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Abstract—With the rapid development of Generative 

Artificial Intelligence (GAI) technology, programming 

education has emerged as a core application domain. Through a 

systematic literature review of 45 relevant studies from the 

Semantic Scholar database from 2023-2025, this study 

examined the current applications of GAI as an auxiliary 

learning tool in programming education, and its impact on 

learning outcomes. The findings reveal that GAI-assisted 

instruction demonstrates significant effectiveness across seven 

learning indicators: programming knowledge and skills, 

computational thinking and logical reasoning, problem-solving 

ability, programming self-efficacy, learning achievement, code 

quality, and learning behaviors and engagement. While the 

majority of studies confirm that GAI enhances student 

performance in various areas such as task completion, test 

performance, code structure and quality, and promoting 

self-directed learning, some studies indicate that GAI use may 

reduce learning depth and lead to over-dependence in specific 

tasks or complex reasoning contexts. From a pedagogical 

perspective, GAI prompts a transformation in teachers’ roles 

from knowledge transmitters to learning facilitators and guides, 

necessitating corresponding adjustments in curriculum design 

and assessment approaches. Based on the empirical findings, 

this study constructs an integrated conceptual model for 

GAI-assisted programming education integrating four core 

dimensions: implementation context factors, core influencing 

factors, learning performance indicators, and learning 

outcomes. The study identifies AI tool selection, students’ 

foundational abilities, and task complexity as key variables 

affecting learning effectiveness, and synthesizes seven patterns 

of student learning behavior changes under GAI assistance, 

providing concrete theoretical foundations and implementation 

guidelines for educational practice. 
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I. INTRODUCTION 

With the rapid development of Generative Artificial 

Intelligence (GAI) technology and the widespread adoption 

of tools such as ChatGPT, GAI has become an important 

instrument across various domains. In the field of 

programming education, GAI can generate code and 

problem-solving suggestions in real-time, meeting learners’ 

personalized support needs [1]. However, guiding students to 

use AI tools appropriately—preventing them from becoming 

mere answer providers while transforming them into 

effective auxiliary learning tools that promote deep learning 

and subsequent application—has emerged as a critical 

challenge in educational applications. In programming 

learning, students must not only master programming syntax 

and logical structures, but also develop debugging and 

verification capabilities to foster long-term knowledge 

internalization, and problem-solving abilities. 

Previous literature has explored the impact of GAI 

applications across various learning domains, and analyzed 

students’ understanding and application of GAI-generated 

content, revealing that students’ preferences for GAI 

demonstrate two orientations: “Substitution” and 

“Augmentation” [2]. However, existing research 

predominantly focuses on single dimensions and lacks 

systematic convergence and synthesis to comprehensively 

examine changes in student learning behaviors and 

fundamental learning indicators under GAI assistance. In 

recent years, research has begun shifting focus from AI tool 

application patterns to the integration of GAI by students for 

programming, debugging, and optimization [3]. The role of 

GAI in programming education extends beyond being merely 

an auxiliary tool for knowledge transmission; it has become a 

critical factor influencing students’ learning depth and 

subsequent application capabilities. 

Therefore, this study employed a systematic literature 

review focusing on the application outcomes of generative AI 

in programming education from 2023 to 2025, integrating 

learning indicators and learning behavior changes throughout 

students’ learning processes, and further analyzing its impact 

on code quality, such as structural clarity, readability, error 

rate, or modularity, as well as task completion efficiency. In 

particular, the study aimed to address the following research 

questions: 

RQ1: In GAI-assisted learning contexts, which aspects of 

students’ programming learning performance demonstrate 

significant impact? 

RQ2: What specific effects do GAI-assisted learning have 

on the quality of code produced by students and their 

completion efficiency? 

RQ3: What changes emerge in students’ learning 

behaviors and teachers’ instructional strategies during the 

implementation of GAI in educational applications? 

This research aims to assist educators in achieving a 

balance between curriculum design and AI utilization, 

ensuring that GAI serves not merely as a technical support 

tool, but also promotes students’ subsequent application 

capabilities and long-term knowledge consolidation through 

rigorous assessment and instructional strategies. This 

involves not only understanding the nature of GAI 

technology, but also strategic adjustments in curriculum 

design and instructional implementation within educational 

practice, which has significant implications for the 

sustainable development of higher education. 
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II. MATERIALS AND METHODS

This study employs a systematic review methodology, 

supplemented by thematic analysis to organize qualitative 

dimensions, reviewing empirical research findings on 

GAI-assisted programming education. The study aims to 

examine its impact on student programming learning 

outcomes compared to traditional teaching approaches, 

including aspects such as programming skill performance, 

learning efficiency, and learning behaviors. To focus on the 

latest GAI developments in programming education, this 

study utilizes Semantic Scholar for literature retrieval. First, 

Semantic scholar’s semantic search and automatic summary 

(TLDR) features facilitate the rapid comprehension of 

generative AI applications across various programming 

education contexts, enhancing the efficiency and precision of 

literature retrieval. Second, the platform not only 

encompasses over 200 million cross-disciplinary documents, 

but also provides comprehensive coverage of computer 

science, educational technology, and artificial 

intelligence-related fields, sufficiently supporting this study’s 

requirements for thematic depth and breadth. Moreover, this 

database is free and unrestricted by institutional subscriptions, 

thus ensuring reproducibility of the research process. 

Therefore, this study selected the Semantic Scholar database 

and employed rigorous search strategies and screening 

criteria to ensure the representativeness and quality of the 

subsequently coded literature. 

Since the application of generative AI technology in 

education largely began with the rapid proliferation of 

ChatGPT in 2023, and most relevant empirical studies were 

published after 2023, this study sets the literature search 

scope from January 1, 2023, to May 1, 2025, to encompass 

the critical period of GAI in programming education. 

Although Semantic Scholar’s semantic search provides 

flexibility and contextual understanding advantages in 

exploring emerging topics, to comply with the Preferred 

Reporting Items for Systematic Reviews (PRISMA)’s 

emphasis on search strategy reproducibility and transparent 

reporting principles, this study still employs clearly defined 

keywords for initial screening to ensure transparency and 

traceability of the search process. The following keywords 

were used for result screening: (“generative AI”) AND 

(“ChatGPT” OR “GitHub Copilot”) AND (programming OR 

coding). The literature inclusion and exclusion criteria 

consisted of five items, as listed in Table 1. 

Table 1. Literature inclusion criteria 

Inclusion Criteria Description 

Educational Domain Research must be conducted in programming education contexts. 

Use of Generative AI Tools Studies must explicitly utilize generative AI tools. 

Empirical Research Design 
Only empirical studies including experimental designs, quasi-experimental, and 

observational studies are included; literature reviews and meta-analyses are excluded. 

Comparative Baseline Design 
Studies must include control groups or pre-/post-test to verify differences between 

AI-assisted and traditional teaching effectiveness. 

Learning Outcome Indicators 
Studies must contain quantifiable student learning outcome data, such as test scores, project 

completion rates, and code quality. 

Fig. 1. PRISMA flow diagram. 

Subsequently, a systematic review and meta-analysis was 

conducted following the PRISMA standards for data 

collection and literature screening. The search yielded 209 

relevant documents. The data screening process, as shown in 

Fig. 1, involved excluding literature unrelated to 

programming education based on titles and abstracts (n = 81), 

followed by full-text reading to further exclude studies that 

did not use AI tools in educational application contexts (n = 

44), and research lacking student learning outcomes or 

empirical data (n = 39). Ultimately, 45 articles were included 

in the content analysis. 

A. Data Extraction and Coding Criteria

This study employed a pre-established coding framework

aligned with the research objectives to conduct systematic 

data extraction from the literature that met the inclusion 

criteria, facilitating subsequent analysis and comparison. The 

coding categories are presented in Table 2. 

Table 2. Literature coding description 

Coding Category Description 

Research Design Type 
Primarily includes Randomized Controlled Trial (RCT), Quasi-Experimental Design, Pre-/Post-Test Design, 

and Comparative Study 

AI Teaching Intervention Methods 
AI tool names, application methods (teaching assistant, debugging, practice support, etc.), frequency of use, and 

intervention duration 

Learning Context Includes participants’ educational level and programming context 

Learning Outcome Indicators Such as programming performance scores, completion rates, problem-solving abilities, code quality, etc. 

Measurement Instruments and Time 

Points 
Scales and assessment methods utilized 

Primary Research Results Comparison of outcomes between groups, statistical significance 
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III. RESULTS 

A. Characteristics of Included Studies 

This review included 45 empirical studies, as shown in 

Table 3. These studies met the pre-established coding criteria 

and demonstrated diverse research design types, including 13 

Randomized Controlled Trials (RCTs) [4–16] and 21 

Quasi-Experimental Designs [3, 17–36], Among these, 19 

studies employed Pre-/Post-Test Designs [4, 9, 11–14, 17, 18, 

21, 22, 24–27, 29, 31, 36–38] and 27 were Comparative 

Studies [3, 5–8, 10, 11, 15, 16, 19, 20, 23, 28, 30, 32–34, 36, 

39–47]. Although some studies did not explicitly state their 

research design type, the overall results still reflected the 

methodological diversity and openness in this research 

domain. 

All the studies confirmed the use of generative AI tools to 

align with the research theme. Most studies utilized ChatGPT 

[3–28, 30–45, 47], with only one study using Gemini 1.5 [29] 

and three studies employing the GitHub Copilot [28, 37, 46]. 

ChatGPT 3.5 was the most commonly used version, while 

two studies used both ChatGPT and GitHub Copilot [28, 37]. 

Regarding programming learning contexts, most studies 

have been conducted in educational settings, including 

introductory programming courses at universities (such as 

CS1) and various specialized domain courses. Among the 

studies, 11 did not explicitly specify the programming 

language used in their courses [3, 9, 10, 12, 17, 21, 34, 35, 41, 

45, 47], 8 focused on introductory programming courses [7, 

15, 31, 33, 38, 40, 44, 46], while the remaining studies 

covered various languages and course domains including 

C++ [8, 27], JAVA [5, 25, 37, 42], Data analysis [18, 24], 

JavaScript to web design [28, 32], Object Oriented 

Programming (OOP) [13, 43], PHP [19], Python [4, 11, 14, 

20, 23, 30], Visual Basic [26], API test [22], Scratch [39], as 

well as Computer engineering [29], Software engineering [6, 

16] and Vibration analysis course [36], demonstrating the 

application potential of generative AI tools across diverse 

educational scenarios. 

The primary learning outcome indicators included 

programming knowledge acquisition, computational thinking 

abilities, problem-solving skills, programming self-efficacy, 

and code quality. However, these studies exhibited high 

heterogeneity in their assessment tools and observational 

dimensions, reflecting that “programming ability” in 

AI-assisted learning contexts is a multifaceted learning 

outcome difficult to measure with a single scale. 

The synthesis of these results indicates current research’s 

interest in “integrating generative AI into programming 

education,” presenting its potential effectiveness through 

diverse research methods and learning scenarios. 
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Table 3. Literature screening results

Ref. Study Design Programming Context AI Tool Used Primary Outcomes

[25]

Quasi-Experimental Design; 

Experimental design with 

pre-test/post-test

Computer Science (JAVA) ChatGPT 3.5

UML diagram creation, programming 

implementation, closed-book post-evaluation 

scores

[29]

Quasi-Experimental Design; 

Experimental design with 

pre-test/post-test

Computer engineering Gemini 1.5
Academic performance, perception of usefulness 

and ease of use, satisfaction and motivation

[9]

Randomized controlled trial; 

Experimental design with 

pre-test/post-test

Programming course ChatGPT
Computational thinking skills, programming 

self-efficacy

[44] Comparative study Introductory programming ChatGPT 3.5
Time taken to complete tasks, number of tasks 

attempted, scores achieved

[43] Comparative study
Object-Oriented 

Programming (OOP) course
ChatGPT Performance data (test scores and grades)

[11]

Randomized controlled trial; 

Experimental design with 
pre-test/post-test

Python programming ChatGPT
Code-authoring performance, code-modification 

performance, computational thinking

[3]
Quasi-experimental study; 

Comparative study
Programming course ChatGPT

Programming performance, perceived usefulness, 

perceived ease of use, intention to use

[31]

Quasi-experimental study; 

Experimental design with 

pre-test/post-test

Python programming ChatGPT 3.5 Python programming knowledge and skills

[45] Comparative study Programming course ChatGPT 3.5 Computational thinking skills, creative thinking

[24]

Quasi-experimental study; 

Experimental with pre/post; 
Comparative study

Data Structures and 

Algorithms course
ChatGPT

Problem-solving skills, algorithmic thinking, ability 

to write executable code

[46]
Comparative study 

(within-subjects design)
Introductory programming

GitHub Copilot 

AIDE
Programming performance, self-efficacy

[41] Comparative study Programming course ChatGPT
Programming knowledge acquisition, group-level 

programming product quality

[33]
Quasi-Experimental Design; 

Experimental design with 

pre-test/post-test

Introductory programming 

course
ChatGPT 4

Programming knowledge, performance analysis for 

different compiler errors

[23]
Quasi-Experimental Design; 

Comparative study
Python programming ChatGPT

Programming proficiency, students’ experiences 
using ChatGPT

[19]
Quasi-Experimental Design; 

Comparative study
PHP programming course ChatGPT

Coding (Classical, True/False, Multiple Choice 

questions)

[42] Comparative study
Introductory Java 

programming courses
ChatGPT

Adherence to coding conventions, cyclomatic 
complexity, cognitive complexity

[16]
Randomized controlled trial; 

Comparative study

Software engineering 

classroom
ChatGPT

Structure, independence, value, testability, 

grammar of user stories

[34]
Quasi-experimental study; 

Comparative study

Component Programming 

course
ChatGPT

Speed of task completion, depth of understanding, 

diversity of solutions, critical thinking

[17] Quasi-experimental study with Programming course ChatGPT 3.5 Programming test scores



  

 

    
 

 
  

  

 
 

   

 
  

  

 

 
 

 
 

 
  

 
 

 
  

  

 
 

  
 

 
 

   

 
 

   

 
 

   

  
 

 
 

 
 

   

 
  

  

 
 

   

 
 

   

 
 

  
 

     

 
 

   

 
  

 
 

     

 
 

  
 

 
  

 

 

 
 

  
 

 
 

 
  

 
 

  
 

 

B. Effects of AI-Assisted Programming Learning 

1) Learning performance metrics 

This study provides an in-depth exploration of 

performance indicators across the 45 studies. Through the 

analysis of different indicator types and based on Table 3 in 

Section 3.1, the Primary Outcomes were consolidated into 

seven major learning performance indicators: programming 

knowledge/skills, computational thinking/logical reasoning, 

problem-solving ability, programming 

self-efficacy/confidence, learning achievement, code quality, 

and learning behaviors/engagement, with the distribution 

shown in Fig. 2. 

All the studies addressed learning indicators related to 

programming knowledge/skills, demonstrating that students’ 

understanding and application abilities in programming 

languages and concepts constitute the primary assessment 

focus. Learning achievement was examined in 41 studies 

[4–7, 9–22, 24–26, 28–47], represented through quantitative 

results such as test scores and academic performance. 

Learning behaviors and engagement were investigated in 38 

studies [3, 4, 6–9, 11–15, 17, 18, 20–26, 29–45, 47], while 

computational thinking and logical reasoning abilities were 

addressed in 33 studies [3–5, 7, 9–11, 13, 14, 16–25, 27, 30, 

32–34, 36, 38–45], focusing on students’ abstraction and 

pattern recognition thinking processes during programming. 

Additionally, 29 studies examined students’ abilities in 

applying strategies for debugging and problem-solving [3, 

5–7, 10–15, 18, 20, 23–25, 27, 28, 31, 33, 34, 36, 37, 39, 41, 

42, 44–47], while 21 addressed students’ cognition and 

attitudes toward their own programming learning and 

application capabilities [3, 5, 8, 9, 14, 15, 19, 20, 22, 23, 27, 

29, 31, 35, 37-39, 41, 44–46]. Finally, code quality was 

examined in 16 studies [3, 5, 8, 9, 14, 15, 19, 20, 22, 23, 27, 

29, 31, 35, 37-39, 41, 44–46], emphasizing the structural 

quality and maintainability of code produced by the students. 
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pre-test/post-test

[35] Quasi-experimental study Programming course ChatGPT
Comprehension and application of programming 

concepts

[36]
Comparative study; 

Quasi-experimental study

Vibration analysis course for 

mechanical engineers
ChatGPT Computational thinking, problem-solving abilities

[38]
Experimental design with 

pre-test/post-test
Introductory programming ChatGPT Normalized learning gain

[32]
Quasi-experimental study; 

Comparative study

JavaScript functions for Web 

Design and Coding students
ChatGPT Navigation performance, test scores

[13]

Randomized controlled trial; 

Experimental with pre/post; 

Comparative study

Object-oriented programming 
concepts

ChatGPT 3.5
Programming performance, code submission 

success rate

[22]
Experimental with pre/post; 

Quasi-experimental

API testing (IT and IS 

students)
ChatGPT

Understanding and using APIs, confidence in using 

APIs

[26]
Quasi-experimental; Experimental 

with pre/post
Visual Basic 6 for 

undergraduates
ChatGPT Programming skills in Visual Basic 6

[7]
Randomized controlled trial; 

Comparative study
Introductory programming ChatGPT 4

Engagement, practice performance, posttest 

performance, scaffolding apply rate

[14]
Randomized controlled trial; 
Experimental with pre/post

Python programming ChatGPT Code-authoring and code-modification skills

[5]
Randomized controlled trial; 

Comparative study
Java programming course ChatGPT 4 Laboratory assignment scores

[30]
Quasi-experimental study; 

Comparative study
Python programming ChatGPT 4 Test scores, Python skills enhancement

[39] Comparative study
Scratch programming for 

non-CS majors
ChatGPT

Syntax understanding, code writing ability, Scratch 
feature use, algorithm understanding

[20]
Quasi-experimental study; 

Comparative study
Python programming ChatGPT 3 Problem-solving time and success rate

[18]
Quasi-experimental study with 

pre/post

Programming and data 

analysis
ChatGPT Programming and data analysis skills

[4]
Randomized controlled trial; 
Experimental with pre/post

Python programming ChatGPT 3.5 Python programming skills

[10]
Randomized controlled trial; 

Comparative study
Programming via debugging ChatGPT Programming performance, computational thinking

[21]
Quasi-experimental study with 

pre/post
Programming courses ChatGPT

Programming skills, conceptual understanding, 

engagement, satisfaction

[40] Comparative study Introductory programming ChatGPT 3.5 Code correctness, code quality

[6]
Randomized controlled trial; 

Comparative study
Software testing education ChatGPT 3.5 Effectiveness and efficiency in writing tests

[12]
Randomized controlled trial; 

Experimental with pre/post

Debugging-focused 

programming education
ChatGPT 3.5

Comprehensive and accurate hypothesis 

construction

[47] Comparative study Programming assistance ChatGPT Code quality, task completion time

[37]
Experimental with pre/post; 

Interview analysis
Java programming course ChatGPT

Pre/post-task quiz score, code quality, task 

completion time, student interviews

[8]
Randomized controlled trial; 

Comparative study
Object-Oriented 

Programming using C++
ChatGPT

Practical assignment performance, midterm exam 

results, final course grade, student feedback on 

ChatGPT usefulness

[27]
Quasi-experimental study with 

pre/post
C++ programming course ChatGPT

Flow experience, self-efficacy, learning 

achievement

[28]
Quasi-experimental study; 

Comparative study
JavaScript to web design

ChatGPT, GitHub 
Copilot

Coding assignment, code generation, debugging, 
explanation

[15]
Randomized controlled trial; 

Comparative study
Introductory programming ChatGPT 3.5

programming posttest score, self-efficacy in 

programming, task performance, programming 
errors



This multidimensional categorization provides a more 

comprehensive presentation of students’ multilevel outcomes 

in generative AI-assisted learning, and reflects the diversity 

of observational focus across different studies. 

Further comparisons of the measurement methods and 

learning outcomes following generative AI tool intervention 

are presented in Table 4. Although some studies did not 

explicitly indicate the direction of intervention effects, most 

results demonstrated the positive impact of generative AI 

instruction on student learning performance. A total of 34 

studies reported that AI-assisted groups outperformed 

traditional control groups across multiple dimensions, 

including learning achievement, problem-solving abilities, 

and self-efficacy. However, 11 studies showed significant 

negative differences or no improvement in average 

performance [5–8, 15, 25, 27–29, 41, 43], indicating that 

while generative AI tools demonstrate positive effects in 

most studies, variations and challenges persist. 

Fig. 2. Seven major learning performance indicators. 
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Table 4. Learning performance indicator screening results 

Ref. Measurement Type AI-Assisted Results Traditional Results Converged Outcome

[25]

UML diagram, programming 

implementation, 
post-evaluation scores

No significant impact No mention found

Prog. Knowledge/Skills, CT / Logic Reasoning, 

Problem-solving ability, Learning achievement, Learning 
behaviors / Engagement

[29] Academic performance
No statistically 

significant differences

No statistically 

significant differences

Prog. Knowledge/Skills, Prog. Self-Efficacy, Learning 

achievement, Learning behaviors / Engagement

[9]
Computational thinking skills, 

programming self-efficacy
Significantly higher

Lower than AI-assisted 
group

Prog. Knowledge/Skills, CT / Logic Reasoning, Prog. 

Self-Efficacy, Learning achievement, Learning behaviors 

/ Engagement

[44] Task completion time, scores
Faster completion, 

comparable scores

Slower completion, 

comparable scores

Prog. Knowledge/Skills, CT / Logic Reasoning, 

Problem-solving ability, Prog. Self-Efficacy, Learning 

achievement, Code quality, Learning behaviors / 
Engagement

[43] Test scores
Scores improved but 

the effect was average
No mention found

Prog. Knowledge/Skills, CT / Logic Reasoning, Learning 

achievement, Learning behaviors / Engagement

[11] Code-authoring performance

1.15x increased 

completion rate, 1.8x 
higher scores

Lower than AI-assisted 
group

Prog. Knowledge/Skills, CT / Logic Reasoning, 

Problem-solving ability, Learning achievement, Code 
quality, Learning behaviors / Engagement

[3] Programming performance M = 84.11, SD = 19.45 M = 78.36, SD = 17.59

Prog. Knowledge/Skills, CT / Logic Reasoning, 

Problem-solving ability, Prog. Self-Efficacy, Learning 

behaviors / Engagement

[31]
Python programming 
knowledge and skills

Average increase of 
12.50

Average decrease of 
3.17

Prog. Knowledge/Skills, Problem-solving ability, Prog. 

Self-Efficacy, Learning achievement, Learning behaviors 
/ Engagement

[45] Computational thinking skills Enhanced No mention found

Prog. Knowledge/Skills, CT / Logic Reasoning, 

Problem-solving ability, Prog. Self-Efficacy, Learning 
achievement, Code quality, Learning behaviors / 

Engagement

[24]
Problem-solving skills, 

algorithmic thinking

Significantly higher 

scores

Lower than AI-assisted 

group

Prog. Knowledge/Skills, CT / Logic Reasoning, 
Problem-solving ability, Learning achievement, Learning 

behaviors / Engagement

[46] Programming efficiency Significantly increased
Lower than AI-assisted 

condition
Prog. Knowledge/Skills, Problem-solving ability, Prog. 

Self-Efficacy, Learning achievement, Code quality

[41]
Programming knowledge 

acquisition
No substantial 

differences
No substantial 

differences

Prog. Knowledge/Skills, CT / Logic Reasoning, 

Problem-solving ability, Prog. Self-Efficacy, Learning 
achievement, Code quality, Learning behaviors / 

Engagement

[33]
Programming knowledge, 

error troubleshooting

Improved error 
troubleshooting 

capabilities

Lower performance in 

error troubleshooting

Prog. Knowledge/Skills, CT / Logic Reasoning, 
Problem-solving ability, Learning achievement, Code 

quality, Learning behaviors / Engagement

[23] Programming proficiency
Statistically significant 

but not practically 

significant

Lower than AI-assisted 

group

Prog. Knowledge/Skills, CT / Logic Reasoning, 
Problem-solving ability, Prog. Self-Efficacy, Learning 

behaviors / Engagement

[19] Coding question performance
Statistically significant 

positive effect
Lower than AI-assisted 

group
Prog. Knowledge/Skills, CT / Logic Reasoning, Prog. 

Self-Efficacy, Learning achievement

[42] Code quality Significantly improved
Lower than AI-assisted 

group

Prog. Knowledge/Skills, CT / Logic Reasoning, 

Problem-solving ability, Learning achievement, Code 
quality, Learning behaviors / Engagement

[16] User story quality
The results are higher 

on average

Lower than AI-assisted 

group

Prog. Knowledge/Skills, CT / Logic Reasoning, Learning 

achievement

[34] Task completion speed
Nearly three times 

quicker
Slower than 

AI-assisted group

Prog. Knowledge/Skills, CT / Logic Reasoning, 

Problem-solving ability, Learning achievement, Code 

quality, Learning behaviors / Engagement

[17] Programming test scores
Increased from 48.33 

to 74.47

Lower than AI-assisted 

condition

Prog. Knowledge/Skills, CT / Logic Reasoning, Learning 

achievement, Learning behaviors / Engagement

[35]
Comprehension and 

application of programming 
Significantly higher

Lower than AI-assisted 
group

Prog. Knowledge/Skills, Prog. Self-Efficacy, Learning 
achievement, Code quality, Learning behaviors / 



  

  

   
 

 

    
 

   
  

   
 

 

  
 

 
 

 
 

  
 

  
 

 

 

  
 

 

 

  
  

 

  
 

 
 

   
 

 

   
 

 

 
 

  

 

  
   

  
   

   
  

  
 

 

 

  

 
 

 

  
  

 

  
  

 

  
 

 

 

  
   

 
    

  
 

 
 

   
 

 

 

 

 

2) Code quality outcomes 

Among the 45 studies, 11 examined the potential impact of 

generative AI tools on the quality of code produced by 

students, with results presented in Table 5. The majority of 

studies suggested that AI assistance contributes to improving 

the quality of code produced by students, with eight studies 

indicating that AI-assisted groups significantly outperformed 

the control groups [11, 12, 33, 35, 40, 42, 45, 47], and four 

demonstrating statistical significance [12, 35, 42, 47] 

including two studies that found students in AI groups 

significantly exceeded traditional groups in terms of 

modularity or correctness [12, 40]. These studies 
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concepts Engagement

[36] Quiz scores Increased performance
Lower than AI-assisted 

group

Prog. Knowledge/Skills, CT / Logic Reasoning, 

Problem-solving ability, Learning achievement, Learning 

behaviors / Engagement

[38] Normalized learning gain M = 52.85, SD = 24.27 M = 41.29, SD = 26.84

Prog. Knowledge/Skills, CT / Logic Reasoning, Prog. 

Self-Efficacy, Learning achievement, Learning behaviors 
/ Engagement

[32] Test scores Significantly higher
Lower than AI-assisted 

group
Prog. Knowledge/Skills, CT / Logic Reasoning, Learning 

achievement, Learning behaviors / Engagement

[13] Successful submissions Higher
Lower than AI-assisted 

group

Prog. Knowledge/Skills, CT / Logic Reasoning, 

Problem-solving ability, Learning achievement, Code 
quality, Learning behaviors / Engagement

[22] Exam test scores
Significantly higher 

(~80)
Lower (~50)

Prog. Knowledge/Skills, CT / Logic Reasoning, Prog. 

Self-Efficacy, Learning achievement, Code quality, 
Learning behaviors / Engagement

[26]
Programming skills in Visual 

Basic 6
M = 8.34, SD = 1.42 M = 7.56, SD = 1.84

Prog. Knowledge/Skills, Learning achievement, Learning 

behaviors / Engagement

[7] Posttest performance
Higher average 

accuracy
No mention found

Prog. Knowledge/Skills, CT / Logic Reasoning, 
Problem-solving ability, Learning achievement, Learning 

behaviors / Engagement

[14] Post-test evaluation scores
Average results 

improved
No mention found

Prog. Knowledge/Skills, CT / Logic Reasoning, 
Problem-solving ability, Prog. Self-Efficacy, Learning 

achievement, Learning behaviors / Engagement

[5] Lab assignment scores
Lower than instructor 

feedback
Better than AI 

feedback

Prog. Knowledge/Skills, CT / Logic Reasoning, 
Problem-solving ability, Prog. Self-Efficacy, Learning 

achievement, Code quality

[30] Test scores
Improving test 

accuracy and learning
No mention found

Prog. Knowledge/Skills, CT / Logic Reasoning, Learning 

achievement, Learning behaviors / Engagement

[39] Scratch understanding Significantly higher
Lower than AI-assisted 

group

Prog. Knowledge/Skills, CT / Logic Reasoning, 
Problem-solving ability, Prog. Self-Efficacy, Learning 

achievement, Learning behaviors / Engagement

[20] Programming success rate Increased
Lower than AI-assisted 

group

Prog. Knowledge/Skills, CT / Logic Reasoning, 
Problem-solving ability, Prog. Self-Efficacy, Learning 

achievement, Code quality, Learning behaviors / 

Engagement

[18]
Programming and data 

analysis skills
Improve accuracy No mention found

Prog. Knowledge/Skills, CT / Logic Reasoning, 

Problem-solving ability, Learning achievement, Learning 

behaviors / Engagement

[4] Python programming skills
2 more questions 

solved

Lower than AI-assisted 

group

Prog. Knowledge/Skills, CT / Logic Reasoning, Learning

achievement, Learning behaviors / Engagement

[10] Programming performance
Better for 2nd & 3rd 

levels of AIGC

Lower than AI-assisted 

group

Prog. Knowledge/Skills, CT / Logic Reasoning, 

Problem-solving ability, Learning achievement

[21] Programming skills Better performance
Lower than AI-assisted 

group

Prog. Knowledge/Skills, CT / Logic Reasoning, Learning 

achievement, Learning behaviors / Engagement

[40] Code correctness
Minimal changes in 

scores
No mention found

Prog. Knowledge/Skills, CT / Logic Reasoning, Learning 

achievement, Code quality, Learning behaviors / 

Engagement

[6] Effectiveness in writing tests

Negative impact (8.6% 

fewer tests, 78% not 

useful)

Better than AI-assisted 
group

Prog. Knowledge/Skills, Problem-solving ability, 

Learning achievement, Code quality, Learning behaviors / 

Engagement

[12] Debugging skills
12% increase in 
pre-post scores

Lower than AI-assisted 
condition

Prog. Knowledge/Skills, Problem-solving ability, 

Learning achievement, Code quality, Learning behaviors / 

Engagement

[47] Code quality
Better for algorithmic 

tasks
Lower than AI-assisted 

group

Prog. Knowledge/Skills, Problem-solving ability, 

Learning achievement, Code quality, Learning behaviors / 

Engagement

[37] Programming success rate
Effectively improve 

completion time
No mention found

Prog. Knowledge/Skills, Problem-solving ability, Prog. 

Self-Efficacy, Learning achievement, Learning behaviors 

/ Engagement

[8] Programming test scores
Not significantly 

different

Not significantly 

different

Prog. Knowledge/Skills, Prog. Self-Efficacy, Learning 

behaviors / Engagement

[27]
Post-test evaluation scores and 

Questionnaire
Significant but 

non-enhancing effect
Better results than the 
experimental group

Prog. Knowledge/Skills, CT / Logic Reasoning, 
Problem-solving ability, Prog. Self-Efficacy

[28] Programming test scores
Significant but 

non-enhancing effect
No mention found

Prog. Knowledge/Skills, Problem-solving ability, 

Learning achievement

[15] Programming scores High user satisfaction
Higher Programming 

Score

Prog. Knowledge/Skills, Problem-solving ability, Prog. 

Self-Efficacy, Learning achievement, Learning behaviors 

/ Engagement

Note: Programming knowledge / skills (Prog. Knowledge/Skills); Computational thinking / Logical reasoning (CT / Logic Reasoning); Programming 
self-efficacy / confidence (Prog. Self-Efficacy) 



encompassed multiple dimensions such as coding 

conventions, code structure standardization, error-handling 

capabilities, and code logic clarity, demonstrating the 

potential of generative AI tools for programming language 

assistance. 

However, three studies revealed potential concerns. One 

study reported that although AI-assisted code output was 

functional, it exhibited uniformity in strategy design and 

problem-solving approaches, potentially constraining 

students’ development of diverse thinking and innovative 

solutions [34]. Another study indicated that AI assistance had 

negative impacts on code quality [41], while Mezzaro et al. 

(2024) found that in test case writing tasks, both the quality 

and quantity of tests produced by the AI group were 

significantly lower than those produced by the control group 

[6]. 

These studies employed various code quality indicators, 

most of which appeared in only single studies, creating 

challenges for cross-study comparisons. To more clearly 

present the observational focuses of different studies and 

address the second research question (RQ2) regarding the 

impact of generative AI tools on code quality, these 

indicators were further consolidated into three major 

dimensions: Code Structure & Quality (five studies [11, 35, 

40, 42, 47]), Debugging & Error handling (three studies [6, 

12, 33]), and Team-Level diversity & Collaborative 

outcomes (three studies [34, 41, 45]), as shown in Fig. 3. This 

classification helps systematically integrate the diverse 

observational results from various studies, and serves as a 

foundation for subsequent in-depth comparison and 

statistical analysis. 

Fig. 3. Three major dimensions of code quality indicators. 

Overall, while most studies indicate that AI assistance has 

positive impacts on code quality, the benefits are inconsistent, 

suggesting that in practical educational applications, a further 

balance is needed between technical assistance and students’ 

development of programming comprehension. 

 

      

 

 

 
  

 

  

 

 
 

 

 

 

 
 

  

 
 

 
 

  

 
 

 
   

  
    

  

 
 

 
 

 
   

 
 

 
   

  

  
    

 
 

 
   

3) Time efficiency impacts

In programming development learning contexts, beyond

code quality, task completion efficiency represents an 

important dimension affecting student learning outcomes. 

Among the 45 empirical studies included in this analysis, 

eight examined the impact of generative AI tools on students’ 

programming development time efficiency, with the results 

addressing RQ2, as shown in Table 6. Seven studies reported 

that generative AI-assisted programming learning enhanced 

task completion speed [12, 13, 20, 34, 44, 46, 47], whereas 

only one study indicated that traditional instruction 

demonstrated superior time performance [22]. These studies 

encompassed diverse learning contexts, including novice 

programming, introductory courses, component-based 

programming, object-oriented design concepts, API testing, 

general programming learning assistance, and debugging 

tasks. 

Three studies provided detailed metrics for specific 

quantified time improvements. One study indicated that 

generative AI-assisted programming learning achieved 

nearly three times the speed of traditional methods [34], 

whereas Pankiewicz and Baker (2023) reported that the 

AI-assisted group reduced problem-solving time by an 

average of 375s (6.25 minutes) [13]. Meanwhile, Ma et al. 

(2024) demonstrated that in debugging tasks, the AI-assisted 
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Table 5. Code quality screening results

Ref. Code Quality Metric AI-Assisted Results Traditional Results Context Notes Final Category

[42]

Adherence to coding 

conventions, cyclomatic 
complexity, cognitive 

complexity

Significantly improved
Lower than AI-assisted 

group
Introductory Java 

programming courses
Code Structure & Quality

[40] Code modularity

Improved (Assignment-3 

average modularity ratio: 

1.49)

No mention found
Introductory 

programming Course
Code Structure & Quality

[47]

Code quality for 

algorithmic and 

library-related tasks

Significantly better
Lower than AI-assisted 

group
Programming assistance Code Structure & Quality

[11]
Code-authoring 

performance
1.8x higher scores

Lower than AI-assisted 

group
Python programming Code Structure & Quality

[33]
Error troubleshooting 

capabilities
Improved

Lower than AI-assisted 
group

Introductory 
programming course

Debugging & Error 
Handling

[34] Diversity of solutions
Lower diversity, more 

uniform solutions

Higher diversity of 

solutions

Component programming 

course

Team-Level Diversity & 

Collaborative Outcomes

[45] Quality of projects
Higher quality projects 
aligned with learning 

objectives

Lower than AI-assisted 
group

Programming course
Team-Level Diversity & 
Collaborative Outcomes

[41]
Group-level programming 

product quality

No substantial 

differences

No substantial 

differences
Programming course

Team-Level Diversity & 

Collaborative Outcomes

[35]
Application of 

programming concepts
Significantly higher 

performance
Lower than AI-assisted 

group
Programming course Code Structure & Quality

[6] Quality of written tests
Lower quality (78% not 

useful)

Higher than AI-assisted 

group

Software testing 

education

Debugging & Error 

Handling

[12]
Accuracy of hypothesis 

construction in debugging
15.8% improvement

Lower than AI-assisted 

condition

Programming education 

(debugging focus)

Debugging & Error 

Handling



  

group reduced completion time by 14% [12]. Only one study 

reported a better time through traditional instruction, where 

the AI group’s average completion time was 49.95 minutes 

(SD = 17.32 minutes), while the traditional group completed 

tasks in 34.45 minutes (SD = 14.92 minutes) [22]. 

Additionally, the remaining four studies, while not providing 

explicit quantitative data, presented AI tools’ time efficiency 

advantages through qualitative descriptions such as 

“significantly faster” or “reduced time” [20, 44, 46, 47]. 

These findings clearly indicate that generative AI tools 

have positive effects on time efficiency in programming 

learning, with this effect exhibiting consistency across 

different learning contexts and task types. This constitutes 

preliminary evidence regarding the efficiency benefits of AI 

tools in programming education. 

 
 

Table 6. Time efficiency impact screening results 

Ref. Time Efficiency Metric AI-Assisted Results Traditional Results Context Notes 

[44] Task completion time 
Significantly faster (Group 1: 

31.5 min, Group 2: 21.5 min) 

Slower (Group 1: 59.8 min, 

Group 2: 38.9 min) 
Introductory programming 

[34] Task completion speed 
Nearly three times quicker on 
average 

Slower than AI-assisted group Component programming course 

[46] Programming efficiency Significantly increased 
Lower than AI-assisted 

condition 
Significantly increased 

[13] Time to solve tasks 
375 seconds (6.25 min) less 

on average 

More time required than 

AI-assisted group 

Object-oriented programming 

concepts 

[22] Time efficiency 
Less efficient (mean time: 
49.95 minutes, SD: 17.32 

minutes) 

More efficient (mean time: 
34.45 minutes, SD: 14.92 

minutes) 

API testing for IT and IS students 

[20] Time to solve programming problems Decreased Higher than AI-assisted group Python programming 

[47] Time taken to complete tasks 
Faster for algorithmic 

challenges 

Slower than AI-assisted group 

for algorithmic challenges 
Programming assistance 

[12] Completion time for debugging tasks 14% reduction 
Higher than AI-assisted 
condition 

Programming education 
(debugging focus) 

 

C. Thematic Analysis 

Following the synthesis of multidimensional empirical 

results regarding learning outcomes, code quality, and time 

efficiency, this section further employs thematic analysis to 

explore changes in student learning behaviors under 

generative AI tool assistance as well as implementation 

considerations that teachers may face in instructional 

adjustments and curriculum design. By integrating 

quantitative results and observed learning trends from 

various studies, we conducted qualitative thematic synthesis 

from behavioral perspectives, systematically presenting 

student learning behavior characteristics in AI-assisted 

contexts, and exploring how educational settings can respond 

to the multifaceted challenges brought about by generative 

AI tools. This section is divided into two parts, the first 

focusing on changes in student learning behaviors, and the 

second examining reflections and recommendations 

regarding teachers’ instructional implementation and 

curriculum adjustments, addressing the third research 

question (RQ3). 

1) Student learning behaviors 

Based on the empirical literature included in this study, the 

introduction of generative AI tools progressively reshapes 

student behavioral patterns in programming learning through 

several positive dimensions. First, regarding learning 

engagement and motivation, AI tools enhance student 

involvement and interest in learning activities. Related 

research indicates that students generally perceive AI tools as 

useful and convenient to operate, thus encouraging higher 

usage intentions [3]. Studies also found that compared to 

traditional instruction, AI-assisted learning provides greater 

appeal and engagement [7]. Second, AI tools have 

transformed students’ problem-solving abilities, with some 

students tending to rely completely on AI-generated code, 

while others combine AI suggestions with their own coding 

for hybrid problem-solving [14]. Third, AI tools strengthen 

students’ self-directed learning behaviors. Garg and 

Rajendran [18] found that structured prompts can stimulate 

students to actively engage in learning tasks, whereas Chang 

and Chien [30] ‘s AI-driven quiz platform observed that 

increased student interaction correlated with better test 

performance, indicating that AI tools help cultivate 

self-directed learning momentum. Fourth, AI tools provide 

immediate feedback regarding error handling and debugging 

abilities, effectively improving students’ performance in 

syntax errors and debugging tasks. Pankiewicz and Baker [33] 

reported better student performances in error handling, and 

Ma et al. [12] indicated that pre-/post-test scores for 

debugging tasks improved by 12%. 

However, alongside these enhancements, the literature 

simultaneously reveals adaptation challenges and shifts in 

collaborative dynamics requiring pedagogical attention. Fifth, 

research cautions against the risk of students’ 

over-dependence on AI tools. Mezzaro et al. [6] observed 

that students who over-rely on AI show significant decreases 

in both the quantity and quality of test cases written. 

Lehmann et al. [4] also noted that if students habitually let AI 

handle all problems, it may inhibit their motivation and 

ability for active thinking and deep understanding. Even as 

research indicates that AI assistance improves 

problem-solving speed, it may lead to solution uniformity, 

thereby limiting the diversity of problem-solving strategies 

[34]. Sixth, most studies show that students demonstrate high 

learning adaptability to AI tools, quickly becoming familiar 

with and applying them to programming tasks, reflecting 

openness and acceptance of emerging learning technologies 

[25, 29]. Finally, AI tools also change collaborative 

interaction patterns. Research by Fan et al. [41] indicates that 

under AI assistance, the patterns and content of team 

programming discussions have transformed, suggesting that 

AI intervention may open new pathways for collaborative 

learning. 

These results indicate that AI tools are comprehensively 

changing students’ behavioral patterns in programming 
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learning, as shown in Table 7, including enhanced 

engagement, self-directed learning, and debugging abilities. 

Such changes also reflect shifts in students’ self-regulation 

processes. However, careful consideration must be given to 

the potential risks of overdependence and solution 

homogenization to effectively balance efficiency and depth 

in curriculum design. 

Table 7. Seven major learning behavior changes 

Behavior Description 

Enhanced Engagement 
Demonstrating interest and enthusiasm 

for learning activities 

Problem-solving Ability 
Adopting more effective and 

innovative methods to solve problems 

Self-directed Learning 
Exhibiting stronger learning ability 

without direct guidance 

Error Handling and 

Debugging Ability 

Becoming more proficient in 

identifying and correcting errors 

Over-dependence 
Over-relying on tools, potentially 

hindering independent thinking 

Adaptability 
Easily adapting to learning new tools 

and technologies 

Collaborative Interaction 

Demonstrating stronger 

communication and cooperation 

abilities in teamwork 

2) Pedagogical and implementation implications

As generative AI tools become increasingly widespread in

programming education, teachers face unprecedented 

challenges in instructional adjustment and implementation. 

According to the empirical literature included in this study, 

introducing AI-assisted instruction requires the consideration 

of multiple dimensions. Tool selection significantly affects 

learning effectiveness, whereas integration methods (such as 

virtual teaching assistants, quiz prompts, and flipped learning) 

determine the appropriateness of learning activities and 

student acceptance. Student ability levels also constitute an 

influencing factor [4]. Similarly, task complexity must be 

considered when determining the applicable scope of AI 

tools. AI is particularly effective for algorithmic and library 

application tasks [47], but may have limited effectiveness for 

innovative and conceptual tasks. 

Facing these challenges, teachers’ roles are transforming 

from traditional knowledge transmitter to AI learning 

facilitator and guide. Anishka et al. [40] explored the 

feasibility of using ChatGPT as a virtual teaching assistant, 

while Er et al. [5] indicated that teachers must adjust their 

feedback approaches to enhance complementarity with AI 

feedback. The integration of AI tools has become an 

important element in curriculum design, from flipped 

teaching strategies to learning support tools [36, 38]. Chang 

and Chien [30] utilized AI-driven platforms to provide 

personalized learning materials. Additionally, AI literacy 

should be incorporated into curriculum design to help 

students effectively operate and understand AI tools [4, 14]. 

The research has demonstrated innovative directions 

regarding assessment mechanisms and curriculum content. 

Applying AI-generated prompts to help students clarify 

compilation errors or developing AI-assisted programming 

assessment mechanisms demonstrates that AI tools are 

creating new possibilities in assessment design [17, 33]. 

Furthermore, curriculum design needs to adjust teaching 

strategies according to different programming domains. AI 

tools have varying effects on introductory courses, 

component-oriented learning, debugging training, and 

advanced topics, demonstrating the need for adaptability in 

teaching contexts [16, 25]. Research indicates that curricula 

should include discussions on ethical issues related to AI use 

[23, 25] to establish students’ responsible attitudes and values 

toward technology. 

In summary, Fig. 4 illustrates the three key dimensions of 

GAI tool-assisted learning. The introduction of GAI tools has 

driven programming education toward more personalized, 

autonomous, and strategic directions. However, without 

comprehensive instructional design and implementation 

planning, the potential benefits of AI tools will be difficult to 

realize fully and may even negatively impact learning 

quality. 

Fig. 4. Key dimensions of GAI tool-assisted learning. 

IV. DISCUSSION

A. Impact of Generative AI on Students’ Programming

Learning Performance

This section addresses RQ1 based on the synthesis

presented in Fig. 2 and Table 4. Generative AI-assisted 

learning demonstrates complex and differentiated impacts on 

students’ programming learning outcomes, encompassing 

seven major learning indicators: programming knowledge 

and skills, computational thinking, problem-solving ability, 

self-efficacy, learning achievement, code quality, and 

learning behaviors and engagement. 

For fundamental programming knowledge and skills, the 

results consistently indicate positive effects. 

Kazemitabaar et al. [11] found that through code output 

provided by generative AI, beginners achieved significant 

improvements in both task completion rates and correctness. 

This was accomplished without weakening their subsequent 

ability to manually modify code, and instead promoted 

mastery of basic programming development skills. The 

immediate feedback mechanism of generative AI enables 

students to locate and correct errors more quickly, 

subsequently leading to better learning outcomes and 

higher-quality programming assignments in post-course 

assessments [3, 48]. Similarly, Sun et al.’s [3] reported 

significantly lower code error rates in the AI-assisted group. 

Collectively, GAI facilitates early syntax acquisition, 

strengthens learner confidence, and reduces novice 

frustration [9]. 

Higher-order outcomes diverge. In a quasi-experimental 

CS1 study, Xue et al. [25] observed no significant differences 

in final programming scores between ChatGPT and control 

groups, consistent with Jayagopal et al. [48], who found 

faster completion but no superior knowledge mastery. From a 
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cognitive-load perspective, AI can reduce extraneous 

cognitive load.  As evidenced by the decreased debugging 

time observed in Table 6, this assistance may reduce extrinsic 

cognitive load by offering quick solutions and scaffolding 

support. However, for more complex or unfamiliar tasks, 

such convenience may increase intrinsic cognitive load, as 

students might lack sufficient foundational understanding to 

evaluate or modify AI-generated responses. Furthermore, the 

overly convenient access to answers may discourage active 

problem-solving and critical thinking, thereby increasing 

students’ dependency on AI tools. Ready-made answers can 

also dampen active problem solving, fostering 

over-dependence without proper guidance [31]. For complex 

algorithmic work, AI output quality may degrade, risking 

misleading learning paths [49]. 

Effects are moderated by prior ability, task features, and 

context. Students with weaker foundations may accept AI 

outputs without verification [50], whereas stronger students 

use AI to refine strategies. AI is reliably helpful in structured, 

lower-complexity exercises, but benefits weaken for tasks 

requiring innovation, intricate logic, or algorithm design. 

Tool/version differences, integration approaches, and 

instructional settings further shape durability of gains. 

GAI’s convenience can also influence learning autonomy 

and academic integrity. Lyu et al. [31] found that while 

short-term performance improved, long-term retention and 

deep understanding of fundamental programming concepts 

were limited when students bypassed reasoning and 

verification. Furthermore, the performance and correctness of 

AI-generated responses vary across programming task types 

[6], which may introduce bias and compromise assessment 

fairness. In terms of equity, disparities in access to AI tools 

stemming from limited institutional support or restricted 

availability can exacerbate learning inequalities. As 

Jayagopal et al. [48] suggest, future research should examine 

how such access gaps impact learning processes and 

outcomes in low-resource contexts, while also addressing 

potential integrity risks [51, 52]. 

Synthesizing the above empirical findings, GAI in 

programming education presents a dual profile: consistent 

benefits in foundational skill acquisition and short-term 

learning efficiency, alongside potential risks to higher-order 

thinking and long-term knowledge construction. Accordingly, 

curricula should integrate AI tools strategically, leveraging 

them to lower entry barriers, enhance motivation, and build 

confidence, while incorporating verification routines, staged 

scaffolding, and explicit reflection to sustain active reasoning 

and deep learning. The differentiated performance of these 

seven learning indicators provides an important empirical 

foundation and strategic directions for the appropriate 

application of AI tools in programming education. 

B. Impact of Generative AI on Code Quality and 

Completion Time 

This section addresses RQ2 by examining the mechanisms 

and pedagogical implications of generative AI (GAI) on 

students’ programming output quality and learning efficiency. 

Drawing on the empirical findings in Table 5 and Table 6, the 

analysis focuses on three dimensions: Code Structure & 

Quality, Debugging & Error Handling, and Team-Level 

Diversity & Collaborative Outcomes, as well as their broader 

implications for programming education The distribution 

among these themes are illustrated in Fig. 3. 

Generative AI’s impact on code quality demonstrates 

distinct hierarchical characteristics. At the level of code 

structure and syntactic correctness, AI tools show significant 

supportive effects, yet this improvement implies fundamental 

transformations in learning patterns [3, 11, 35, 40, 42, 47]. 

Instant availability of suggestions and refactoring hints can 

reduce opportunities for iterative trial-and-error, limiting the 

development of intuitive understanding of error causes and 

corrective logic. For less-prepared novices, this may result in 

syntactically correct code without deep comprehension or 

verification—an illusion of competence [33, 40, 42, 50]. In 

contrast, students with stronger foundations tend to integrate 

AI as a scaffold to refine strategies, indicating that benefits 

are uneven and mediated by prior knowledge and 

metacognitive skills. 

Regarding debugging ability development, generative AI 

presents dual impact effects. On one hand, immediate error 

diagnosis and correction suggestions can accelerate 

problem-solving processes and reduce learning frustration 

[11]; on the other hand, over-reliance on AI diagnosis may 

weaken students’ motivation and ability to establish 

independent debugging strategies. The debugging process 

holds unique educational value in programming learning, not 

only in training logical reasoning abilities, but also in 

cultivating systematic thinking and persistent solution 

exploration when facing complex problems. When this 

process is simplified or replaced by AI tools, students may 

lose opportunities to develop these core abilities, potentially 

affecting the depth development of their programming 

expertise in the long term. 

The impact on team collaboration is more complex and 

carries important pedagogical implications. Generative AI 

can indeed balance ability gaps among team members, 

enabling learners of different levels to actively participate in 

collaborative tasks [31]. However, this balancing effect may 

obscure important educational values of collaborative 

learning. Traditional programming team collaboration 

emphasizes the promotion of learning through peer 

discussion, knowledge sharing, and collaborative debugging, 

whereas AI tool interventions may reduce these interaction 

opportunities. When team members can quickly obtain AI 

assistance, their interdependence and knowledge exchange 

needs may be reduced, thereby affecting the depth and 

effectiveness of collaborative learning. 

Although a shortened task completion time presents 

superficial positive benefits, it requires deep examination 

from the perspective of balancing learning efficiency and 

effectiveness [13, 34, 44]. Time efficiency improvements 

may stem from two different mechanisms: first, genuine 

enhancement of learning abilities, enabling students to 

complete tasks more quickly and accurately; second, 

dependence on AI tools, shortening completion time through 

external assistance without necessarily enhancing internal 

capabilities. Distinguishing between these is crucial in 

evaluating the educational value of AI tools. Reverse cases 

appearing in research, such as the phenomenon of AI-assisted 

groups taking longer in API testing courses, provide 

important opportunities for reflection [22]. This phenomenon 

may reflect AI tool limitations in specific task types, or 
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increased cognitive load when students integrate AI 

suggestions with task requirements. 

Behavioral pattern analysis reveals deeper transformations 

in learning strategies. Students’ frequent cycling between AI 

consultation and code modification demonstrates an 

emerging “AI-dependent” problem-solving strategy [3]. 

While this strategy can effectively solve technical problems 

in the short term, it may cultivate passive learning attitudes 

and problem-solving habits [52, 53]. Students may gradually 

lose confidence and the ability to face challenges 

independently, becoming over-dependent on external tools. 

This poses potential threats to the long-term goals of 

programming education. 

From an instructional design perspective, these findings 

point to a critical balancing challenge: how to leverage AI 

tools to enhance learning efficiency while ensuring that 

students still develop the necessary core competencies. 

Assessments should capture not only final outputs but also 

reasoning processes and strategies. Curricula can adopt 

staged AI support adjusting assistance by learning stage to 

preserve autonomous skills while still benefiting from 

AI-based guidance. 

C. Changes in Student Learning Behaviors and Teacher 

Instructional Strategies under Generative AI 

Implementation 

This section addresses RQ3, exploring how GAI adoption 

reshapes student behaviors and instructional strategies. 

Thematic analysis shows that GAI transforms both cognitive 

processes and pedagogical approaches, as discussed in the 

following two subsections. 

1) Deep mechanisms and educational implications of 

student learning behavior changes 

The introduction of generative AI tools is fundamentally 

restructuring students’ cognitive processing patterns and 

learning strategy choices. From the perspective of cognitive 

load management, generative AI tools create a phenomenon 

of “cognitive outsourcing,” enabling learners to transfer 

cognitive resources from basic technical operations to 

higher-order thinking levels of conceptual understanding and 

problem solving. This transfer mechanism explains the 

fundamental reasons for the enhanced engagement and 

strengthened self-directed learning behaviors. When the 

extrinsic cognitive load is reduced through AI-assistance, 

learners gain more cognitive space for intrinsic processing, 

thereby demonstrating higher learning investment and 

exploratory willingness [54]. However, this mechanism 

simultaneously implies risks, as excessive cognitive 

outsourcing may lead to “deskilling” of fundamental abilities, 

with learners potentially losing the capacity to independently 

construct solution pathways while enjoying efficient 

problem-solving. 

Self-regulated learning theory provides an important 

perspective for understanding changes in learning strategies 

[55]. In traditional programming learning, self-efficacy and 

regulatory strategies develop through repeated practice and 

error correction. Under AI assistance, however, learners 

often transition from generating their own feedback to 

relying on external, immediate feedback [30]. While this 

change can boost debugging efficiency and task completion 

speed, it risks weakening metacognitive capacities including 

self-monitoring, strategy selection, and evaluation of 

outcomes when learners grow accustomed to AI’s precise 

diagnoses and solutions. 

Problem-solving strategies show a parallel divergence. 

Learners with strong foundations tend to adopt hybrid 

problem-solving, blending AI suggestions with personal 

judgment to enhance cognitive performance; those with 

weaker foundations often use substitutive problem-solving, 

accepting AI outputs without verification [14]. This 

differentiation phenomenon reveals the Matthew effect in the 

educational applications of AI tools, where existing learning 

ability gaps may widen further owing to different tool usage 

strategies. 

Transformations in collaborative interaction patterns carry 

profound social-cognitive implications. AI tools’ 

intervention as “third-party cognitive partners” changes 

knowledge sharing and mutual assistance patterns in 

traditional peer learning. When each learner can obtain 

immediate expert-level assistance, interdependence in team 

collaboration may weaken, and cognitive conflicts and 

negotiation processes between learners may become diluted, 

which are crucial for deep learning. This change may lead 

collaborative learning to shift from “interdependent learning” 

to “parallel learning,” affecting team problem-solving 

abilities and collective intelligence construction. 

The rapid development of adaptive learning behaviors 

reflects digital natives’ high acceptance of emerging 

technologies, while also exposing potential conflicts between 

technological adaptation and learning depth. When learners 

master AI tools quickly yet lack awareness of their 

limitations, overconfidence may lead to uncritical acceptance 

of outputs, undermining accuracy and conceptual 

understanding. 

The root of the overdependence phenomenon lies in 

cognitive preference shifts between immediate and delayed 

gratification. Programming learning traditionally requires 

learners to tolerate errors and frustration, building resilience 

and problem-solving patience through continuous trial and 

error. AI tools’ provision of immediate answers satisfies 

learners’ desire for quick success, but may weaken their 

persistence and willingness for deep exploration when facing 

complex challenges [4]. This behavioral pattern 

transformation may affect learners’ cognitive resilience 

development, resulting in lower adaptability when faced with 

complex situations that AI tools cannot handle. 

The educational implications of these behavioral changes 

point to the need to reconstruct programming education 

paradigms. Educators need to reconsider skill cultivation 

priorities, shifting from mere programming technique 

mastery to comprehensive development of critical thinking, 

tool evaluation abilities, and human-AI collaboration skills. 

Curriculum design should incorporate explicit “AI literacy” 

cultivation objectives, helping learners establish accurate 

recognition of tool capabilities and limitations, and 

developing abilities to flexibly switch between AI assistance 

and independent thinking. Simultaneously, assessment 

mechanisms need to shift from outcome-oriented to 

process-oriented approaches, emphasizing learners’ thinking 

processes, strategy selection, and reflective abilities, ensuring 

effective assessment and promotion of deep learning in the 

era of widespread AI tool adoption. 
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2) Theoretical foundations and professional development

implications of teacher pedagogical strategy changes

Based on the teacher-strategy adjustment patterns

identified in this study, generative AI tools drive teachers 

from passive adaptation to proactive innovation in their 

professional development trajectories. This transformation 

reflects a profound shift in educational paradigms, from 

traditional knowledge transmission models to collaborative 

learning facilitation models, with transformation mechanisms 

and professional restructuring requiring in-depth analysis. 

Generative AI is redefining teachers’ roles from 

knowledge transmitters to AI learning facilitators. The 

adoption of ChatGPT as a virtual teaching assistant reflects 

not only technology integration but also a deeper need to 

reposition professional value. As Er et al. [5] note, adapting 

feedback to complement AI marks a shift from monopolizing 

knowledge to coordinating the learning ecosystem. 

Curriculum design is shifting from content-oriented to 

competency-oriented education. Chang and Chien [30] 

showed that AI-driven platforms can deliver personalized 

materials, requiring teachers to develop advanced curriculum 

architecture skills and adjust strategies across programming 

domains from introductory topics to advanced debugging and 

component-oriented learning. 

Assessment is shifting from measurement to learning 

support, driven by the widespread adoption of AI tools. 

Practices such as AI-generated prompts, process-oriented 

evaluation, and authentic, complex tasks replace rote recall. 

This shift demands that teachers develop cross-disciplinary 

skills in technology and educational assessment to design 

diverse evidence-gathering systems and deliver real-time 

feedback. 

Empirical findings on ethical education integration reflect 

the expansion of teachers’ professional responsibilities. As 

students gain easy access to AI-generated programming 

solutions, academic integrity and responsible technology use 

become essential teaching responsibilities. This requires 

teachers to pair technical expertise with ethical judgment and 

value-education skills, ensuring a balance between 

technological convenience and academic rigor. 

The empirical manifestations of professional development 

challenges reveal the diverse characteristics of teacher 

learning needs. Teachers face urgent needs for AI literacy 

enhancement and understanding AI tool operational logic and 

applicable contexts to avoid losing agency in teaching 

settings. This technical literacy requirement aligns with 

Güner’s [56] research findings, emphasizing that helping 

students understand how to effectively use AI tools is more 

important than whether they can use them; similarly, teachers 

also need to develop critical application abilities for AI tools. 

Research indicating teachers’ necessity to carefully evaluate 

AI tool applicability in higher-order thinking or innovative 

application topics actually reflects the increased importance 

of professional judgment abilities in the AI era. 

The empirical patterns of adaptive teaching strategy 

development demonstrate the importance of teachers’ 

professional resilience. Research finds teachers designing 

differentiated strategies based on curriculum objectives, 

students’ foundational abilities, and task complexity, 

combining diverse assessment mechanisms and learning 

activities to achieve a dynamic balance between AI 

convenience and deep learning cultivation. The development 

of this adaptive capability requires teachers to possess 

stronger contextual sensitivity and strategic flexibility, in 

order to maintain teaching effectiveness and professional 

stability in rapidly changing technological environments. 

Synthesizing this study’s empirical findings, changes in 

teachers’ pedagogical strategies point to fundamental 

innovation needs in professional development models. Future 

teacher education should emphasize comprehensive 

cultivation of technology integration abilities, ethical 

judgment literacy, and adaptive instructional design 

capabilities, helping teachers maintain irreplaceable 

professional value in the era of widespread AI tools, and 

achieving organic integration of technological enhancement 

and humanistic care. 

V. CONCLUSION

Through a systematic literature review of 45 empirical 

studies, this paper provides an in-depth exploration of the 

application effects and impact mechanisms of generative AI 

tools in programming education. The findings reveal that 

GAI-assisted instruction presents complex and differentiated 

impact patterns in programming learning, with effects 

influenced by multiple factors, including learners’ 

foundational abilities, task characteristics, and 

implementation contexts. Given the diverse findings and 

complex impact mechanisms presented in existing research, 

it is necessary to establish an integrated theoretical 

framework to systematically understand these interactive 

relationships. Based on this important research requirement, 

this study constructed an integrated conceptual model for 

GAI-assisted programming education, as shown in Fig. 5. 

Fig. 5. Integrated conceptual model for GAI-assisted programming 
education. 

This model presents a multidimensional integration 

framework for generative AI tools in programming education, 

systematically integrating four core 

dimensions–implementation context factors, core influencing 

factors, learning performance indicators, and learning 

outcome dimensions. As such, it provides a comprehensive 

analytical framework for understanding the complex impact 

mechanisms of GAI in programming education. The 

implementation context factors dimension, located at the 

model’s periphery, encompasses educational environmental 

factors including teacher instructional strategies, curriculum 

design elements, assessment mechanism adjustments, and AI 

literacy cultivation. The core influencing factors dimension 

focuses on three key impact factors: learners’ foundational 

abilities, GAI tool characteristics, and task complexity. The 
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learning performance indicators dimension establishes seven 

assessment aspects synthesized in this study, including 

programming knowledge and skills, computational thinking 

and logical reasoning, problem-solving ability, programming 

self-efficacy, learning achievement, code quality, and 

learning behaviors and engagement. The learning outcome 

dimension integrates three output performances: learning 

effectiveness, code quality, and learning behavior changes. 

Regarding learning behavior changes, this study identifies 

seven major transformation aspects. Enhanced engagement is 

reflected in student perceptions of the utility and operational 

convenience of AI tools, along with higher usage intentions 

and learning investment. Problem-solving strategies show 

differentiation phenomena, with some students flexibly 

combining AI feedback with personal thinking to leverage 

human-AI collaboration advantages, whereas students with 

weaker foundational abilities may lack verification and 

thinking processes. Strengthened self-directed learning 

behaviors are manifested in structured prompts stimulating 

students to actively engage in learning tasks, with students 

who frequently interact with AI demonstrating higher 

efficiency in test performance. Improvements in error 

handling and debugging abilities stem from the immediate 

feedback provided by AI tools, effectively improving 

students’ performance in syntax errors and debugging tasks. 

Adaptive learning behaviors show that students can quickly 

familiarize themselves with and apply AI tools to 

programming tasks. Changes in collaborative interaction 

patterns reflect AI tools’ intervention as third-party cognitive 

partners, altering knowledge-sharing patterns in traditional 

peer learning. However, over-dependence risks require equal 

attention, with research indicating that students who 

over-rely on AI show significant decreases in both the 

quantity and quality of test cases written. 

Adjustments in teachers’ instructional strategies present 

transformation patterns from passive adaptation to proactive 

innovation. Research shows teachers beginning to adopt 

diversified teaching modes, introducing blended learning and 

flipped classrooms, and actively developing prompt-based 

assessment tools and personalized learning paths. The 

intervention of generative AI prompts teachers to redefine 

classroom roles, transforming from traditional knowledge 

transmitters to guides and facilitators who assist students in 

collaborative learning with AI tools. AI tool integration has 

become an important element in curriculum design, ranging 

from flipped teaching strategies to the integrated application 

of learning support tools. Innovations in assessment 

mechanisms include the use of AI-generated prompts to help 

students clarify compilation errors, and the development of 

AI-assisted programming assessment mechanisms. These 

findings provide concrete guidance for programming 

education practice. When implementing GAI-assisted 

instruction, educators should use the seven learning 

indicators synthesized in this study as foundations for 

assessing knowledge mastery and learning behavior 

transformation. Curriculum design and assessment methods 

should combine diverse teaching strategies such as flipped 

classrooms, project-based learning, and peer assessment, 

balancing the convenience provided by AI technology with 

the development of students’ autonomous learning and 

thinking. The conceptual model presented in Fig. 5 provides 

teachers with a systematic reference framework, assisting 

them in making differentiated instructional strategy 

adjustments based on students’ foundational abilities, 

achieving balanced development among learning 

convenience, problem-solving abilities, and long-term 

knowledge internalization. 

Through multidimensional systematic integration of 

generative AI’s application effects and challenges in 

programming learning, this study proposes seven learning 

indicators, three code quality indicators, and seven learning 

behaviors as assessment foundations for curriculum design 

and teaching practice. Teachers can select appropriate 

indicator dimensions for instructional design based on 

curriculum objectives and student characteristics. Fig. 5 

further illustrates how teachers can make differentiated 

instructional strategy adjustments based on students’ 

foundational ability differences, using the seven learning 

indicators as a foundation to assist in achieving balanced 

development among learning convenience, problem-solving 

abilities, and long-term knowledge internalization. 

In a semester-long programming course, teacher 

instructional strategies in the initial phase focus on building a 

shared foundation of programming syntax, logical reasoning, 

and basic problem-solving skills without the use of AI tools. 

This approach ensures that students, regardless of their initial 

proficiency level, acquire the necessary competencies before 

AI integration. Once these foundational abilities are 

established, AI tools are progressively introduced, 

accompanied by explicit prompt-design guidance to help 

students explore the characteristics and affordances of 

generative AI in controlled contexts. Task complexity is 

gradually increased, prompting learners to apply 

computational thinking, logical reasoning, and 

problem-solving strategies while critically evaluating 

AI-generated outputs. The assessment mechanism 

incorporates self-regulation prompts, peer review, and 

iterative feedback cycles, encouraging students to reflect on 

AI responses, compare alternative solutions, and articulate 

the underlying logic of each code segment. Such an approach 

fosters a balanced development across learning performance 

metrics—such as programming self-efficacy, engagement, 

and code quality—and supports long-term learning outcomes, 

including enhanced AI literacy and sustainable learning 

behaviors. 

Despite the systematic organization and analysis of 

relevant literature, this study has several limitations. The 

study focuses on rapidly developing short-term applications 

in recent years, with long-term learning knowledge 

applications and sustained effectiveness requiring further 

investigation in subsequent research. The applicability of 

generative AI tools and learning behavior differences across 

different languages and diverse task contexts also warrant 

deeper empirical comparison. Research samples are 

concentrated in Western higher education systems, limiting 

the cultural representativeness of findings. Although a few 

studies have emerged from Asian or African contexts, 

comparative empirical evidence remains scarce. More 

systematic cross-cultural research is needed to uncover 

culturally specific adoption patterns, pedagogical preferences, 

and behavioral responses to GAI tools. Additionally, 42 out 

of the 45 reviewed studies focused specifically on ChatGPT, 
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highlighting a tool-specific bias in current research. This 

dominance may limit the generalizability of findings to other 

generative AI tools with distinct interfaces, functionalities, or 

integration mechanisms, and also contributes to the overall 

heterogeneity in assessment approaches and observational 

dimensions, further complicating meaningful cross-study 

comparisons.  

Although additional searches were conducted in Scopus 

and ERIC, no further eligible studies were identified after 

duplicate removal and relevance screening. The final corpus 

therefore relied primarily on Semantic Scholar, which 

provided broader coverage of emergent GAI keywords and 

ensured replicability through its open-access infrastructure. 

In total, this review synthesized 45 empirical studies. 

However, a full quantitative meta-analysis was not feasible. 

Despite all studies adopting experimental or 

quasi-experimental designs with treatment and control 

groups, 19 did not report sufficient statistical details (e.g., 

means, standard deviations, or test values) required for effect 

size estimation, and some reported only average differences, 

percentages, or project scores. Consequently, this study 

adopted a systematic literature review to capture broader 

learning patterns, identifying seven major learning indicators, 

three dimensions of code quality, and seven categories of 

learning behavior change, instead of producing aggregated 

quantitative effect sizes through a meta-analysis. 

Future research should broaden database coverage and 

assess the potential impact of including additional sources on 

the comprehensiveness of the evidence base, while also 

developing conceptual models centered on students’ 

foundational abilities by analyzing the interactive effects of 

AI tool use and student learning outcomes. Establishing 

standardized measurement tools and assessment systems for 

GAI-assisted learning effects would provide a reliable 

foundation for cross-study comparisons. While current 

studies predominantly report on short-term learning 

improvements, there is limited understanding of whether 

these benefits persist over time or translate into long-term 

programming proficiency. Future longitudinal research is 

necessary to assess retention effects, transferability to 

advanced tasks, and whether AI-assisted learning fosters 

durable cognitive change. Cross-cultural and 

cross-educational system comparative research would help 

understand the universal principles and context-specific 

factors in GAI educational applications. 

Overall, generative AI tools provide multifaceted support 

and a transformative potential for programming learning in 

higher education. Educators can understand and apply the 

GAI technology more systematically through the integrated 

conceptual model developed in this study. Cultivating 

students’ critical thinking, autonomous learning, and 

long-term knowledge internalization, while promoting 

learning convenience, remains a core issue that requires joint 

attention from educational practice and research. Through 

continued research and educational applications, generative 

AI tools can exert a profound influence on learning 

effectiveness and innovation stimulation. 
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