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Abstract—This study investigates the structural relationships 

between task characteristics, technological features, 

task–technology fit, performance, satisfaction, and expectation 

within a Virtual Reality (VR) environment for English as a 

Foreign Language (EFL) learning. Grounded in the 

task-technology fit and expectancy disconfirmation theories, we 

further explore the moderating role of Electroencephalography 

(EEG)-detected Frontal Alpha Asymmetry (FAA) in these 

relationships. A total of 159 participants engaged in a 20-minute 

VR-based EFL course, and the data were analyzed using Partial 

Least Squares Structural Equation Modeling (PLS-SEM). 

Results demonstrated the reliability and validity of the 

measurement model, and six of ten hypothesized pathways in 

the structural model were supported. Notably, FAA 

significantly moderates the relationship between expectation 

and satisfaction, highlighting the potential of physiological 

measures in understanding user experiences. This study offers a 

novel contribution by integrating EEG data into SEM analysis 

to examine EFL learners’ perceptions of VR-based language 

learning, providing critical insights into the interplay between 

cognitive and technological factors in immersive educational 

environments. 
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I. INTRODUCTION  

In recent years, the development of digital technology has 

created many unprecedented learning platforms and contexts, 

with a growing focus on Virtual Reality (VR) for language 

learning [1]. Head-mounted VR can create immersive 3D 

virtual environments where users can interact and converse 

with virtual objects or components via electronic devices, 

thereby enhancing the realism of the environment and 

increasing the opportunities for language learners’ 

scaffolding via communication complexity and accuracy [2]. 

This is beneficial for foreign language learners and has 

positive effects on learning [3–6]. Lan [7] pointed out that the 

application of VR facilitates English as a Foreign Language 

(EFL) learning via language correctness and appropriate 

expressions of foreign languages. However, few empirical 

studies on the development of VR for foreign language 

learning content have argued that current VR technology is 

not applicable to all educational environments [8]. Hence, 

this study combined the Task-Technology Fit theory  

(TTF) [9–11], which is widely used by scholars to investigate 

the relationship between technology use and performance 

outcomes, along with the expectancy disconfirmation  

theory [12–15] to investigate issues related to technology use, 

digital course learning expectations, and education.  

Language learning utilizes extensive brain neural 

networks [16, 17], modifying the neural connections of the 

brain during learning and memory. Over the past 30 years, 

new technologies for research on the brain and neuroscience 

have emerged. Neurophysiological signals and brain imaging 

techniques such as the Electrical Encephalogram (EEG), 

Positron Emission Tomography (PET), functional Magnetic 

Resonance Imaging (fMRI), single photon computer 

tomography (SPECT), Magnetoencephalography (MEG) 

have been used to further investigate brain regions related to 

neural function and link them to emotional and mental 

activities (thoughts, emotions, reasoning processes, and 

understanding) in conscious subjects [18]. Utilizing EEG for 

direct measurements of learners’ cognitive processes and 

emotions expands the scope of educational neuroscience [19], 

leading to greater insights. The role of Frontal Alpha 

Asymmetry (FAA) has been particularly identified to 

significantly moderate the relationship between behavior and 

mental states, such as anxiety [20] or emotional stimuli [21]. 

FAA presents theories and methods typically utilized in 

approach/withdrawal motivation research and consolidates 

research on applied FAA with an emphasis on product design, 

marketing, brain-computer communication, and mental 

health studies, where approach motivation is of interest. 

However, the role of EFL learners’ FAA in their learning has 

been underexplored. To bridge this academic gap, this study 

intends to combine the perspective of educational 

neuroscience with the catering tourism English VR learning 

scenario developed and applied to address the following 

research questions: 

1) What are EFL learners’ perceptions of the suitability of 

VR for English learning? 

2) Is there any expectancy disconfirmation regarding EFL 

learners’ thoughts on using VR for English learning? 

3) What is a comprehensive model of VR task fit, EFL 

learners’ expectations, and brainwave data after 

experiencing VR-based language learning? 

II. LITERATURE REVIEW 

A. VR and L2 Learning  

An immersive VR-constructed language learning 

environment would not only enable learners to hear sounds 

but also directly use language for exploration and 

socialization [22]. Consequently, learners can focus more on 

their communication abilities [5]. Cheng et al. [23] used VR 

to teach Japanese greetings and bowing behavior, 

emphasizing its potential for cultural interaction, benefiting 

L2F learning. Garcia et al. [24] combined immersive VR 

games with Spanish language teaching to reduce the 
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expenses of traveling to achieve immersion in a foreign 

language context; they reported that VR could be applied to 

any language learning and extended to most scenarios and 

fields. Chen [25] evaluated the learning outcomes of 

Taiwanese students using a virtual reality English learning 

platform and found that VR helps learners develop more 

complex and higher-level thinking; improves students’ 

cognition of English phonology, morphology, syntax, and 

sentences; and positively affects their L2 learning. Current 

research on applying VR to L2 learning is focused on 

learning outcomes or learners’ subjective feelings; however, 

the underlying mechanism of learners who experience 

VR-based language learning remains unknown. 

Neuroscience can bridge this research gap, as it evaluates the 

effectiveness of a specific method for education and 

enhances teaching methods and outcomes [26]. Hence, this 

study utilized data on EFL learners’ neuronal activities in the 

brain while undertaking VR-based language learning.  

B. Task-Technology Fit Theory 

Task-Technology Fit (TTF) theory posits that the 

alignment between task characteristics and technology 

functionalities enhances performance and user  

satisfaction [27, 28]. In educational contexts, TTF has been 

applied to evaluate how technologies, such as Virtual Reality 

(VR), support specific learning tasks [29]. For English as a 

Foreign Language (EFL) learning, VR offers immersive 

environments that simulate real-world communication 

scenarios, potentially improving vocabulary acquisition and 

communicative competence [30]. Recent studies have further 

explored VR’s efficacy in language learning. For instance, 

Tai et al. [31] demonstrated that a VR application 

significantly enhanced EFL learners’ vocabulary retention 

compared to traditional methods, attributing this to the 

immersive and interactive nature of VR environments. 

Similarly, Baceviciute et al. [32] used EEG to investigate 

cognitive engagement during reading tasks in VR, finding 

that environmental embeddedness in VR increased cognitive 

load and knowledge transfer compared to non-immersive 

settings. Hofmann et al. [33] used EEG to decode emotional 

arousal in immersive VR experiences, finding heightened 

emotional responses compared to 2D environments, which 

supports VR’s potential to elicit strong affective states. 

Similarly, Cao and Luo [34] combined VR with EEG 

biofeedback to enhance EFL proficiency, reporting that 

real-time FAA adjustments improved learner engagement 

and vocabulary acquisition. These studies highlight the 

synergy between VR and EEG in capturing affective and 

cognitive processes, yet few have applied FAA to examine 

the expectation–satisfaction relationship in EFL learning, as 

proposed in this study. Moreover, the cognitive and affective 

mechanisms underlying these benefits, such as 

neurophysiological responses measured via EEG, remain 

underexplored, warranting further investigation in EFL 

contexts. 

C. Expectancy Disconfirmation Theory 

Expectancy disconfirmation theory is a widely accepted 

model of consumer behavior that is often used to explain and 

predict consumer satisfaction and repurchase intentions for 

services or products [35–38]. Initially proposed by  

Yuce et al. [39, 40], and found in the literature related to 

psychology and marketing, this theory has now been adopted 

by many different fields, including public administration and 

civic service [41–44], online game design and  

evaluation [45, 46], corporate image and social  

responsibility [47, 48], and teacher vitality and  

expectations [49]. When considering the technology 

integration in education, the expectancy disconfirmation 

theory contributes to the current learning of digital 

technology. In addition to learning outcomes, the model 

incorporates student expectations of digital courses into the 

analysis, considerably increasing the applicability of the 

theoretical model in investigating education-related issues 

[50]. Previous studies [51, 52] have confirmed the predictive 

capacity of the expectancy disconfirmation theory model for 

the continued use of technology-based services. Until now, 

there has been no relevant research on applying the 

expectancy disconfirmation theory to VR-based language 

teaching and learning, as elucidated by the previous 

discussion. Therefore, this study uses expectancy 

disconfirmation theory to investigate the expectations, 

perceived effectiveness, failure, and satisfaction of students 

using VR-based language learning to learn EFL courses. 

D. Frontal Alpha Asymmetry 

Neuroscience is recognized for its potential to improve our 

quality of life and learning development [53], and 

educational neuroscience helps us understand brain function, 

which is essential for enhancing learning and teaching 

processes [54]. In terms of EFL teaching and learning, 

language learning and acquisition research have been 

inseparable from the human mind and neuroscience research 

[55, 56]. Most related research on using VR for language 

learning also utilizes objective physiological measurements, 

such as EEG, for detecting users’ affective responses in VR 

environments [57]. In this study, we focus on Frontal Alpha 

Asymmetry (FAA), a score indicating the difference between 

the right and left prefrontal cortex activities [58]. FAA was 

chosen as the primary EEG metric due to its well-established 

role as a biomarker of emotional responsiveness and 

approach/withdrawal motivation, which are critical for 

understanding learners’ affective states in immersive 

VR-based language learning [59, 60]. Unlike other EEG 

metrics, such as theta power (associated with cognitive load) 

or beta power (linked to attention), FAA specifically captures 

motivational and emotional processes that align with the 

expectancy disconfirmation theory’s focus on satisfaction 

and affective outcomes [61, 62]. For instance, FAA has been 

used to assess approach motivation in product design, 

marketing, and mental health studies [63–65], making it 

particularly relevant for evaluating learners’ engagement 

with VR technology. 

FAA is calculated by subtracting the natural log (ln) of the 

Power Spectral Density (PSD) of the alpha brainwave (8–13 

Hz) at the left prefrontal site (F3) from the right prefrontal 

site (F4) in the International 10–20 System [58]. A positive 

FAA score indicates greater relative left frontal activity, 

associated with positive emotions and approach-related 

behaviors, whereas a negative FAA score indicates greater 

right frontal activity, linked to negative emotions and 

withdrawal-related behaviors [61, 62]. Prior studies have 

established that FAA values typically range from −0.5 to 0.5 

in educational and emotional response contexts, with positive 
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values indicating a propensity for approach motivation [62]. 

This makes FAA an ideal metric for examining how affective 

states moderate the relationship between learners’ 

expectations and satisfaction in VR-based EFL learning. 

Although other EEG metrics, such as the Theta/Alpha ratio 

for cognitive load [66], could provide insights into cognitive 

effort, FAA’s focus on affective processes aligns more 

closely with the study’s objectives of integrating cognitive 

(TTF) and affective (EDT) frameworks. To the best of our 

knowledge, no prior research has included FAA in a 

structural equation model for VR-based language learning, 

making this study a novel contribution. Recent conceptual 

models, such as the Cognitive-Affective Theory of Learning 

with Media (CATLM) [67], emphasize the role of affective 

factors in multimedia learning, further supporting FAA’s 

inclusion as a moderator in our model [68, 69]. 

E. Model Development and Research Hypotheses

Based on research questions and reviewed literature on the

integration of Task-Technology Fit (TTF) and Expectancy 

Disconfirmation Theory (EDT), we propose a conceptual 

framework that synthesizes these models to explain EFL 

learners’ experiences in VR-based language learning. TTF 

posits that the alignment between task characteristics (e.g., 

immersive language learning requirements) and technology 

characteristics (e.g., VR’s interactive and immersive features) 

enhances task-technology fit, which positively influences 

performance [70]. In contrast, EDT focuses on the 

psychological process where learners’ expectations of 

technology influence their perceived performance and 

subsequent satisfaction, moderated by  

disconfirmation [39, 40]. In this study, TTF provides a 

structural lens to assess how VR supports EFL learning tasks, 

while EDT captures learners’ affective and evaluative 

responses to the VR experience. 

The integration of these frameworks is grounded in the 

assumption that cognitive (task-technology alignment) and 

affective (expectations and satisfaction) processes are 

interdependent in technology-mediated learning [67]. For 

instance, a high degree of Task-Technology Fit (TTF) may 

enhance learners’ perceived performance, which aligns with 

EDT’s performance construct, subsequently influencing 

satisfaction. Additionally, learners’ expectations (EDT) may 

shape their perceptions of Task-Technology Fit (TTF), as 

prior beliefs about VR’s capabilities influence how learners 

evaluate its suitability for EFL tasks. The inclusion of Frontal 

Alpha Asymmetry (FAA) as a physiological moderator 

further bridges these frameworks by capturing affective 

responses (e.g., approach/withdrawal motivation) that 

modulate the expectation-satisfaction relationship [59]. 

To illustrate this integration, we present Fig. 1, which 

depicts the conceptual interplay between TTF and EDT. The 

diagram shows how task and technology characteristics (TTF) 

feed into task-technology fit and performance, which interact 

with expectations, performance, and satisfaction (EDT). 

FAA is positioned as a moderator influencing the EDT 

pathway, highlighting the role of affective states in shaping 

learner outcomes. The ten hypotheses are presented as 

follows: 

⚫ H1: VR task characteristics have a significant

association with the perceived task-technology

adaptability of VR-based language learning.

⚫ H2: The technological characteristics of VR are

significantly associated with the perceived 

task-technology adaptability of VR-based language 

learning. 

⚫ H3: Task characteristics of VR will positively influence

learner satisfaction with VR-based language learning.

⚫ H4: Technological characteristics of VR will positively

influence learner satisfaction with VR-based language

learning.

⚫ H5: Adaptability of VR and VR task technology has a

significant association with the applicability of

VR-based language learning.

⚫ H6: Participants’ expectations of VR-based language

learning are significantly associated with their

perceived performance of VR.

⚫ H7: Participants’ expectations of VR-based language

learning are significantly associated with their

perceived course satisfaction.

⚫ H8: Participants’ perceived performance of VR-based

language learning is significantly associated with their

perceived course satisfaction.

⚫ H9: The FAA of the participants calculated during

VR-based EFL learning has a moderating effect on the

association between their expectations and

performance.

⚫ H10: The FAA of the participants calculated during

VR-based EFL learning has a moderating effect on the

association between their expectations and satisfaction.

Fig. 1. Proposed research model. 

III. MATERIALS AND METHODS

A. Measurements

This study was revised based on [70] TTF model. Given

that students could not control the amount of time spent using 

VR in class, the utilization dimension was deleted, and task 

characteristics, technology characteristics, TTF, and 

performance were retained. The performance is similar to the 

effect aspect in the expectancy disconfirmation model; 

therefore, this study combined the two aspects of this model 

to form a part of the integrated mode, which covered six 

dimensions: “Task Characteristics”, “Technology 

Characteristics”, “Task Technology Fit Degree”, 

“Expectation”, “Performance”, and “Satisfaction” (please see 

Table A1 in Appendix for the detailed questionnaire). This 

present research adopted a five-point Likert scale (Strongly 

Agree = 5 and Strongly Disagree = 1) except for the FAA 

(please see the Appendix for the detailed questionnaire with 

the results of reliability and validity examinations). The 

equipment used in this study to collect EEG data was an 

eight-channel EEG manufactured by Thought Technology 

with the ProComp Infiniti encoder along with the BioGraph 

Infiniti software version 6.0, which has been prevalently 
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employed in previous academic works such as those of [71]. 

The VR content was presented using an HTC Vive Pro. 

B. Participants 

To acquire results with statistical power, G*Power was 

used to calculate the appropriate sample size for PLS-SEM. 

With the following parameters: effect size f² = 0.15, α err 

prob = 0.05, and 1-β err prob = 0.95, the result of G*Power 

suggested an appropriate sample size of 138 (n = 138) and 

this study recruited 159 participants. All participants visited a 

soundproof laboratory to experience a 15-minute-long 

VR-based EFL course. Before the onset of this study, they 

were informed about the nature and procedure of the study, 

with the assurance that they could withdraw at any time 

without any penalty. After completing the experiment, they 

were expected to sign a consent form individually, which 

confirmed that their participation in this experiment was in 

accordance with the Helsinki Declaration of 1964. This study 

was conducted with the approval of the Institutional Review 

Board (NCKU HREC-E-110-577-2).  

All the participants had a TOEIC score ranging from 

550–580, indicating their English proficiency levels. 

According to the Education Testing Service (ETS), the 

average TOEIC score of Taiwanese test-takers was 568 in the 

year 2021 [72]. Furthermore, they had no cognitive and 

mental deficits, prior brain surgery, or medications that 

would affect their neuronal activities.  

C. Research Procedure 

As mentioned previously, every participant experienced 

the VR-based language-learning program. They wore 

Head-Mounted Display (HMD) VR for the program with 

EEG electrodes positioned at F3 and F4 to measure their 

brainwaves, as this section of the brain oversees the 

underlying affective processing [73]. The baseline 

brainwaves were detected and captured in the first two 

minutes of the experiment as the resting state, wherein 

classical music was played, and the participants were asked 

to relax in this phase. Subsequently, the VR-based language 

learning session was conducted for 20 min. Participants’ 

brainwave data were collected continuously throughout the 

study period. Subsequently, all participants completed a 

questionnaire. The entire process was concluded with a 

consent form signed by the participants, and a coupon of 

NTD 300 (approximately USD 10) was given to them as a 

token of appreciation. 

The instructional content in the VR environment focused 

on everyday conversational English to enhance participants’ 

communicative competence. The vocabulary covered 

included approximately 50 high-frequency phrases and 

situational terms related to travel scenarios (e.g., greetings, 

ordering food, asking for directions, checking into a hotel). 

Linguistic tasks included sentence construction exercises, 

where participants formed sentences using target vocabulary, 

and pronunciation practice with real-time feedback from the 

VR system. Communicative tasks involved role-playing 

dialogues with virtual native English speakers in simulated 

environments (e.g., a virtual airport or restaurant), requiring 

participants to respond to prompts and engage in turn-taking 

conversations. Interactions within the VR context were 

designed to be immersive and interactive, leveraging 3D 

visuals, spatial audio, and gesture-based controls to simulate 

real-world language use. For example, participants could 

“pick up” virtual objects (e.g., a menu) to trigger language 

tasks or navigate through scenarios by responding to 

contextual cues. These tasks were calibrated to impose a 

moderate cognitive load, aligning with the participants’ 

intermediate proficiency, while fostering engagement 

through gamified elements (e.g., earning points for correct 

responses). The content was informed by communicative 

language teaching principles [74] and aimed to stimulate both 

cognitive processing (e.g., vocabulary recall, syntactic 

accuracy) and affective responses (e.g., motivation, 

confidence), which were measured via questionnaire 

responses and EEG-derived Frontal Alpha Asymmetry 

(FAA). 

Prior to the VR session, participants completed a 2-minute 

baseline EEG recording during a resting state with classical 

music to establish a reference for FAA calculations. The EEG 

data were recorded continuously during the VR session using 

an eight-channel EEG system (Thought Technology, 

ProComp Infiniti encoder with BioGraph Infiniti software 

version 6.0). Post-experiment, participants completed a 

questionnaire to assess Task Characteristics, Technology 

Characteristics, Task-Technology Fit, Expectation, 

Performance, and Satisfaction using a five-point Likert scale 

(see Appendix for details). 

D. Data Collection and Analysis 

Data were collected from 159 participants who completed 

a 20-minute VR-based English as a Foreign Language (EFL) 

course in a soundproof laboratory. The data collection 

process involved two primary sources: (1) 

neurophysiological data via electroencephalography (EEG) 

and (2) self-reported data via a questionnaire. EEG data were 

recorded using an eight-channel EEG system (Thought 

Technology, ProComp Infiniti encoder with BioGraph 

Infiniti software version 6.0) with electrodes placed at F3 and 

F4 according to the International 10–20 System to capture 

Frontal Alpha Asymmetry (FAA). The EEG system operated 

at a sampling rate of 256 Hz, with a 0.1–100 Hz notch filter to 

remove powerline interference and a bandpass filter  

(8–13 Hz) applied to isolate alpha band activity. Electrode 

impedance was maintained below 5 kΩ, and a linked-ear 

reference was used. Baseline EEG data were collected during 

a 2-minute resting state with classical music (neutral 

stimulus), followed by continuous recording during the VR 

session. 

EEG data were preprocessed to ensure high-quality signals 

for FAA analysis. Automated artifact rejection was applied 

using BioGraph Infiniti software to eliminate eye blinks, 

muscle movements, and electrical interference, with a 

threshold of ±100 μV for artifact detection. Additionally, a 

manual inspection by a trained technician removed residual 

artifacts, resulting in less than 5% data loss per participant. 

For power spectral density (PSD) analysis, EEG signals were 

segmented into 2-second epochs with 50% overlap, and Fast 

Fourier Transform (FFT) was applied to compute PSD in the 

alpha band (8–13 Hz). FAA was calculated as the difference 

in natural log-transformed PSD between right (F4) and left 

(F3) prefrontal sites: FAA = ln(PSD_F4) – ln(PSD_F3). 

Positive FAA values indicate greater left frontal activity, 

associated with approach motivation [54]. Table 1 

International Journal of Information and Education Technology, Vol. 16, No. 1, 2026

53



  

summarizes mean PSD values and FAA scores for a subset of 

participants, demonstrating the quality of the EEG data. 

Table 2 presents the demographic characteristics and 

descriptive statistics for key variables. The sample consisted 

of 159 participants (58% female, 42% male; mean age = 20.4 

years, SD = 1.8; TOEIC scores ranging from 550–580, mean 

= 566.3, SD = 8.7). Means and standard deviations for the 

constructs are as follows: Task Characteristics (M = 4.12, SD 

= 0.68), Technology Characteristics (M = 4.05, SD = 0.72), 

TTF (M = 4.08, SD = 0.65), Expectation (M = 3.95, SD = 

0.79), Performance (M = 4.15, SD = 0.62), Satisfaction (M = 

4.10, SD = 0.70), and FAA (M = 0.22, SD = 0.15, positive 

values indicating greater left frontal activity, see Table 1 for 

details). These statistics provide insight into the sample’s 

composition and the distribution of key constructs. 
 

Table 1. Summary of EEG power spectral density and FAA scores 

Participant Subset 

(n = 30) 
PSD_F3 (μV²/Hz) 

PSD_F4 

(μV²/Hz) 
FAA Score 

Mean 2.45 2.28 0.23 

SD 0.62 0.59 0.16 
Range 1.80–3.50 1.70–3.40 0.05–0.45 

Note: PSD values represent alpha band (8–13 Hz) power at F3 (left) and 

F4 (right) sites. FAA = ln(PSD_F4) – ln(PSD_F3). Positive FAA indicates 

greater left frontal activity. 
 

Table 2. Demographic characteristics and descriptive statistics 

Variable Mean SD Notes 

Age 20.4 1.8 Range: 18–24 years 

Gender - - 58% Female, 42% Male 

TOEIC Score 566.3 8.7 Range: 550–580 

Task Characteristics 4.12 0.68 5-point Likert scale 

Technology 
Characteristics 

4.05 0.72 5-point Likert scale 

Task-Technology Fit 4.08 0.65 5-point Likert scale 

Expectation 3.95 0.79 5-point Likert scale 

Performance 4.15 0.62 5-point Likert scale 

Satisfaction 4.10 0.70 5-point Likert scale 

FAA 0.22 0.15 
Positive = greater left frontal 

activity 

 

After the data cleansing phase, the collected data were 

analyzed using partial least squares structural equation 

modeling (PLS-SEM) with SmartPLS software (version 

3.3.9). PLS-SEM was chosen due to its suitability for 

exploratory research and non-normal data distributions, 

particularly for EEG-derived FAA [71]. The analysis 

proceeded in two steps: (1) measurement model assessment 

to evaluate reliability and validity, and (2) structural model 

assessment to test hypothesized relationships. Bootstrapping 

(5,000 resamples) was used to estimate path coefficients, 

t-values, and confidence intervals. PLSpredict was applied to 

assess out-of-sample predictive power, ensuring model 

robustness. 

IV. RESULT AND DISCUSSION 

This study reports the measurement model first, followed 

by the structural model, in accordance with two-step 

analytical techniques [75]. This two-step process verifies that 

our conclusions regarding structural relationships were 

derived from a collection of assessment tools with 

appropriate psychometric qualities [76]. 

A. Measurement Model  

The reliability and validity of the measurement model 

were assessed using PLS-SEM to ensure the robustness of the 

constructs. Reliability was evaluated through Cronbach’s 

alpha and Composite Reliability (CR), with values exceeding 

the recommended threshold of 0.70 for all constructs 

(Cronbach’s α range: 0.867–0.932; CR range: 0.890–0.940), 

indicating strong internal consistency [77]. Convergent 

validity was assessed via Average Variance Extracted (AVE), 

with all constructs except Expectation (AVE = 0.441) 

meeting the threshold of 0.50. The slightly lower AVE for 

Expectation is justified based on established guidelines [77], 

which suggest that AVE values above 0.36 are acceptable 

when supported by high CR (0.890 for Expectation) and 

factor loadings that contribute to content validity. The 

Expectation construct comprises six items (EX1–EX6, factor 

loadings: 0.665–0.792), with three items (EX3: 0.697, EX4: 

0.680, EX5: 0.665) slightly below the ideal threshold of 0.70. 

Removing these items was considered but deemed 

inappropriate, as they capture essential facets of learners’ 

expectations (e.g., improved learning outcomes, simplified 

learning processes, and compatibility with learning styles), 

ensuring content validity [77]. Retaining all items maintains 

the theoretical comprehensiveness of the construct, which is 

critical for assessing learners’ expectations of VR-based EFL 

learning. Discriminant validity was confirmed using the 

Heterotrait-Monotrait (HTMT) ratio, with all values below 

0.90 (range: 0.341–0.846, see Table 3), indicating that 

constructs are distinct [71]. Collinearity was assessed using 

the variance inflation factor (VIF), with all values below 3.0, 

confirming no multicollinearity issues. These metrics 

collectively demonstrate the psychometric robustness of the 

measurement model, supporting its suitability for structural 

modeling. 
 

Table 3. Discriminant validity of PLS-SEM (the Heterotrait-Monotrait ratio, 
HTMT) 

 EX PP SAT TTF Task Tech 

EX       

PP 0.815      
SAT 0.341 0.425     

TTF 0.736 0.759 0.415    
Task 0.707 0.712 0.562 0.770   

Tech 0.735 0.738 0.512 0.817 0.846  

Note: EX = Expectation, PP = Perceived Performance, SAT = Satisfaction, 

TTF = Task-Technology Fit  

B. Structural Model 

The structural modeling stage of PLS-SEM involved the 

bootstrapping of SmartPLS to obtain the path coefficient (β), 

R-squared (R²), and the corresponding t-values [78]. The 

PLSpredict procedure was applied to assess the 

out-of-sample predictive power of the structural model, as 

recommended by [79]. The structural modeling results 

(Table 2) showed that the participants’ expectation about the 

VR-based language learning significantly affected their 

perceived performance of VR (β = 0.494, t = 6.746, CI 95% 

[0.342, 0.629]). Task-Technology Fit (TTF) of VR-based 

language learning was also significant to their perceived 

performance of VR (β = 0.378, t = 5.232, CI 95% [0.244, 

0.532]). In addition, the task characteristic of VR was found 

to be significantly associated with EFL learners’ satisfaction  

(β = 0.351, t = 2.909, CI 95% [0.121, 0.591]). Both variables 

of technology and task characteristics significantly 

influenced the TTF (β = 0.335 and 0.487, t = 4.168 and 5.516, 

CI 95% [0.181, 0.498 and 0.300, 0.649] respectively). The 

participants’ FAA was found to have a statistically marginal 
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moderating effect on the relationship between expectation 

and satisfaction (β = 0.124, t = 1.990, CI 95% [−0.021, 

0.227]). This preliminary finding suggests a modest influence 

of FAA on how expectations translate to satisfaction, 

potentially reflecting affective processes such as approach 

motivation [61]. However, given the marginal significance, 

this result should be interpreted cautiously, and further 

research with larger samples or replication is needed to 

confirm the robustness of this moderating pathway. Based on 

the report of [78], the path coefficients β indicate weak, 

modest, moderate, and strong effect sizes of the structural 

model when ranging from 0 to 0.10, 0.11 to 0.30, 0.30 to 0.50, 

and > 0.50, respectively. Thus, the effect sizes of the 

significant associations in this model were moderate, 

whereas the effect size of the moderating effect of FAA on 

expectations and satisfaction was modest and warrants 

cautious interpretation. The results of the structural model are 

shown in Fig. 2. 

Fig. 2. Results of PLS-SEM. 

Moreover, the observed FAA values in this study 

(M = 0.22, SD = 0.15) indicate a moderate level of left frontal 

activity, suggesting that participants generally exhibited 

approach-oriented motivational states during the VR-based 

EFL learning session. According to prior neuroscience 

literature [61, 62], FAA values typically range from −0.5 to 

0.5 in studies of emotional and motivational responses, with 

positive values (e.g., >0) indicating greater left frontal 

activity associated with positive emotions and approach 

behaviors, and negative values (e.g., <0) indicating 

withdrawal behaviors. Our mean FAA value of 0.22 aligns 

with moderate approach motivation, consistent with 

participants’ engagement in the immersive and interactive 

VR environment. This finding supports the significant 

moderating effect of FAA on the relationship between 

expectations and satisfaction (β = 0.124, t = 1.990, CI 95% 

[−0.021, 0.227]), suggesting that positive emotional 

responses enhance satisfaction when expectations are met or 

exceeded. These results underscore the importance of 

affective states in shaping learner outcomes in 

technology-mediated education. 

As previously discussed, we evaluated the predictive 

performance of our model using the PLSpredict method. The 

Q2 values for all endogenous constructs were positive, 

indicating that they surpassed the most basic benchmark 

suggested by [67]. This implies that our PLS-SEM model has 

predictive validity for all constructs. We also examined the 

PLSpredict metrics to assess the out-of-sample prediction 

performance of our model and obtain evidence of external 

validity [66]. The results of the prediction metrics revealed 

that the indicators had a low predictive power for the latent 

variables. However, the latent variables had a high predictive 

power at the structural level, as shown by the Q2 values of the 

constructs (Performance = 0.603, Satisfaction = 0.269, and 

TTF = 0.579). 

VR is one of the newest and most promising technologies 

for (language) education and training [80], which has the 

potential to revolutionize educational research and 

praxis [81]. Therefore, larger amounts of empirical evidence 

are required to examine its value in education [82]. This study 

combined the TTF model and expectancy disconfirmation 

theory to propose a research model with 10 research 

hypotheses to be examined with PLS-SEM; the novelty of 

this study lies in it being the first to include both 

physiological data and questionnaire responses.  

The results of PLS-SEM indicate that both the task and 

technology characteristics of VR have significant 

associations with TTF of VR-based language learning, which 

reinforces the statement that TTF refers to “the degree to 

which a technology assists an individual in performing their 

tasks” [70] (p. 216). The results further reveal that in the 

VR-based language learning context, technology 

characteristics have a greater coefficient than those of task 

characteristics. Also, the degree of fit between task and 

technology have a significant influence on EFL learners’ 

performance, which is consistent with the findings of [83, 84]. 

Considering the relationship between variables in the TTF 

model and EFL learners’ satisfaction with VR-based 

language learning, the results demonstrate that the task 

characteristics of VR are significant to EFL learners’ 

satisfaction, whereas the technological characteristics per se 

are not. Counterintuitively, EFL learners’ expectations of 

VR-based language learning influence their performance but 

not their satisfaction with VR. However, participants’ FAA is 

a significant moderator between their expectations and 

satisfaction, indicating that their relationship may vary by the 

existence of FAA. This implies that even if there may not be 

much of a direct relationship between the variables of 

expectation and satisfaction, the moderator of FAA is still 

quite important in shaping the relationship. 

The theoretical implications of this study lie mainly in its 

two major novelties. First, it is the first study to address the 

issue of how EFL learners perceive the applicability of 

VR-based language learning via the integration of the TTF 

model and expectancy disconfirmation theory. Second, to the 

best of our knowledge, this is the first time that physiological 

data has been included in a structural equation model as a 

moderator. The moderating effect shows that, although the 

association between EFL learners’ expectations and 

satisfaction with VR-based language learning may not be 

significant on its own, the relationship becomes substantial 

when considering the moderating variable. Considering this, 

a proper assessment of the structural relationship between 

physiological data, such as EEG, will require further 

research. 

The practical implications of this study are as follows: Our 

results support the statement [69]: even a brief use 

(approximately 20 min per participant) of immersive VR 

applications effectively enhances foreign language 

vocabulary learning. EFL learners may benefit from the use 

of VR, and practitioners of EFL education can use VR as a 

part of in-class pedagogy or encourage learners to use it as a 

part of their assignments. Moreover, the moderating effect of 
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the FAA highlights the importance of EFL learners’ positive 

emotions (i.e., approach behavior). Creating a “user-friendly” 

or “stress-free” VR-based language-learning environment is 

a priority for the course designers of such materials. 

V. CONCLUSION 

VR technologies are known for delivering immersive 

online entertainment experiences. Educators also use this 

experience for pedagogy; however, further insights are 

required for optimizing VR-based language learning. The 

present study recruited 159 participants to collect feedback 

on VR-based language learning via a self-report 

questionnaire and physiological information from an EEG. 

Ten research hypotheses were proposed and examined using 

PLS-SEM, which revealed that six of the ten hypotheses were 

accepted. The findings of this present study provide new 

insights into the applicability of VR-based language learning 

in EFL learning. 

The findings of this present study provide new insights 

into the applicability of VR-based language learning in EFL 

learning. Notably, the significant associations between task 

characteristics, technology characteristics, task-technology 

fit, and performance highlight the importance of aligning VR 

features with pedagogical tasks to enhance learner outcomes. 

The expectation–performance and expectation–satisfaction 

pathways further underscore the role of learners’ prior 

expectations in shaping their VR experience. The preliminary 

moderating effect of Frontal Alpha Asymmetry (FAA) on the 

expectation–satisfaction relationship (β = 0.124, t = 1.990) 

suggests that affective states may influence satisfaction, but 

this finding is statistically marginal and should be interpreted 

with caution. Future research is needed to replicate this result 

with larger samples or longitudinal designs to establish the 

robustness of FAA’s moderating role. 

The limitations of this study stem from its exploratory 

nature and several specific constraints that warrant further 

discussion. First, the sample was restricted to Taiwanese EFL 

learners with intermediate English proficiency (TOEIC 

scores 550–580), which may limit the generalizability of 

findings. Cultural factors, such as Taiwan’s collectivist 

educational context, may influence learners’ perceptions of 

VR-based learning environments, which emphasize 

collaborative and interactive tasks. Similarly, linguistic 

differences, such as the phonological and syntactic structures 

of Mandarin as a first language, may affect engagement with 

English in VR settings compared to learners with other 

linguistic backgrounds (e.g., Romance or Germanic 

languages). Additionally, learners with beginner or advanced 

proficiency levels may exhibit different responses to 

VR-based learning due to variations in cognitive load or 

language processing demands. Second, while Frontal Alpha 

Asymmetry (FAA) provides valuable neurophysiological 

data, EEG’s limited spatial resolution restricts its ability to 

pinpoint precise brain regions compared to methods like 

functional Magnetic Resonance Imaging (fMRI) or 

functional near-infrared spectroscopy (fNIRS). These 

complementary methods could offer deeper insights into the 

neural correlations of VR-based learning. Third, the brief 

20-minute VR exposure in this study may have been 

influenced by novelty effects, potentially inflating learners’ 

satisfaction or performance perceptions. Longer-term VR use 

could produce different outcomes as learners become 

accustomed to technology. Finally, the relatively low R² 

value for satisfaction (0.334), though considered moderate in 

PLS-SEM, suggests that other factors, such as learner 

motivation or prior VR experience, may significantly 

influence satisfaction but were not included in the model. 

Future research should address these limitations by: (1) 

incorporating culturally and linguistically diverse samples, 

including learners with varying proficiency levels; (2) 

combining EEG with fMRI or fNIRS to enhance neural 

insights; (3) examining longer-term VR interventions to 

mitigate novelty effects; and (4) including additional 

variables, such as motivation or prior technology experience, 

as suggested by the Cognitive-Affective-Social Theory of 

Learning in digital environments (CASTLE), to improve the 

explanatory power of the model. 

APPENDIX 

Table A1. The measurement of the survey 

Construct Item Factor Loading 

Task Characteristics 

Cronbach’s α = 0.908 
CR = 0.910 

AVE = 0.733 

TC1 

I need to learn English 

within immersive 

context. 

0.752 

TC2 

I often need advice from 

someone else about 

easier methods to solve 
academic problems 

0.884 

TC3 
I often learn by gathering 

information from others 
0.860 

TC4 

I often require 

interaction during 

English learning process 

0.894 

TC5 

I often require timely 

feedback during learning 
process 

0.884 

Technology 

Characteristics (TEC) 
Cronbach’s α = 867 

CR = 0.891 

AVE = 0.605 

TEC1 

Learning using VR 

encourages active 
engagements with both 

peers and instructors 

0.768 

TEC2 

I constantly study at an 
immersive learning 

environment created by 

VR. 

0.875 

TEC3 

I constantly have a 

choice to interact with 

others in an immersive 
learning context using 

VR. 

0.785 

TEC4 

I constantly have a 
choice to interact using 

video, audio, images or 
text in an immersive 

learning context using 

VR. 

0.890 

TEC5 

Overall, VR technology 

characteristics are 

suitable for promoting 
effective English 

learning 

0.657 

Task-Technology  

Fit (TTF) 

Cronbach’s α = 909 
CR = 0.913 

AVE = 0.612 

TTF1 

Within immersive 
learning using VR, I 

would like to solve 
academic tasks of 

English through active 

engagement with peer 
students and facilitators. 

0.773 

TTF2 

Within immersive 
learning using VR, I 

would like to gain critical 

thinking skills. 

0.833 

TTF3 

Within immersive 

learning using VR, I 

would like to get timely 

0.802 
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feedback. 

TTF4 

Within immersive 

learning using VR, I 

would like to learn 

English naturally. 

0.840 

TTF5 

Overall, I would like to 
gain new knowledge 

through the academic use 
of VR. 

0.765 

Expectations 
Cronbach’s  

α = 0.873 
CR = 0.890 

AVE = 0.441 

EX1 
Learning to work with 

VR is easy for me. 
0.751 

EX2 
It is easy for me to 

become skillful in the 

use of VR 

0.792 

EX3 
Using VR I can improve 

my learning 

in the Tourism English 

0.697 

EX4 
Using VR I can simplify 
my process of learning in 

the Tourism English 

0.680 

EX5 
Study by VR fits well in 

the way I 

learn 

0.665 

EX6 

The resources and 
activities  of VR are 

compatible with the way I 
learn 

0.694 

Perceived Performance 

Cronbach’s  
α= 0.932 

CR = 0.939 

AVE = 0.601 

PO1 

The layout and user 

interface of VR 
are friendly 

0.874 

PO2 
It is easy to navigate 

through VR 
0.842 

PO3 
The VR offers the 

services I need 
0.837 

PO4 

I feel comfortable using 
the services 

offered by the virtual 

platform 

0.804 

PO5 

VR provides information 

that is easy to 

comprehend. 

0.806 

Satisfaction 

Cronbach’s  

α = 0.932 
CR = 0.940 

AVE = 0.709 

SAT1 

I am satisfied with the 

performance of the 

VR-based language 
learning course 

0.884 

SAT2 

I am satisfied with the 

experience of 
participating in a VR 

learning course. 

0.846 

SAT3 

My decision to do an 

undergraduate 

VR distance was wise. 

0.877 
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