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Abstract—This study investigates the structural relationships
between task characteristics, technological features,
task—technology fit, performance, satisfaction, and expectation
within a Virtual Reality (VR) environment for English as a
Foreign Language (EFL) learning. Grounded in the
task-technology fit and expectancy disconfirmation theories, we
further explore the moderating role of Electroencephalography
(EEG)-detected Frontal Alpha Asymmetry (FAA) in these
relationships. A total of 159 participants engaged in a 20-minute
VR-based EFL course, and the data were analyzed using Partial
Least Squares Structural Equation Modeling (PLS-SEM).
Results demonstrated the reliability and validity of the
measurement model, and six of ten hypothesized pathways in
the structural model were supported. Notably, FAA
significantly moderates the relationship between expectation
and satisfaction, highlighting the potential of physiological
measures in understanding user experiences. This study offers a
novel contribution by integrating EEG data into SEM analysis
to examine EFL learners’ perceptions of VR-based language
learning, providing critical insights into the interplay between
cognitive and technological factors in immersive educational
environments.
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I. INTRODUCTION

In recent years, the development of digital technology has
created many unprecedented learning platforms and contexts,
with a growing focus on Virtual Reality (VR) for language
learning [1]. Head-mounted VR can create immersive 3D
virtual environments where users can interact and converse
with virtual objects or components via electronic devices,
thereby enhancing the realism of the environment and
increasing the opportunities for language learners’
scaffolding via communication complexity and accuracy [2].
This is beneficial for foreign language learners and has
positive effects on learning [3—6]. Lan [7] pointed out that the
application of VR facilitates English as a Foreign Language
(EFL) learning via language correctness and appropriate
expressions of foreign languages. However, few empirical
studies on the development of VR for foreign language
learning content have argued that current VR technology is
not applicable to all educational environments [8]. Hence,
this study combined the Task-Technology Fit theory
(TTF) [9-11], which is widely used by scholars to investigate
the relationship between technology use and performance
outcomes, along with the expectancy disconfirmation
theory [12—15] to investigate issues related to technology use,
digital course learning expectations, and education.

Language learning utilizes extensive brain neural
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networks [16, 17], modifying the neural connections of the
brain during learning and memory. Over the past 30 years,
new technologies for research on the brain and neuroscience
have emerged. Neurophysiological signals and brain imaging
techniques such as the Electrical Encephalogram (EEG),
Positron Emission Tomography (PET), functional Magnetic
Resonance Imaging (fMRI), single photon computer
tomography (SPECT), Magnetoencephalography (MEG)
have been used to further investigate brain regions related to
neural function and link them to emotional and mental
activities (thoughts, emotions, reasoning processes, and
understanding) in conscious subjects [18]. Utilizing EEG for
direct measurements of learners’ cognitive processes and
emotions expands the scope of educational neuroscience [19],
leading to greater insights. The role of Frontal Alpha
Asymmetry (FAA) has been particularly identified to
significantly moderate the relationship between behavior and
mental states, such as anxiety [20] or emotional stimuli [21].
FAA presents theories and methods typically utilized in
approach/withdrawal motivation research and consolidates
research on applied FAA with an emphasis on product design,
marketing, brain-computer communication, and mental
health studies, where approach motivation is of interest.
However, the role of EFL learners’ FAA in their learning has
been underexplored. To bridge this academic gap, this study
intends to combine the perspective of educational
neuroscience with the catering tourism English VR learning
scenario developed and applied to address the following
research questions:

1) What are EFL learners’ perceptions of the suitability of

VR for English learning?
2) Is there any expectancy disconfirmation regarding EFL
learners’ thoughts on using VR for English learning?

3) What is a comprehensive model of VR task fit, EFL

learners’ expectations, and brainwave data after
experiencing VR-based language learning?
II. LITERATURE REVIEW
A. VR and L2 Learning
An immersive VR-constructed language learning

environment would not only enable learners to hear sounds
but also directly use language for exploration and
socialization [22]. Consequently, learners can focus more on
their communication abilities [5]. Cheng ef al. [23] used VR
to teach Japanese greetings and bowing behavior,
emphasizing its potential for cultural interaction, benefiting
L2F learning. Garcia et al. [24] combined immersive VR
games with Spanish language teaching to reduce the
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expenses of traveling to achieve immersion in a foreign
language context; they reported that VR could be applied to
any language learning and extended to most scenarios and
fields. Chen [25] evaluated the learning outcomes of
Taiwanese students using a virtual reality English learning
platform and found that VR helps learners develop more
complex and higher-level thinking; improves students’
cognition of English phonology, morphology, syntax, and
sentences; and positively affects their L2 learning. Current
research on applying VR to L2 learning is focused on
learning outcomes or learners’ subjective feelings; however,
the underlying mechanism of learners who experience
VR-based language learning remains  unknown.
Neuroscience can bridge this research gap, as it evaluates the
effectiveness of a specific method for education and
enhances teaching methods and outcomes [26]. Hence, this
study utilized data on EFL learners’ neuronal activities in the
brain while undertaking VR-based language learning.

B. Task-Technology Fit Theory

Task-Technology Fit (TTF) theory posits that the
alignment between task characteristics and technology
functionalities ~ enhances  performance  and  user
satisfaction [27, 28]. In educational contexts, TTF has been
applied to evaluate how technologies, such as Virtual Reality
(VR), support specific learning tasks [29]. For English as a
Foreign Language (EFL) learning, VR offers immersive
environments that simulate real-world communication
scenarios, potentially improving vocabulary acquisition and
communicative competence [30]. Recent studies have further
explored VR’s efficacy in language learning. For instance,
Tai et al [31] demonstrated that a VR application
significantly enhanced EFL learners’ vocabulary retention
compared to traditional methods, attributing this to the
immersive and interactive nature of VR environments.
Similarly, Baceviciute et al. [32] used EEG to investigate
cognitive engagement during reading tasks in VR, finding
that environmental embeddedness in VR increased cognitive
load and knowledge transfer compared to non-immersive
settings. Hofmann ef al. [33] used EEG to decode emotional
arousal in immersive VR experiences, finding heightened
emotional responses compared to 2D environments, which
supports VR’s potential to elicit strong affective states.
Similarly, Cao and Luo [34] combined VR with EEG
biofeedback to enhance EFL proficiency, reporting that
real-time FAA adjustments improved learner engagement
and vocabulary acquisition. These studies highlight the
synergy between VR and EEG in capturing affective and
cognitive processes, yet few have applied FAA to examine
the expectation—satisfaction relationship in EFL learning, as
proposed in this study. Moreover, the cognitive and affective
mechanisms  underlying these benefits, such as
neurophysiological responses measured via EEG, remain
underexplored, warranting further investigation in EFL
contexts.

C. Expectancy Disconfirmation Theory

Expectancy disconfirmation theory is a widely accepted
model of consumer behavior that is often used to explain and
predict consumer satisfaction and repurchase intentions for
services or products [35-38]. Initially proposed by
Yuce et al. [39, 40], and found in the literature related to

51

psychology and marketing, this theory has now been adopted
by many different fields, including public administration and
civic service [41-44], online game design and
evaluation [45, 46], corporate image and social
responsibility [47, 48], and teacher vitality and
expectations [49]. When considering the technology
integration in education, the expectancy disconfirmation
theory contributes to the current learning of digital
technology. In addition to learning outcomes, the model
incorporates student expectations of digital courses into the
analysis, considerably increasing the applicability of the
theoretical model in investigating education-related issues
[50]. Previous studies [51, 52] have confirmed the predictive
capacity of the expectancy disconfirmation theory model for
the continued use of technology-based services. Until now,
there has been no relevant research on applying the
expectancy disconfirmation theory to VR-based language
teaching and learning, as elucidated by the previous
discussion. Therefore, this study uses expectancy
disconfirmation theory to investigate the expectations,
perceived effectiveness, failure, and satisfaction of students
using VR-based language learning to learn EFL courses.

D. Frontal Alpha Asymmetry

Neuroscience is recognized for its potential to improve our
quality of life and learning development [53], and
educational neuroscience helps us understand brain function,
which is essential for enhancing learning and teaching
processes [54]. In terms of EFL teaching and learning,
language learning and acquisition research have been
inseparable from the human mind and neuroscience research
[55, 56]. Most related research on using VR for language
learning also utilizes objective physiological measurements,
such as EEG, for detecting users’ affective responses in VR
environments [57]. In this study, we focus on Frontal Alpha
Asymmetry (FAA), a score indicating the difference between
the right and left prefrontal cortex activities [5S8]. FAA was
chosen as the primary EEG metric due to its well-established
role as a biomarker of emotional responsiveness and
approach/withdrawal motivation, which are critical for
understanding learners’ affective states in immersive
VR-based language learning [59, 60]. Unlike other EEG
metrics, such as theta power (associated with cognitive load)
or beta power (linked to attention), FAA specifically captures
motivational and emotional processes that align with the
expectancy disconfirmation theory’s focus on satisfaction
and affective outcomes [61, 62]. For instance, FAA has been
used to assess approach motivation in product design,
marketing, and mental health studies [63—65], making it
particularly relevant for evaluating learners’ engagement
with VR technology.

FAA is calculated by subtracting the natural log (In) of the
Power Spectral Density (PSD) of the alpha brainwave (8—13
Hz) at the left prefrontal site (F3) from the right prefrontal
site (F4) in the International 10-20 System [58]. A positive
FAA score indicates greater relative left frontal activity,
associated with positive emotions and approach-related
behaviors, whereas a negative FAA score indicates greater
right frontal activity, linked to negative emotions and
withdrawal-related behaviors [61, 62]. Prior studies have
established that FAA values typically range from —0.5 to 0.5
in educational and emotional response contexts, with positive
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values indicating a propensity for approach motivation [62].
This makes FAA an ideal metric for examining how affective
states moderate the relationship between learners’
expectations and satisfaction in VR-based EFL learning.
Although other EEG metrics, such as the Theta/Alpha ratio
for cognitive load [66], could provide insights into cognitive
effort, FAA’s focus on affective processes aligns more
closely with the study’s objectives of integrating cognitive
(TTF) and affective (EDT) frameworks. To the best of our
knowledge, no prior research has included FAA in a
structural equation model for VR-based language learning,
making this study a novel contribution. Recent conceptual
models, such as the Cognitive-Affective Theory of Learning
with Media (CATLM) [67], emphasize the role of affective
factors in multimedia learning, further supporting FAA’s
inclusion as a moderator in our model [68, 69].

E. Model Development and Research Hypotheses

Based on research questions and reviewed literature on the
integration of Task-Technology Fit (TTF) and Expectancy
Disconfirmation Theory (EDT), we propose a conceptual
framework that synthesizes these models to explain EFL
learners’ experiences in VR-based language learning. TTF
posits that the alignment between task characteristics (e.g.,
immersive language learning requirements) and technology
characteristics (e.g., VR’s interactive and immersive features)
enhances task-technology fit, which positively influences
performance [70]. In contrast, EDT focuses on the
psychological process where learners’ expectations of
technology influence their perceived performance and
subsequent satisfaction, moderated by
disconfirmation [39, 40]. In this study, TTF provides a
structural lens to assess how VR supports EFL learning tasks,
while EDT captures learners’ affective and evaluative
responses to the VR experience.

The integration of these frameworks is grounded in the
assumption that cognitive (task-technology alignment) and
affective (expectations and satisfaction) processes are
interdependent in technology-mediated learning [67]. For
instance, a high degree of Task-Technology Fit (TTF) may
enhance learners’ perceived performance, which aligns with
EDT’s performance construct, subsequently influencing
satisfaction. Additionally, learners’ expectations (EDT) may
shape their perceptions of Task-Technology Fit (TTF), as
prior beliefs about VR’s capabilities influence how learners
evaluate its suitability for EFL tasks. The inclusion of Frontal
Alpha Asymmetry (FAA) as a physiological moderator
further bridges these frameworks by capturing affective
responses (e.g., approach/withdrawal motivation) that
modulate the expectation-satisfaction relationship [59].

To illustrate this integration, we present Fig. 1, which
depicts the conceptual interplay between TTF and EDT. The
diagram shows how task and technology characteristics (TTF)
feed into task-technology fit and performance, which interact
with expectations, performance, and satisfaction (EDT).
FAA 1is positioned as a moderator influencing the EDT
pathway, highlighting the role of affective states in shaping
learner outcomes. The ten hypotheses are presented as
follows:

e HIl: VR task characteristics have a significant
association with the perceived task-technology
adaptability of VR-based language learning.

e H2: The technological characteristics of VR are
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significantly = associated  with  the  perceived
task-technology adaptability of VR-based language
learning.

e H3: Task characteristics of VR will positively influence
learner satisfaction with VR-based language learning.

® H4: Technological characteristics of VR will positively
influence learner satisfaction with VR-based language
learning.

e HS5: Adaptability of VR and VR task technology has a
significant association with the applicability of
VR-based language learning.

e Ho6: Participants’ expectations of VR-based language
learning are significantly associated with their
perceived performance of VR.

e H7: Participants’ expectations of VR-based language
learning are significantly associated with their
perceived course satisfaction.

e HS: Participants’ perceived performance of VR-based
language learning is significantly associated with their
perceived course satisfaction.

e HO9: The FAA of the participants calculated during
VR-based EFL learning has a moderating effect on the
association  between  their  expectations  and
performance.

e HI0: The FAA of the participants calculated during
VR-based EFL learning has a moderating effect on the
association between their expectations and satisfaction.

Frontal Alpha
Asymmetry
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Fig. 1. Proposed research model.

III. MATERIALS AND METHODS

A. Measurements

This study was revised based on [70] TTF model. Given
that students could not control the amount of time spent using
VR in class, the utilization dimension was deleted, and task
characteristics, technology characteristics, TTF, and
performance were retained. The performance is similar to the
effect aspect in the expectancy disconfirmation model,
therefore, this study combined the two aspects of this model
to form a part of the integrated mode, which covered six
dimensions: “Task Characteristics”, “Technology
Characteristics”,  “Task  Technology Fit Degree”,
“Expectation”, “Performance”, and “Satisfaction” (please see
Table Al in Appendix for the detailed questionnaire). This
present research adopted a five-point Likert scale (Strongly
Agree = 5 and Strongly Disagree = 1) except for the FAA
(please see the Appendix for the detailed questionnaire with
the results of reliability and validity examinations). The
equipment used in this study to collect EEG data was an
eight-channel EEG manufactured by Thought Technology
with the ProComp Infiniti encoder along with the BioGraph
Infiniti software version 6.0, which has been prevalently
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employed in previous academic works such as those of [71].
The VR content was presented using an HTC Vive Pro.

B. Participants

To acquire results with statistical power, G¥*Power was
used to calculate the appropriate sample size for PLS-SEM.
With the following parameters: effect size f* = 0.15, a err
prob = 0.05, and 1-f err prob = 0.95, the result of G*Power
suggested an appropriate sample size of 138 (n = 138) and
this study recruited 159 participants. All participants visited a
soundproof laboratory to experience a 15-minute-long
VR-based EFL course. Before the onset of this study, they
were informed about the nature and procedure of the study,
with the assurance that they could withdraw at any time
without any penalty. After completing the experiment, they
were expected to sign a consent form individually, which
confirmed that their participation in this experiment was in
accordance with the Helsinki Declaration of 1964. This study
was conducted with the approval of the Institutional Review
Board (NCKU HREC-E-110-577-2).

All the participants had a TOEIC score ranging from
550-580, indicating their English proficiency levels.
According to the Education Testing Service (ETS), the
average TOEIC score of Taiwanese test-takers was 568 in the
year 2021 [72]. Furthermore, they had no cognitive and
mental deficits, prior brain surgery, or medications that
would affect their neuronal activities.

C. Research Procedure

As mentioned previously, every participant experienced
the VR-based language-learning program. They wore
Head-Mounted Display (HMD) VR for the program with
EEG electrodes positioned at F3 and F4 to measure their
brainwaves, as this section of the brain oversees the
underlying affective processing [73]. The baseline
brainwaves were detected and captured in the first two
minutes of the experiment as the resting state, wherein
classical music was played, and the participants were asked
to relax in this phase. Subsequently, the VR-based language
learning session was conducted for 20 min. Participants’
brainwave data were collected continuously throughout the
study period. Subsequently, all participants completed a
questionnaire. The entire process was concluded with a
consent form signed by the participants, and a coupon of
NTD 300 (approximately USD 10) was given to them as a
token of appreciation.

The instructional content in the VR environment focused
on everyday conversational English to enhance participants’
communicative competence. The vocabulary covered
included approximately 50 high-frequency phrases and
situational terms related to travel scenarios (e.g., greetings,
ordering food, asking for directions, checking into a hotel).
Linguistic tasks included sentence construction exercises,
where participants formed sentences using target vocabulary,
and pronunciation practice with real-time feedback from the
VR system. Communicative tasks involved role-playing
dialogues with virtual native English speakers in simulated
environments (e.g., a virtual airport or restaurant), requiring
participants to respond to prompts and engage in turn-taking
conversations. Interactions within the VR context were
designed to be immersive and interactive, leveraging 3D
visuals, spatial audio, and gesture-based controls to simulate
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real-world language use. For example, participants could
“pick up” virtual objects (e.g., a menu) to trigger language
tasks or navigate through scenarios by responding to
contextual cues. These tasks were calibrated to impose a
moderate cognitive load, aligning with the participants’
intermediate proficiency, while fostering engagement
through gamified elements (e.g., earning points for correct
responses). The content was informed by communicative
language teaching principles [74] and aimed to stimulate both
cognitive processing (e.g., vocabulary recall, syntactic
accuracy) and affective responses (e.g., motivation,
confidence), which were measured via questionnaire
responses and EEG-derived Frontal Alpha Asymmetry
(FAA).

Prior to the VR session, participants completed a 2-minute
baseline EEG recording during a resting state with classical
music to establish a reference for FAA calculations. The EEG
data were recorded continuously during the VR session using
an eight-channel EEG system (Thought Technology,
ProComp Infiniti encoder with BioGraph Infiniti software
version 6.0). Post-experiment, participants completed a
questionnaire to assess Task Characteristics, Technology
Characteristics,  Task-Technology  Fit,  Expectation,
Performance, and Satisfaction using a five-point Likert scale
(see Appendix for details).

D. Data Collection and Analysis

Data were collected from 159 participants who completed
a 20-minute VR-based English as a Foreign Language (EFL)
course in a soundproof laboratory. The data collection
process  involved two  primary  sources: (1
neurophysiological data via electroencephalography (EEG)
and (2) self-reported data via a questionnaire. EEG data were
recorded using an eight-channel EEG system (Thought
Technology, ProComp Infiniti encoder with BioGraph
Infiniti software version 6.0) with electrodes placed at F3 and
F4 according to the International 10-20 System to capture
Frontal Alpha Asymmetry (FAA). The EEG system operated
at a sampling rate of 256 Hz, with a 0.1-100 Hz notch filter to
remove powerline interference and a bandpass filter
(8-13 Hz) applied to isolate alpha band activity. Electrode
impedance was maintained below 5 kQ, and a linked-ear
reference was used. Baseline EEG data were collected during
a 2-minute resting state with classical music (neutral
stimulus), followed by continuous recording during the VR
session.

EEG data were preprocessed to ensure high-quality signals
for FAA analysis. Automated artifact rejection was applied
using BioGraph Infiniti software to eliminate eye blinks,
muscle movements, and electrical interference, with a
threshold of £100 pV for artifact detection. Additionally, a
manual inspection by a trained technician removed residual
artifacts, resulting in less than 5% data loss per participant.
For power spectral density (PSD) analysis, EEG signals were
segmented into 2-second epochs with 50% overlap, and Fast
Fourier Transform (FFT) was applied to compute PSD in the
alpha band (8—13 Hz). FAA was calculated as the difference
in natural log-transformed PSD between right (F4) and left
(F3) prefrontal sites: FAA = In(PSD_F4) — In(PSD _F3).
Positive FAA values indicate greater left frontal activity,
associated with approach motivation [54]. Table 1
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summarizes mean PSD values and FAA scores for a subset of
participants, demonstrating the quality of the EEG data.
Table 2 presents the demographic characteristics and
descriptive statistics for key variables. The sample consisted
of 159 participants (58% female, 42% male; mean age = 20.4
years, SD = 1.8; TOEIC scores ranging from 550-580, mean
= 566.3, SD = 8.7). Means and standard deviations for the
constructs are as follows: Task Characteristics (M =4.12, SD
= 0.68), Technology Characteristics (M = 4.05, SD = 0.72),
TTF (M = 4.08, SD = 0.65), Expectation (M = 3.95, SD =
0.79), Performance (M = 4.15, SD = 0.62), Satisfaction (M =
4.10, SD = 0.70), and FAA (M = 0.22, SD = 0.15, positive
values indicating greater left frontal activity, see Table 1 for
details). These statistics provide insight into the sample’s
composition and the distribution of key constructs.

Table 1. Summary of EEG power spectral density and FAA scores

Pa“‘c(:lpa:“;()s)“bse‘ PSD_F3 (uV*/Hz) (ILSV?/—;:) FAA Score
Mean 245 228 023
SD 0.62 0.59 0.16

Range 1.80-3.50 1.70-3.40  0.05-0.45

Note: PSD values represent alpha band (8—13 Hz) power at F3 (left) and
F4 (right) sites. FAA =In(PSD_F4) — In(PSD_F3). Positive FAA indicates
greater left frontal activity.

Table 2. Demographic characteristics and descriptive statistics

Variable Mean  SD Notes
Age 20.4 1.8 Range: 18-24 years
Gender - - 58% Female, 42% Male
TOEIC Score 566.3 8.7 Range: 550-580
Task Characteristics  4.12  0.68 5-point Likert scale
Cizglggfsguycs 405 072 5-point Likert scale
Task-Technology Fit  4.08  0.65 S-point Likert scale
Expectation 395  0.79 5-point Likert scale
Performance 415  0.62 5-point Likert scale
Satisfaction 4.10  0.70 S-point Likert scale
FAA 022 015 Positive = greater left frontal

activity

After the data cleansing phase, the collected data were
analyzed using partial least squares structural equation
modeling (PLS-SEM) with SmartPLS software (version
3.3.9). PLS-SEM was chosen due to its suitability for
exploratory research and non-normal data distributions,
particularly for EEG-derived FAA [71]. The analysis
proceeded in two steps: (1) measurement model assessment
to evaluate reliability and validity, and (2) structural model
assessment to test hypothesized relationships. Bootstrapping
(5,000 resamples) was used to estimate path coefficients,
t-values, and confidence intervals. PLSpredict was applied to
assess out-of-sample predictive power, ensuring model
robustness.

IV. RESULT AND DISCUSSION

This study reports the measurement model first, followed
by the structural model, in accordance with two-step
analytical techniques [75]. This two-step process verifies that
our conclusions regarding structural relationships were
derived from a collection of assessment tools with
appropriate psychometric qualities [76].

A. Measurement Model

The reliability and validity of the measurement model
were assessed using PLS-SEM to ensure the robustness of the
constructs. Reliability was evaluated through Cronbach’s

alpha and Composite Reliability (CR), with values exceeding
the recommended threshold of 0.70 for all constructs
(Cronbach’s a range: 0.867—0.932; CR range: 0.890-0.940),
indicating strong internal consistency [77]. Convergent
validity was assessed via Average Variance Extracted (AVE),
with all constructs except Expectation (AVE 0.441)
meeting the threshold of 0.50. The slightly lower AVE for
Expectation is justified based on established guidelines [77],
which suggest that AVE values above 0.36 are acceptable
when supported by high CR (0.890 for Expectation) and
factor loadings that contribute to content validity. The
Expectation construct comprises six items (EX1-EX6, factor
loadings: 0.665—0.792), with three items (EX3: 0.697, EX4:
0.680, EX5: 0.665) slightly below the ideal threshold of 0.70.
Removing these items was considered but deemed
inappropriate, as they capture essential facets of learners’
expectations (e.g., improved learning outcomes, simplified
learning processes, and compatibility with learning styles),
ensuring content validity [77]. Retaining all items maintains
the theoretical comprehensiveness of the construct, which is
critical for assessing learners’ expectations of VR-based EFL
learning. Discriminant validity was confirmed using the
Heterotrait-Monotrait (HTMT) ratio, with all values below
0.90 (range: 0.341-0.846, see Table 3), indicating that
constructs are distinct [71]. Collinearity was assessed using
the variance inflation factor (VIF), with all values below 3.0,
confirming no multicollinearity issues. These metrics
collectively demonstrate the psychometric robustness of the
measurement model, supporting its suitability for structural
modeling.

Table 3. Discriminant validity of PLS-SEM (the Heterotrait-Monotrait ratio,

HTMT)
EX PP SAT TTF Task Tech

EX

PP 0.815

SAT 0.341 0.425

TTF 0.736 0.759 0.415
Task 0.707 0.712 0.562 0.770
Tech 0.735 0.738 0.512 0.817 0.846
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Note: EX = Expectation, PP = Perceived Performance, SAT = Satisfaction,
TTF = Task-Technology Fit

B. Structural Model

The structural modeling stage of PLS-SEM involved the
bootstrapping of SmartPLS to obtain the path coefficient (),
R-squared (R?), and the corresponding t-values [78]. The
PLSpredict procedure was applied to assess the
out-of-sample predictive power of the structural model, as
recommended by [79]. The structural modeling results
(Table 2) showed that the participants’ expectation about the
VR-based language learning significantly affected their
perceived performance of VR (= 0.494, t = 6.746, CI 95%
[0.342, 0.629]). Task-Technology Fit (TTF) of VR-based
language learning was also significant to their perceived
performance of VR (8 = 0.378, ¢t = 5.232, CI 95% [0.244,
0.532]). In addition, the task characteristic of VR was found
to be significantly associated with EFL learners’ satisfaction
(£ =0.351,1=2.909, CI 95% [0.121, 0.591]). Both variables
of technology and task characteristics significantly
influenced the TTF (=0.335 and 0.487,t=4.168 and 5.516,
CI 95% [0.181, 0.498 and 0.300, 0.649] respectively). The
participants’ FAA was found to have a statistically marginal
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moderating effect on the relationship between expectation
and satisfaction (f = 0.124, ¢+ = 1.990, CI 95% [—0.021,
0.227]). This preliminary finding suggests a modest influence
of FAA on how expectations translate to satisfaction,
potentially reflecting affective processes such as approach
motivation [61]. However, given the marginal significance,
this result should be interpreted cautiously, and further
research with larger samples or replication is needed to
confirm the robustness of this moderating pathway. Based on
the report of [78], the path coefficients £ indicate weak,
modest, moderate, and strong effect sizes of the structural
model when ranging from 0 to 0.10, 0.11 to 0.30, 0.30 to 0.50
and > 0.50, respectively. Thus, the effect sizes of the
significant associations in this model were moderate,
whereas the effect size of the moderating effect of FAA on
expectations and satisfaction was modest and warrants
cautious interpretation. The results of the structural model are
shown in Fig. 2.

Frontal Alpha
Asymmetry

——————— e g ——

Satisfaction
R*=334

)

/

Expectancy-Disconfirmation _

Theory

Fig. 2. Results of PLS-SEM.

Moreover, the observed FAA wvalues in this study
(M=0.22,SD = 0.15) indicate a moderate level of left frontal
activity, suggesting that participants generally exhibited
approach-oriented motivational states during the VR-based
EFL learning session. According to prior neuroscience
literature [61, 62], FAA values typically range from —0.5 to
0.5 in studies of emotional and motivational responses, with
positive values (e.g., >0) indicating greater left frontal
activity associated with positive emotions and approach
behaviors, and negative values (e.g., <0) indicating
withdrawal behaviors. Our mean FAA value of 0.22 aligns
with moderate approach motivation, consistent with
participants’ engagement in the immersive and interactive
VR environment. This finding supports the significant
moderating effect of FAA on the relationship between
expectations and satisfaction (§ = 0.124, r = 1.990, CI 95%
[-0.021, 0.227]), suggesting that positive emotional
responses enhance satisfaction when expectations are met or
exceeded. These results underscore the importance of
affective states in shaping learner outcomes in
technology-mediated education.

As previously discussed, we evaluated the predictive
performance of our model using the PLSpredict method. The
@’ values for all endogenous constructs were positive,
indicating that they surpassed the most basic benchmark
suggested by [67]. This implies that our PLS-SEM model has
predictive validity for all constructs. We also examined the
PLSpredict metrics to assess the out-of-sample prediction
performance of our model and obtain evidence of external
validity [66]. The results of the prediction metrics revealed
that the indicators had a low predictive power for the latent
variables. However, the latent variables had a high predictive
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power at the structural level, as shown by the Q7 values of the
constructs (Performance = 0.603, Satisfaction = 0.269, and
TTF =0.579).

VR is one of the newest and most promising technologies
for (language) education and training [80], which has the
potential to revolutionize educational research and
praxis [81]. Therefore, larger amounts of empirical evidence
are required to examine its value in education [82]. This study
combined the TTF model and expectancy disconfirmation
theory to propose a research model with 10 research
hypotheses to be examined with PLS-SEM; the novelty of
this study lies in it being the first to include both
physiological data and questionnaire responses.

The results of PLS-SEM indicate that both the task and
technology characteristics of VR have significant
associations with TTF of VR-based language learning, which
reinforces the statement that TTF refers to “the degree to
which a technology assists an individual in performing their
tasks” [70] (p. 216). The results further reveal that in the
VR-based language learning context, technology
characteristics have a greater coefficient than those of task
characteristics. Also, the degree of fit between task and
technology have a significant influence on EFL learners’
performance, which is consistent with the findings of [83, 84].
Considering the relationship between variables in the TTF
model and EFL learners’ satisfaction with VR-based
language learning, the results demonstrate that the task
characteristics of VR are significant to EFL learners’
satisfaction, whereas the technological characteristics per se
are not. Counterintuitively, EFL learners’ expectations of
VR-based language learning influence their performance but
not their satisfaction with VR. However, participants’ FAA is
a significant moderator between their expectations and
satisfaction, indicating that their relationship may vary by the
existence of FAA. This implies that even if there may not be
much of a direct relationship between the variables of
expectation and satisfaction, the moderator of FAA is still
quite important in shaping the relationship.

The theoretical implications of this study lie mainly in its
two major novelties. First, it is the first study to address the
issue of how EFL learners perceive the applicability of
VR-based language learning via the integration of the TTF
model and expectancy disconfirmation theory. Second, to the
best of our knowledge, this is the first time that physiological
data has been included in a structural equation model as a
moderator. The moderating effect shows that, although the
association between EFL learners’ expectations and
satisfaction with VR-based language learning may not be
significant on its own, the relationship becomes substantial
when considering the moderating variable. Considering this,
a proper assessment of the structural relationship between
physiological data, such as EEG, will require further
research.

The practical implications of this study are as follows: Our
results support the statement [69]: even a brief use
(approximately 20 min per participant) of immersive VR
applications  effectively enhances foreign language
vocabulary learning. EFL learners may benefit from the use
of VR, and practitioners of EFL education can use VR as a
part of in-class pedagogy or encourage learners to use it as a
part of their assignments. Moreover, the moderating effect of
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the FAA highlights the importance of EFL learners’ positive
emotions (i.e., approach behavior). Creating a “user-friendly”
or “stress-free” VR-based language-learning environment is
a priority for the course designers of such materials.

V.

VR technologies are known for delivering immersive
online entertainment experiences. Educators also use this
experience for pedagogy; however, further insights are
required for optimizing VR-based language learning. The
present study recruited 159 participants to collect feedback
on VR-based language learning via a self-report
questionnaire and physiological information from an EEG.
Ten research hypotheses were proposed and examined using
PLS-SEM, which revealed that six of the ten hypotheses were
accepted. The findings of this present study provide new
insights into the applicability of VR-based language learning
in EFL learning.

The findings of this present study provide new insights
into the applicability of VR-based language learning in EFL
learning. Notably, the significant associations between task
characteristics, technology characteristics, task-technology
fit, and performance highlight the importance of aligning VR
features with pedagogical tasks to enhance learner outcomes.
The expectation—performance and expectation—satisfaction
pathways further underscore the role of learners’ prior
expectations in shaping their VR experience. The preliminary
moderating effect of Frontal Alpha Asymmetry (FAA) on the
expectation—satisfaction relationship (8 = 0.124, ¢t = 1.990)
suggests that affective states may influence satisfaction, but
this finding is statistically marginal and should be interpreted
with caution. Future research is needed to replicate this result
with larger samples or longitudinal designs to establish the
robustness of FAA’s moderating role.

The limitations of this study stem from its exploratory
nature and several specific constraints that warrant further
discussion. First, the sample was restricted to Taiwanese EFL
learners with intermediate English proficiency (TOEIC
scores 550-580), which may limit the generalizability of
findings. Cultural factors, such as Taiwan’s collectivist
educational context, may influence learners’ perceptions of
VR-based learning environments, which emphasize
collaborative and interactive tasks. Similarly, linguistic
differences, such as the phonological and syntactic structures
of Mandarin as a first language, may affect engagement with
English in VR settings compared to learners with other
linguistic backgrounds (e.g., Romance or Germanic
languages). Additionally, learners with beginner or advanced
proficiency levels may exhibit different responses to
VR-based learning due to variations in cognitive load or
language processing demands. Second, while Frontal Alpha
Asymmetry (FAA) provides valuable neurophysiological
data, EEG’s limited spatial resolution restricts its ability to
pinpoint precise brain regions compared to methods like
functional Magnetic Resonance Imaging (fMRI) or
functional near-infrared spectroscopy (fNIRS). These
complementary methods could offer deeper insights into the
neural correlations of VR-based learning. Third, the brief
20-minute VR exposure in this study may have been
influenced by novelty effects, potentially inflating learners’
satisfaction or performance perceptions. Longer-term VR use
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could produce different outcomes as learners become
accustomed to technology. Finally, the relatively low R?
value for satisfaction (0.334), though considered moderate in
PLS-SEM, suggests that other factors, such as learner
motivation or prior VR experience, may significantly
influence satisfaction but were not included in the model.
Future research should address these limitations by: (1)
incorporating culturally and linguistically diverse samples,
including learners with varying proficiency levels; (2)
combining EEG with fMRI or fNIRS to enhance neural
insights; (3) examining longer-term VR interventions to
mitigate novelty effects; and (4) including additional
variables, such as motivation or prior technology experience,
as suggested by the Cognitive-Affective-Social Theory of
Learning in digital environments (CASTLE), to improve the
explanatory power of the model.

APPENDIX

Table Al. The measurement of the survey

Construct Item Factor Loading

I need to learn English
within immersive
context.

I often need advice from
someone else about
easier methods to solve
academic problems
1 often learn by gathering
information from others
T often require
interaction during
English learning process
I often require timely
feedback during learning
process

TC1 0.752

TC2 0.884
Task Characteristics
Cronbach’s a = 0.908
CR=0.910

AVE =0.733

TC3 0.860

TC4 0.894

TCS 0.884

Learning using VR
encourages active
engagements with both
peers and instructors
I constantly study at an
immersive learning
environment created by
VR.

I constantly have a
choice to interact with
others in an immersive
learning context using
VR.

I constantly have a
choice to interact using
video, audio, images or
text in an immersive
learning context using
VR.

Overall, VR technology
characteristics are
suitable for promoting
effective English
learning

TEC1 0.768

TEC2 0.875

Technology
Characteristics (TEC)
Cronbach’s a = 867
CR=0.891
AVE = 0.605

TEC3 0.785

TEC4 0.890

TECS 0.657

Within immersive
learning using VR, I
would like to solve

academic tasks of

English through active
engagement with peer
students and facilitators.

Within immersive
learning using VR, I

would like to gain critical
thinking skills.

Within immersive
learning using VR, I

would like to get timely

TTF1 0.773

Task-Technology
Fit (TTF)
Cronbach’s o = 909
CR=0913
AVE =0.612

TTF2 0.833

TTF3 0.802
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feedback.

Within immersive
learning using VR, 1
would like to learn
English naturally.

TTF4 0.840

Overall, I would like to
gain new knowledge
through the academic use
of VR.

TTF5 0.765

Learning to work with

EX1 VR is easy for me.

0.751

It is easy for me to
become skillful in the
use of VR

EX2 0.792

Using VR I can improve
my learning
in the Tourism English

EX3 0.697

Expectations
Cronbach’s

Using VR I can simplify
my process of learning in
the Tourism English

a=0.873
CR=0.890
AVE =0.441

EX4 0.680

Study by VR fits well in
the way 1
learn

EX5 0.665

The resources and
EX6 aCtlv}thS (_)f VR are
compatible with the way I
learn

0.694

Perceived Performance

The layout and user
interface of VR
are friendly

POl 0.874

It is easy to navigate

P2 through VR

0.842

The VR offers the

P03 services I need

Cronbach’s 0.837

o=0.932

I feel comfortable using
the services
offered by the virtual
platform

CR=0.939

AVE =0.601 PO4 0.804

VR provides information
that is easy to
comprehend.

POS5 0.806

I am satisfied with the
performance of the
VR-based language

learning course

SATI1 0.884

Satisfaction

I am satisfied with the
experience of
participating in a VR
learning course.

Cronbach’s
a=0.932
CR =10.940
AVE =0.709

SAT2 0.846

My decision to do an
undergraduate
VR distance was wise.

SAT3 0.877
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