VR”) AND (education). This search yielded a total of 
149 studies. After removing duplicates, 120 unique articles 
remained. Titles and abstracts were independently screened 
by two researchers, with disagreements resolved by 
discussion, resulting in the inclusion of 28 studies. Following 
a detailed full-text assessment conducted independently by 
both researchers, one study was excluded, leaving a final 
selection of 27 articles. The detailed selection process is 
illustrated in Fig. 1. 

B. Coding 

A coding scheme was developed based on the research 
questions to extract six categories of information from each 
selected study (see Table 1). 

 
Table 1. Coding 

No. Category Items (examples) 

1 
Basic publication 
information 

Year, publication source, country, 
publication type (journal/conference) 

2 
Educational 
contexts 

K-12, higher education, vocational 
education, medical training, language 
learning, STEM education 

3 
Research 
objectives 

Evaluating VR course effectiveness, 
proposing theoretical frameworks 

 

C. Analyses 

The bibliographic details of each study (title, authors, 
abstract, and related metadata) were first compiled in 
Microsoft Excel. Full-text articles identified for in-depth 
coding were then imported into NVivo for qualitative 
analysis. In parallel, Latent Dirichlet Allocation (LDA) topic 
modeling was applied to the corpus to extract latent thematic 
structures and triangulate the qualitative findings. The 
combined qualitative coding and LDA results were used to 
address the research questions. 

IV. RESULTS 

A. To Answer RQ 1: Research Context and Study Design 

This section reports the general characteristics of the 
included studies, including their educational contexts and 
research design features. 

In terms of publication types, 17 studies (62.96%) were 
published in peer-reviewed journals, while 10 studies 
(37.04%) appeared in conference proceedings. The journal 
and conference sources are highly diverse, with the 27 studies 
distributed across 27 publication outlets.  

Based on the first author’s affiliation, the 27 studies were 
produced by researchers from 13 countries and regions. The 
United States accounts for the largest share, with 10 papers 
(37.03%), followed by China with 3 papers (11.11%). 
Germany, Israel, and Japan each contributed 2 papers 
(7.41%). Additional contributions also originated from 
countries across Europe, Asia, North America, and South 
America, reflecting the global reach of VR-based KT 
research. In terms of annual publication volume, the peak 
occurred in 2014, with a total of 9 studies, followed by 2023, 
which recorded 5 studies. Overall, the number of publications 
has shown a generally increasing trend over time (see Fig. 2). 

 
Fig. 2. Publications by country and year. 

 
The educational levels targeted in the 27 reviewed studies 

are summarized in Fig. 3 Since some studies involved 
multiple educational levels, the total count across all levels 
exceeds 27. 

 

 
Fig. 3. Educational stages. 

 
The disciplinary focus of the studies is presented in Table 2, 

reflecting the diverse academic fields in which VR-based KT 
has been applied. 

 
Table 2. Disciplinary domains of application 

Disciplinary 
Domain 

Specific Field k % 

Medicine 

Nursing 4 14.815 
Clinical Medicine 4 14.815 
Neuroanatomy 1 3.704 
Physiology 1 3.704 

Engineering 

Architecture and Construction 2 7.406 
Additive Manufacturing (3D Printing) 1 3.704 
Surveying and Mapping 1 3.704 
Power Engineering 1 3.704 
Maritime Technology 1 3.704 

Biology 2 7.406 
Physics 1 3.704 
Energy Science 1 3.704 
Marine Science 1 3.704 
STEM 2 7.406 
Linguistics (Japanese) 1 3.704 
Arts 1 3.704 
Basic Education (Handwriting and Shape Recognition) 1 3.704 
Safety Education 1 3.704 
Total 27 100 

 

B. To Answer RQ 2: Learning Tasks and Educational 
Scenarios 

Drawing on the thematic focus of KT research in VR 
environments and the relationship between data sources and 
research objectives, the existing literature can be grouped 
into four core themes (see Table 3). 

1) Knowledge state modeling and multimodal learning 
process analysis 

Studies in this category focus on the real-time, dynamic 
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modeling of learners’ knowledge states and cognitive 
processes. To capture key indicators of the learning process, 
these studies typically utilize multimodal data sources 
including eye-tracking, EEG, EDA, and behavioral 
trajectories. Sequence modeling, pattern recognition, and 
dynamic inference methods are employed to reveal attention 
distribution, information processing patterns, and cognitive 
load fluctuations within VR environments. 

2) Adaptive learning and personalized instructional 
optimization 

Research in this category explores how individual learner 
differences, such as prior knowledge, motivation, and 
learning styles, influence learning pathways and outcomes. 
Data-driven instructional design and environment adaptation 
strategies are applied to enhance personalized learning 
support. 

3) Learning outcome evaluation and instructional 
intervention validation 

Research in this category focuses on the systematic and 
empirical evaluation of learning outcomes, emphasizing 
testing the effects of VR-based instructional programs, tools, 
or interventions on knowledge acquisition, skill development, 
cognitive progress, and learning motivation. These studies 
commonly adopt between-group comparisons, longitudinal 
tracking, and multi-indicator integrated analysis to assess the 
effectiveness, advantages, and limitations of VR-enhanced 
instruction, providing scientific evidence to guide teaching 
practice and the application of educational technologies. 

4) Development of instructional systems and 
methodological frameworks 

This category focuses on the innovation and optimization 
of technical tools, system platforms, and analytical methods 
to support KT in VR environments. Key topics include the 
development of data collection systems, algorithmic 
architectures, multimodal data integration mechanisms, and 
user interface designs. 

 
To gain deeper insights into the learning tasks and 

educational scenarios (RQ 2), we applied Latent Dirichlet 
Allocation (LDA) topic modeling to uncover underlying 
thematic structures. LDA is an unsupervised probabilistic 
model that assumes each document is a mixture of latent 
topics, and each topic is characterized by a distribution over 
words [57]. Specifically, the titles and abstracts of the 27 
included studies were pre-processed through standard data 
cleaning steps, including lowercasing, stop-word removal, 
and lemmatization. The cleaned corpus was then used to train 
multiple LDA models with varying topic numbers. Among 
these, the model with five topics achieved the highest topic 
coherence score, indicating the best balance between topic 
distinctiveness and interpretability. These five topics served 

as the basis for subsequent qualitative interpretation and 
categorization of learning scenarios and tasks (see Fig. 4). 

 

 
Fig. 4. Topics number and coherence. 

 
The LDA topic analysis revealed five research themes 

regarding the learning tasks and educational scenarios within 
VR-based KT research (see Table 4). 

 
Table 4. Topic and keywords 

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 
vr learning learning virtual vr 
0.055 0.052 0.076 0.031 0.048 
learning based vr risk data 
0.034 0.027 0.053 0.031 0.018 
immersive virtual training children personalized 
0.023 0.027 0.039 0.031 0.018 
eye design immersive learning environment 
0.023 0.027 0.024 0.031 0.018 
knowledge outcomes outcomes effects system 
0.023 0.015 0.016 0.017 0.018 
understand evidence tracking environment effect 
0.023 0.015 0.016 0.017 0.018 
utilizing achievement mixed development tracking 
0.023 0.015 0.016 0.017 0.018 
environment evaluate multimodal innovative training 
0.013 0.015 0.016 0.016666 0.018 
data skill predict protocol construction 
0.013 0.015 0.016 0.017 0.018 
monitor ability attention primary support 
0.013 0.015 0.009 0.017 0.018 

1 The number below each keyword represents its occurrence probability 
within the topic. 

 
Theme 1: Eye-tracking and cognitive monitoring in IVR 

learning is characterized by keywords such as VR, learning, 
immersive, eye, knowledge, understand, utilizing, 
environment, data, monitor. Studies under this theme 
primarily focus on capturing learners’ attention, 
comprehension levels, and knowledge states in real time by 
utilizing eye-tracking and other perceptual data within 
immersive VR settings. 

Theme 2: Evidence-based VR instructional design and 
learning outcome evaluation is associated with keywords 
including learning, based, virtual, design, outcomes, 
evidence, achievement, evaluate, skill, ability. Research 
within this theme emphasizes the instructional design of VR 
courses or training programs, experimental validation, and 
the evaluation of learning outcomes. 

Theme 3: Multimodal prediction and mixed-method 
approach for VR-based KT is reflected by keywords such as 
learning, VR, training, immersive, outcomes, tracking, mixed, 
multimodal, predict, attention. This theme centers on 
integrating multimodal data with conventional test results to 
develop multimodal KT models and predictive models for 
learning performance. 

Theme 4: VR applications for children and risk education 
with developmental impacts includes keywords like virtual, 
risk, children, learning, effects, environment, development, 
innovative, protocol, primary. Studies in this category 
explore the use of VR for safety education, risk perception 
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Table 3. Research Classification

Category Reference

Knowledge state modeling and 

multimodal learning process analysis
[10, 11, 23, 36–43]

Adaptive learning and personalized 

instructional optimization
[44–47]

Learning outcome evaluation and 

instructional intervention validation.
[8, 9, 21, 48–52]

Development of instructional systems 

and methodological frameworks
[53–56]



  

training, and skill development, particularly among children 
and school-age learners. 

Theme 5: Data-driven personalized and adaptive VR 
learning systems is defined by keywords such as VR, data, 
personalized, environment, system, tracking, effect, training, 
construction, support. Research within this theme focuses on 
leveraging real-time data collection to develop learner 
profiles and adaptive learning environments, aiming to 
support personalized learning pathways and tailored 
instructional support. 

V. DISCUSSION 

The application of KT in VR settings is undergoing rapid 
development, characterized by emerging trends such as 
multimodal data-driven modeling of learning states, 
personalized instruction supported by diverse evaluation 
mechanisms, and the systematic integration of data fusion 
techniques with intelligent algorithms. 

A. Research Context and Study Design 

Analysis of the 27 studies shows that KT research in VR 
environments primarily focuses on higher and vocational 
education, with 77.78% conducted in higher education and 
44.44% in vocational settings. While the disciplinary 
coverage is broad, the research exhibits a clear concentration 
in specific professional domains. Specifically, 
medical-related fields, such as nursing, clinical medicine, 
neuroanatomy, and physiology, constitute 37% of the studies, 
followed by engineering and technical disciplines, including 
architecture, additive manufacturing, and surveying. This 
concentration may be attributed to the fact that both medicine 
and engineering involve high-stakes, skill-intensive training 
that poses challenges for traditional instruction. In medical 
education, procedures such as surgery and rehabilitation 
require ethical caution and a low tolerance for error, which 
makes VR’s capacity for high-fidelity, risk-free simulation 
especially valuable [37, 38, 50]. Learners can repeatedly 
practice critical tasks, while KT enables detailed monitoring 
of progress. In engineering fields, training often demands 
expensive equipment, technical precision, and large-scale 
infrastructure, making hands-on learning costly and 
resource-intensive [41, 48, 52]. VR offers an efficient 
solution, and KT allows for tracking learners’ spatial and 
procedural knowledge development in these virtual 
environments. 

These patterns suggest that VR is particularly effective in 
educational settings that require a high degree of 
specialization and practical operation, especially for skills 
training, professional practice, and the construction of 
complex knowledge structures. Current KT research in VR 
commonly focuses on dynamically tracking learners’ mastery 
of professional knowledge, operational skill development, 
and spatial ability acquisition. This aligns with the principles 
of embodied cognition theory, which emphasizes that 
cognitive processes are deeply embedded within the 
interaction between individuals and their environment, rather 
than occurring in isolation [14]. In VR settings, highly 
interactive three-dimensional environments enable learners 
to engage with virtual spaces through physical movements. 
Embodied behaviors such as operational actions and motion 
trajectories both facilitate knowledge construction and 

provide valuable data for tracking learners’ knowledge states. 
Consequently, educational domains that emphasize 
operational tasks, spatial complexity, or collaborative 
processes, such as clinical nursing, construction engineering, 
and neuroanatomy, are more likely to become concentrated 
areas for KT research in VR environments. 

B. Learning Tasks and Educational Scenarios 

Based on content analysis and LDA topic modeling, we 
identified several key research themes related to learning 
tasks and educational scenarios in the context of KT in VR 
environments. These themes encompass knowledge state 
modeling and performance prediction, multimodal learning 
process analysis and cognitive mechanism exploration, 
learning outcome evaluation and instructional design 
optimization, adaptive learning driven by individual 
differences, the development of instructional systems and 
methodological frameworks, as well as learning outcome 
evaluation and comparative studies. Notably, the themes 
derived from LDA closely align with the manually coded 
categories, providing strong triangulation that highlights 
current research priorities and representative application 
scenarios.  

Consistent with existing review studies, which have 
pointed out that VR research often focuses on 
“technology–context–outcome” perspectives while paying 
relatively little attention to dynamic modeling of learning 
processes [6, 28], the present study further refines the 
understanding of dynamic learning process analysis. The 
findings reveal a growing trend in VR-based KT research, 
shifting from static outcome evaluation towards more 
process-oriented, multimodal data integration approaches. In 
particular, within the first and third thematic clusters, existing 
studies have combined eye-tracking, EEG, physiological 
signals, and behavioral trajectory data to analyze learners’ 
attention, cognitive, and emotional state changes, reflecting a 
clear tendency toward cross-modal data fusion. The observed 
shift from static outcome assessment to process-oriented, 
multimodal analysis of learning embodies the core principles 
of the CATIL, which posits that immersive experiences foster 
emotional engagement, thereby enhancing cognitive 
processing and improving learning outcomes [15, 16]. 
Studies that incorporate eye-tracking, EEG, and behavioral 
data to monitor attention and engagement are consistent with 
CATIL’s emphasis on the dynamic interplay between 
cognitive and affective factors in immersive learning 
environments. 

The second and fifth thematic clusters further demonstrate 
that KT not only supports the evaluation of VR instructional 
design but also provides the technical foundation for 
real-time personalized feedback and adaptive learning. Such 
research trends, emphasizing multimodality, process 
orientation, and personalization, offer valuable empirical 
evidence and methodological insights for advancing KT 
model development in VR environments. The results of topic 
modeling reveal that systematic research on constructing 
robust knowledge state prediction and tracing models within 
VR environments is still underdeveloped. Most existing 
studies are still at an early stage, focusing on data description 
or basic predictive tasks, with few establishing unified 
technical standards or modeling paradigms. In addition, 
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studies in the fourth thematic cluster have explored the 
application of VR-based KT in child safety education, risk 
awareness training, and skill development. These studies 
indicate that the application of KT in VR for children and 
primary education has begun to emerge, but the overall 
volume of research in this area remains limited [55, 56]. 

C. Current Challenges and Future Directions of Reviewed 
Studies 

Although the integration of VR and KT has made notable 
progress in recent years, the field remains in an early 
exploratory stage, with several limitations that require further 
breakthroughs and refinement. 

First, the distribution of research samples and educational 
contexts remains uneven. As noted earlier, existing studies 
are predominantly concentrated in higher education and 
vocational training settings, with a clear emphasis on 
skill-oriented disciplines such as medicine and engineering 
[42, 56]. In contrast, research at the foundational education 
levels, including preschool education and special education, 
remains scarce [42, 56]. This limits the generalizability of 
VR-based KT findings across diverse educational scenarios. 
Future research should expand to more authentic classroom 
contexts, with particular attention to learners of different ages, 
ability levels, and cultural backgrounds. Stratified and 
cross-context sampling strategies are recommended to select 
representative courses across K-12, higher education, and 
vocational training. Aligning VR tasks with national 
curriculum standards or professional competency 
frameworks will enhance the comparability and educational 
relevance of experimental designs. Furthermore, establishing 
multi-institutional collaborative platforms to create 
cross-school and cross-regional data networks can facilitate 
the collection of longitudinal, multi-cycle datasets, laying the 
groundwork for transfer learning and generalization studies. 

Second, research on KT in VR environments remains 
exploratory, with no unified theoretical framework or 
standardized modeling paradigm yet established. Although 
various studies have applied KT techniques to analyze 
learners’ cognitive states and learning outcomes from 
different perspectives, significant inconsistencies persist in 
the research design, data handling, and result reporting [58]. 
These discrepancies limit the comparability and 
reproducibility of findings across studies. Furthermore, the 
immersive and highly interactive nature of VR presents new 
challenges in ensuring the adaptability and robustness of KT 
models within complex learning environments. Future 
research should prioritize the development of systematic, 
theory-driven KT frameworks tailored to the unique 
characteristics of VR learning. In particular, greater attention 
is needed to promote model generalizability across diverse 
learning tasks, educational contexts, and learner groups. 
Enhancing model interpretability and aligning KT research 
more closely with instructional needs will be critical for 
supporting real-time learning diagnostics and personalized 
teaching interventions within intelligent learning 
environments. 

Third, the current evaluation systems in VR-based KT 
research remain limited, with insufficient emphasis on 
explaining the underlying cognitive mechanisms. Although 
existing studies have introduced various evaluation 

dimensions, most remain at the technical validation stage, 
focusing primarily on short-term outcomes rather than 
long-term, theory-driven assessments [8, 9, 21, 23, 40, 45–49, 
51]. Longitudinal studies, sustained instructional 
interventions, and evaluations based on real-world teaching 
feedback are still lacking. Furthermore, many studies 
prioritize the question of whether learning states can be 
predicted, but pay limited attention to why such predictions 
are effective from a cognitive perspective. To address these 
gaps, future research should strengthen theoretical modeling 
of cognitive processing, emotional regulation, and 
knowledge-construction dynamics. Advancing KT from a 
purely performance-oriented approach toward interpretable, 
mechanism-driven modeling will be essential for enhancing 
its educational relevance and practical value. 

MOREOVER, with the rapid advancement of Artificial 
intelligence (AI) technologies, recent studies have applied AI 
to assessment and feedback in language education. For 
example, Obaidoon and Wei [59] conducted a comparative 
analysis of four mainstream AI tools used for writing 
feedback. Their findings indicate that while these tools are 
relatively effective at addressing vocabulary and grammar 
issues, they fall short in offering higher-level writing 
guidance compared to human teachers. Furthermore, Han and 
Li [60] employed ChatGPT to assist teachers in delivering 
writing feedback and found that this approach significantly 
improved both instructional efficiency and student 
engagement. These studies provide important insights for KT 
in VR environments. From a technological and system 
development perspective, integrating AI with KT methods 
can promote the realization of interpretable modeling, 
enabling systems to identify learners’ knowledge states in 
real time and generate initial feedback. From an instructional 
implementation perspective, teachers should continue to play 
a leading role in intervention and guidance by supplementing 
and adjusting AI-generated feedback based on their 
professional judgment, thereby establishing a collaborative 
instructional model that combines AI-based prediction with 
human intervention. 

In summary, while the application of KT in VR 
environments shows promising potential, significant 
challenges remain in terms of educational applicability, 
theoretical development, and cognitive interpretability. 
Addressing these limitations will require systematic efforts to 
diversify research contexts, standardize modeling approaches, 
and deepen the understanding of underlying learning 
mechanisms. Such advancements are essential to fully 
leverage VR and KT integration for supporting adaptive, 
data-driven, and cognitively grounded learning in future 
educational environments. 

VI. CONCLUSION 

This study conducted a systematic literature review to 
examine the development of KT in VR environments for 
education over the past decade. The review focused on the 
following key dimensions: (1) research context and study 
design, (2) learning tasks and educational scenarios, and (3) 
current challenges and future directions. 

The findings indicate that current VR-based KT research is 
primarily concentrated in higher education and vocational 
training, with learning tasks covering a wide range of 
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objectives, including knowledge state modeling, multimodal 
cognitive mechanism exploration, personalized learning path 
support, and instructional outcome evaluation. Triangulation 
of the LDA topic modeling results with manually coded 
research objectives reveals a clear shift in VR-KT research 
from purely assessment-driven approaches toward a greater 
focus on understanding learning mechanisms and optimizing 
instructional design. 

Nonetheless, several challenges persist. Current research 
shows an uneven distribution across educational stages, a 
lack of standardized modeling mechanisms, limited 
longitudinal evaluation, and insufficient emphasis on 
cognitive interpretability. These factors present opportunities 
for further exploration and refinement, particularly in 
advancing the practical implementation of KT in VR-based 
learning environments. Future research should expand to 
diverse learner groups and educational contexts, develop 
cross-modal and transferable KT model frameworks, and 
promote the integration of theoretical modeling with 
data-driven, explainable mechanisms. Such efforts are 
essential to enhancing the practical utility and long-term 
sustainability of KT in VR learning environments. 

This review provides a structured synthesis of VR-based 
KT research, but it includes only peer-reviewed journal 
articles and conference papers published in English. 
Although this criterion ensured consistency in screening and 
analysis, it may have excluded relevant studies published in 
other languages. Future reviews are encouraged to broaden 
the scope by incorporating multilingual databases to achieve 
a more comprehensive global perspective. Moreover, while 
the present review primarily focused on learning scenarios 
and tasks, core enabling technologies and specific learning 
outcomes received comparatively less attention. Future 
research could explore these dimensions to offer a more 
nuanced and comprehensive understanding of KT in VR 
environments. 
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