

Learning, Behavior, and Pedagogy: A Systematic Review of

Generative AI Use in Programming Education

Tien-Chi Huang1 and Hsin-Ping Tseng2,*

1Department of Information Management, National Taichung University of Science and Technology, Taichung, Taiwan
2Doctoral Program of Intelligent Engineering, National Taichung University of Science and Technology, Taichung, Taiwan

Email: tchuang@nutc.edu.tw (T.-C.H.); s1f11336002@nutc.edu.tw (H.-P.T.)
*Corresponding author

Abstract—With the rapid development of Generative

Artificial Intelligence (GAI) technology, programming

education has emerged as a core application domain. Through a

systematic literature review of 45 relevant studies from the

Semantic Scholar database from 2023-2025, this study

examined the current applications of GAI as an auxiliary

learning tool in programming education, and its impact on

learning outcomes. The findings reveal that GAI-assisted

instruction demonstrates significant effectiveness across seven

learning indicators: programming knowledge and skills,

computational thinking and logical reasoning, problem-solving

ability, programming self-efficacy, learning achievement, code

quality, and learning behaviors and engagement. While the

majority of studies confirm that GAI enhances student

performance in various areas such as task completion, test

performance, code structure and quality, and promoting

self-directed learning, some studies indicate that GAI use may

reduce learning depth and lead to over-dependence in specific

tasks or complex reasoning contexts. From a pedagogical

perspective, GAI prompts a transformation in teachers’ roles

from knowledge transmitters to learning facilitators and guides,

necessitating corresponding adjustments in curriculum design

and assessment approaches. Based on the empirical findings,

this study constructs an integrated conceptual model for

GAI-assisted programming education integrating four core

dimensions: implementation context factors, core influencing

factors, learning performance indicators, and learning

outcomes. The study identifies AI tool selection, students’

foundational abilities, and task complexity as key variables

affecting learning effectiveness, and synthesizes seven patterns

of student learning behavior changes under GAI assistance,

providing concrete theoretical foundations and implementation

guidelines for educational practice.

Keywords—Generative Artificial Intelligence (GAI),

programming education, ChatGPT, learning outcomes, code

quality, self-directed learning; pedagogical adaptation

I. INTRODUCTION

With the rapid development of Generative Artificial

Intelligence (GAI) technology and the widespread adoption

of tools such as ChatGPT, GAI has become an important

instrument across various domains. In the field of

programming education, GAI can generate code and

problem-solving suggestions in real-time, meeting learners’

personalized support needs [1]. However, guiding students to

use AI tools appropriately—preventing them from becoming

mere answer providers while transforming them into

effective auxiliary learning tools that promote deep learning

and subsequent application—has emerged as a critical

challenge in educational applications. In programming

learning, students must not only master programming syntax

and logical structures, but also develop debugging and

verification capabilities to foster long-term knowledge

internalization, and problem-solving abilities.

Previous literature has explored the impact of GAI

applications across various learning domains, and analyzed

students’ understanding and application of GAI-generated

content, revealing that students’ preferences for GAI

demonstrate two orientations: “Substitution” and

“Augmentation” [2]. However, existing research

predominantly focuses on single dimensions and lacks

systematic convergence and synthesis to comprehensively

examine changes in student learning behaviors and

fundamental learning indicators under GAI assistance. In

recent years, research has begun shifting focus from AI tool

application patterns to the integration of GAI by students for

programming, debugging, and optimization [3]. The role of

GAI in programming education extends beyond being merely

an auxiliary tool for knowledge transmission; it has become a

critical factor influencing students’ learning depth and

subsequent application capabilities.

Therefore, this study employed a systematic literature

review focusing on the application outcomes of generative AI

in programming education from 2023 to 2025, integrating

learning indicators and learning behavior changes throughout

students’ learning processes, and further analyzing its impact

on code quality, such as structural clarity, readability, error

rate, or modularity, as well as task completion efficiency. In

particular, the study aimed to address the following research

questions:

RQ1: In GAI-assisted learning contexts, which aspects of

students’ programming learning performance demonstrate

significant impact?

RQ2: What specific effects do GAI-assisted learning have

on the quality of code produced by students and their

completion efficiency?

RQ3: What changes emerge in students’ learning

behaviors and teachers’ instructional strategies during the

implementation of GAI in educational applications?

This research aims to assist educators in achieving a

balance between curriculum design and AI utilization,

ensuring that GAI serves not merely as a technical support

tool, but also promotes students’ subsequent application

capabilities and long-term knowledge consolidation through

rigorous assessment and instructional strategies. This

involves not only understanding the nature of GAI

technology, but also strategic adjustments in curriculum

design and instructional implementation within educational

practice, which has significant implications for the

sustainable development of higher education.

International Journal of Information and Education Technology, Vol. 16, No. 1, 2026

102doi: 10.18178/ijiet.2026.16.1.2487

Manuscript received June 19, 2025; revised July 22, 2025; accepted September 4, 2025; published January 13, 2026

mailto:tchuang@nutc.edu.tw
mailto:s1f11336002@nutc.edu.tw

II. MATERIALS AND METHODS

This study employs a systematic review methodology,

supplemented by thematic analysis to organize qualitative

dimensions, reviewing empirical research findings on

GAI-assisted programming education. The study aims to

examine its impact on student programming learning

outcomes compared to traditional teaching approaches,

including aspects such as programming skill performance,

learning efficiency, and learning behaviors. To focus on the

latest GAI developments in programming education, this

study utilizes Semantic Scholar for literature retrieval. First,

Semantic scholar’s semantic search and automatic summary

(TLDR) features facilitate the rapid comprehension of

generative AI applications across various programming

education contexts, enhancing the efficiency and precision of

literature retrieval. Second, the platform not only

encompasses over 200 million cross-disciplinary documents,

but also provides comprehensive coverage of computer

science, educational technology, and artificial

intelligence-related fields, sufficiently supporting this study’s

requirements for thematic depth and breadth. Moreover, this

database is free and unrestricted by institutional subscriptions,

thus ensuring reproducibility of the research process.

Therefore, this study selected the Semantic Scholar database

and employed rigorous search strategies and screening

criteria to ensure the representativeness and quality of the

subsequently coded literature.

Since the application of generative AI technology in

education largely began with the rapid proliferation of

ChatGPT in 2023, and most relevant empirical studies were

published after 2023, this study sets the literature search

scope from January 1, 2023, to May 1, 2025, to encompass

the critical period of GAI in programming education.

Although Semantic Scholar’s semantic search provides

flexibility and contextual understanding advantages in

exploring emerging topics, to comply with the Preferred

Reporting Items for Systematic Reviews (PRISMA)’s

emphasis on search strategy reproducibility and transparent

reporting principles, this study still employs clearly defined

keywords for initial screening to ensure transparency and

traceability of the search process. The following keywords

were used for result screening: (“generative AI”) AND

(“ChatGPT” OR “GitHub Copilot”) AND (programming OR

coding). The literature inclusion and exclusion criteria

consisted of five items, as listed in Table 1.

Table 1. Literature inclusion criteria

Inclusion Criteria Description

Educational Domain Research must be conducted in programming education contexts.

Use of Generative AI Tools Studies must explicitly utilize generative AI tools.

Empirical Research Design
Only empirical studies including experimental designs, quasi-experimental, and

observational studies are included; literature reviews and meta-analyses are excluded.

Comparative Baseline Design
Studies must include control groups or pre-/post-test to verify differences between

AI-assisted and traditional teaching effectiveness.

Learning Outcome Indicators
Studies must contain quantifiable student learning outcome data, such as test scores, project

completion rates, and code quality.

Fig. 1. PRISMA flow diagram.

Subsequently, a systematic review and meta-analysis was

conducted following the PRISMA standards for data

collection and literature screening. The search yielded 209

relevant documents. The data screening process, as shown in

Fig. 1, involved excluding literature unrelated to

programming education based on titles and abstracts (n = 81),

followed by full-text reading to further exclude studies that

did not use AI tools in educational application contexts (n =

44), and research lacking student learning outcomes or

empirical data (n = 39). Ultimately, 45 articles were included

in the content analysis.

A. Data Extraction and Coding Criteria

This study employed a pre-established coding framework

aligned with the research objectives to conduct systematic

data extraction from the literature that met the inclusion

criteria, facilitating subsequent analysis and comparison. The

coding categories are presented in Table 2.

Table 2. Literature coding description

Coding Category Description

Research Design Type
Primarily includes Randomized Controlled Trial (RCT), Quasi-Experimental Design, Pre-/Post-Test Design,

and Comparative Study

AI Teaching Intervention Methods
AI tool names, application methods (teaching assistant, debugging, practice support, etc.), frequency of use, and

intervention duration

Learning Context Includes participants’ educational level and programming context

Learning Outcome Indicators Such as programming performance scores, completion rates, problem-solving abilities, code quality, etc.

Measurement Instruments and Time

Points
Scales and assessment methods utilized

Primary Research Results Comparison of outcomes between groups, statistical significance

International Journal of Information and Education Technology, Vol. 16, No. 1, 2026

103

III. RESULTS

A. Characteristics of Included Studies

This review included 45 empirical studies, as shown in

Table 3. These studies met the pre-established coding criteria

and demonstrated diverse research design types, including 13

Randomized Controlled Trials (RCTs) [4–16] and 21

Quasi-Experimental Designs [3, 17–36], Among these, 19

studies employed Pre-/Post-Test Designs [4, 9, 11–14, 17, 18,

21, 22, 24–27, 29, 31, 36–38] and 27 were Comparative

Studies [3, 5–8, 10, 11, 15, 16, 19, 20, 23, 28, 30, 32–34, 36,

39–47]. Although some studies did not explicitly state their

research design type, the overall results still reflected the

methodological diversity and openness in this research

domain.

All the studies confirmed the use of generative AI tools to

align with the research theme. Most studies utilized ChatGPT

[3–28, 30–45, 47], with only one study using Gemini 1.5 [29]

and three studies employing the GitHub Copilot [28, 37, 46].

ChatGPT 3.5 was the most commonly used version, while

two studies used both ChatGPT and GitHub Copilot [28, 37].

Regarding programming learning contexts, most studies

have been conducted in educational settings, including

introductory programming courses at universities (such as

CS1) and various specialized domain courses. Among the

studies, 11 did not explicitly specify the programming

language used in their courses [3, 9, 10, 12, 17, 21, 34, 35, 41,

45, 47], 8 focused on introductory programming courses [7,

15, 31, 33, 38, 40, 44, 46], while the remaining studies

covered various languages and course domains including

C++ [8, 27], JAVA [5, 25, 37, 42], Data analysis [18, 24],

JavaScript to web design [28, 32], Object Oriented

Programming (OOP) [13, 43], PHP [19], Python [4, 11, 14,

20, 23, 30], Visual Basic [26], API test [22], Scratch [39], as

well as Computer engineering [29], Software engineering [6,

16] and Vibration analysis course [36], demonstrating the

application potential of generative AI tools across diverse

educational scenarios.

The primary learning outcome indicators included

programming knowledge acquisition, computational thinking

abilities, problem-solving skills, programming self-efficacy,

and code quality. However, these studies exhibited high

heterogeneity in their assessment tools and observational

dimensions, reflecting that “programming ability” in

AI-assisted learning contexts is a multifaceted learning

outcome difficult to measure with a single scale.

The synthesis of these results indicates current research’s

interest in “integrating generative AI into programming

education,” presenting its potential effectiveness through

diverse research methods and learning scenarios.

International Journal of Information and Education Technology, Vol. 16, No. 1, 2026

104

Table 3. Literature screening results

Ref. Study Design Programming Context AI Tool Used Primary Outcomes

[25]

Quasi-Experimental Design;

Experimental design with

pre-test/post-test

Computer Science (JAVA) ChatGPT 3.5

UML diagram creation, programming

implementation, closed-book post-evaluation

scores

[29]

Quasi-Experimental Design;

Experimental design with

pre-test/post-test

Computer engineering Gemini 1.5
Academic performance, perception of usefulness

and ease of use, satisfaction and motivation

[9]

Randomized controlled trial;

Experimental design with

pre-test/post-test

Programming course ChatGPT
Computational thinking skills, programming

self-efficacy

[44] Comparative study Introductory programming ChatGPT 3.5
Time taken to complete tasks, number of tasks

attempted, scores achieved

[43] Comparative study
Object-Oriented

Programming (OOP) course
ChatGPT Performance data (test scores and grades)

[11]

Randomized controlled trial;

Experimental design with
pre-test/post-test

Python programming ChatGPT
Code-authoring performance, code-modification

performance, computational thinking

[3]
Quasi-experimental study;

Comparative study
Programming course ChatGPT

Programming performance, perceived usefulness,

perceived ease of use, intention to use

[31]

Quasi-experimental study;

Experimental design with

pre-test/post-test

Python programming ChatGPT 3.5 Python programming knowledge and skills

[45] Comparative study Programming course ChatGPT 3.5 Computational thinking skills, creative thinking

[24]

Quasi-experimental study;

Experimental with pre/post;
Comparative study

Data Structures and

Algorithms course
ChatGPT

Problem-solving skills, algorithmic thinking, ability

to write executable code

[46]
Comparative study

(within-subjects design)
Introductory programming

GitHub Copilot

AIDE
Programming performance, self-efficacy

[41] Comparative study Programming course ChatGPT
Programming knowledge acquisition, group-level

programming product quality

[33]
Quasi-Experimental Design;

Experimental design with

pre-test/post-test

Introductory programming

course
ChatGPT 4

Programming knowledge, performance analysis for

different compiler errors

[23]
Quasi-Experimental Design;

Comparative study
Python programming ChatGPT

Programming proficiency, students’ experiences
using ChatGPT

[19]
Quasi-Experimental Design;

Comparative study
PHP programming course ChatGPT

Coding (Classical, True/False, Multiple Choice

questions)

[42] Comparative study
Introductory Java

programming courses
ChatGPT

Adherence to coding conventions, cyclomatic
complexity, cognitive complexity

[16]
Randomized controlled trial;

Comparative study

Software engineering

classroom
ChatGPT

Structure, independence, value, testability,

grammar of user stories

[34]
Quasi-experimental study;

Comparative study

Component Programming

course
ChatGPT

Speed of task completion, depth of understanding,

diversity of solutions, critical thinking

[17] Quasi-experimental study with Programming course ChatGPT 3.5 Programming test scores

B. Effects of AI-Assisted Programming Learning

1) Learning performance metrics

This study provides an in-depth exploration of

performance indicators across the 45 studies. Through the

analysis of different indicator types and based on Table 3 in

Section 3.1, the Primary Outcomes were consolidated into

seven major learning performance indicators: programming

knowledge/skills, computational thinking/logical reasoning,

problem-solving ability, programming

self-efficacy/confidence, learning achievement, code quality,

and learning behaviors/engagement, with the distribution

shown in Fig. 2.

All the studies addressed learning indicators related to

programming knowledge/skills, demonstrating that students’

understanding and application abilities in programming

languages and concepts constitute the primary assessment

focus. Learning achievement was examined in 41 studies

[4–7, 9–22, 24–26, 28–47], represented through quantitative

results such as test scores and academic performance.

Learning behaviors and engagement were investigated in 38

studies [3, 4, 6–9, 11–15, 17, 18, 20–26, 29–45, 47], while

computational thinking and logical reasoning abilities were

addressed in 33 studies [3–5, 7, 9–11, 13, 14, 16–25, 27, 30,

32–34, 36, 38–45], focusing on students’ abstraction and

pattern recognition thinking processes during programming.

Additionally, 29 studies examined students’ abilities in

applying strategies for debugging and problem-solving [3,

5–7, 10–15, 18, 20, 23–25, 27, 28, 31, 33, 34, 36, 37, 39, 41,

42, 44–47], while 21 addressed students’ cognition and

attitudes toward their own programming learning and

application capabilities [3, 5, 8, 9, 14, 15, 19, 20, 22, 23, 27,

29, 31, 35, 37-39, 41, 44–46]. Finally, code quality was

examined in 16 studies [3, 5, 8, 9, 14, 15, 19, 20, 22, 23, 27,

29, 31, 35, 37-39, 41, 44–46], emphasizing the structural

quality and maintainability of code produced by the students.

International Journal of Information and Education Technology, Vol. 16, No. 1, 2026

105

pre-test/post-test

[35] Quasi-experimental study Programming course ChatGPT
Comprehension and application of programming

concepts

[36]
Comparative study;

Quasi-experimental study

Vibration analysis course for

mechanical engineers
ChatGPT Computational thinking, problem-solving abilities

[38]
Experimental design with

pre-test/post-test
Introductory programming ChatGPT Normalized learning gain

[32]
Quasi-experimental study;

Comparative study

JavaScript functions for Web

Design and Coding students
ChatGPT Navigation performance, test scores

[13]

Randomized controlled trial;

Experimental with pre/post;

Comparative study

Object-oriented programming
concepts

ChatGPT 3.5
Programming performance, code submission

success rate

[22]
Experimental with pre/post;

Quasi-experimental

API testing (IT and IS

students)
ChatGPT

Understanding and using APIs, confidence in using

APIs

[26]
Quasi-experimental; Experimental

with pre/post
Visual Basic 6 for

undergraduates
ChatGPT Programming skills in Visual Basic 6

[7]
Randomized controlled trial;

Comparative study
Introductory programming ChatGPT 4

Engagement, practice performance, posttest

performance, scaffolding apply rate

[14]
Randomized controlled trial;
Experimental with pre/post

Python programming ChatGPT Code-authoring and code-modification skills

[5]
Randomized controlled trial;

Comparative study
Java programming course ChatGPT 4 Laboratory assignment scores

[30]
Quasi-experimental study;

Comparative study
Python programming ChatGPT 4 Test scores, Python skills enhancement

[39] Comparative study
Scratch programming for

non-CS majors
ChatGPT

Syntax understanding, code writing ability, Scratch
feature use, algorithm understanding

[20]
Quasi-experimental study;

Comparative study
Python programming ChatGPT 3 Problem-solving time and success rate

[18]
Quasi-experimental study with

pre/post

Programming and data

analysis
ChatGPT Programming and data analysis skills

[4]
Randomized controlled trial;
Experimental with pre/post

Python programming ChatGPT 3.5 Python programming skills

[10]
Randomized controlled trial;

Comparative study
Programming via debugging ChatGPT Programming performance, computational thinking

[21]
Quasi-experimental study with

pre/post
Programming courses ChatGPT

Programming skills, conceptual understanding,

engagement, satisfaction

[40] Comparative study Introductory programming ChatGPT 3.5 Code correctness, code quality

[6]
Randomized controlled trial;

Comparative study
Software testing education ChatGPT 3.5 Effectiveness and efficiency in writing tests

[12]
Randomized controlled trial;

Experimental with pre/post

Debugging-focused

programming education
ChatGPT 3.5

Comprehensive and accurate hypothesis

construction

[47] Comparative study Programming assistance ChatGPT Code quality, task completion time

[37]
Experimental with pre/post;

Interview analysis
Java programming course ChatGPT

Pre/post-task quiz score, code quality, task

completion time, student interviews

[8]
Randomized controlled trial;

Comparative study
Object-Oriented

Programming using C++
ChatGPT

Practical assignment performance, midterm exam

results, final course grade, student feedback on

ChatGPT usefulness

[27]
Quasi-experimental study with

pre/post
C++ programming course ChatGPT

Flow experience, self-efficacy, learning

achievement

[28]
Quasi-experimental study;

Comparative study
JavaScript to web design

ChatGPT, GitHub
Copilot

Coding assignment, code generation, debugging,
explanation

[15]
Randomized controlled trial;

Comparative study
Introductory programming ChatGPT 3.5

programming posttest score, self-efficacy in

programming, task performance, programming
errors

This multidimensional categorization provides a more

comprehensive presentation of students’ multilevel outcomes

in generative AI-assisted learning, and reflects the diversity

of observational focus across different studies.

Further comparisons of the measurement methods and

learning outcomes following generative AI tool intervention

are presented in Table 4. Although some studies did not

explicitly indicate the direction of intervention effects, most

results demonstrated the positive impact of generative AI

instruction on student learning performance. A total of 34

studies reported that AI-assisted groups outperformed

traditional control groups across multiple dimensions,

including learning achievement, problem-solving abilities,

and self-efficacy. However, 11 studies showed significant

negative differences or no improvement in average

performance [5–8, 15, 25, 27–29, 41, 43], indicating that

while generative AI tools demonstrate positive effects in

most studies, variations and challenges persist.

Fig. 2. Seven major learning performance indicators.

International Journal of Information and Education Technology, Vol. 16, No. 1, 2026

106

Table 4. Learning performance indicator screening results

Ref. Measurement Type AI-Assisted Results Traditional Results Converged Outcome

[25]

UML diagram, programming

implementation,
post-evaluation scores

No significant impact No mention found

Prog. Knowledge/Skills, CT / Logic Reasoning,

Problem-solving ability, Learning achievement, Learning
behaviors / Engagement

[29] Academic performance
No statistically

significant differences

No statistically

significant differences

Prog. Knowledge/Skills, Prog. Self-Efficacy, Learning

achievement, Learning behaviors / Engagement

[9]
Computational thinking skills,

programming self-efficacy
Significantly higher

Lower than AI-assisted
group

Prog. Knowledge/Skills, CT / Logic Reasoning, Prog.

Self-Efficacy, Learning achievement, Learning behaviors

/ Engagement

[44] Task completion time, scores
Faster completion,

comparable scores

Slower completion,

comparable scores

Prog. Knowledge/Skills, CT / Logic Reasoning,

Problem-solving ability, Prog. Self-Efficacy, Learning

achievement, Code quality, Learning behaviors /
Engagement

[43] Test scores
Scores improved but

the effect was average
No mention found

Prog. Knowledge/Skills, CT / Logic Reasoning, Learning

achievement, Learning behaviors / Engagement

[11] Code-authoring performance

1.15x increased

completion rate, 1.8x
higher scores

Lower than AI-assisted
group

Prog. Knowledge/Skills, CT / Logic Reasoning,

Problem-solving ability, Learning achievement, Code
quality, Learning behaviors / Engagement

[3] Programming performance M = 84.11, SD = 19.45 M = 78.36, SD = 17.59

Prog. Knowledge/Skills, CT / Logic Reasoning,

Problem-solving ability, Prog. Self-Efficacy, Learning

behaviors / Engagement

[31]
Python programming
knowledge and skills

Average increase of
12.50

Average decrease of
3.17

Prog. Knowledge/Skills, Problem-solving ability, Prog.

Self-Efficacy, Learning achievement, Learning behaviors
/ Engagement

[45] Computational thinking skills Enhanced No mention found

Prog. Knowledge/Skills, CT / Logic Reasoning,

Problem-solving ability, Prog. Self-Efficacy, Learning
achievement, Code quality, Learning behaviors /

Engagement

[24]
Problem-solving skills,

algorithmic thinking

Significantly higher

scores

Lower than AI-assisted

group

Prog. Knowledge/Skills, CT / Logic Reasoning,
Problem-solving ability, Learning achievement, Learning

behaviors / Engagement

[46] Programming efficiency Significantly increased
Lower than AI-assisted

condition
Prog. Knowledge/Skills, Problem-solving ability, Prog.

Self-Efficacy, Learning achievement, Code quality

[41]
Programming knowledge

acquisition
No substantial

differences
No substantial

differences

Prog. Knowledge/Skills, CT / Logic Reasoning,

Problem-solving ability, Prog. Self-Efficacy, Learning
achievement, Code quality, Learning behaviors /

Engagement

[33]
Programming knowledge,

error troubleshooting

Improved error
troubleshooting

capabilities

Lower performance in

error troubleshooting

Prog. Knowledge/Skills, CT / Logic Reasoning,
Problem-solving ability, Learning achievement, Code

quality, Learning behaviors / Engagement

[23] Programming proficiency
Statistically significant

but not practically

significant

Lower than AI-assisted

group

Prog. Knowledge/Skills, CT / Logic Reasoning,
Problem-solving ability, Prog. Self-Efficacy, Learning

behaviors / Engagement

[19] Coding question performance
Statistically significant

positive effect
Lower than AI-assisted

group
Prog. Knowledge/Skills, CT / Logic Reasoning, Prog.

Self-Efficacy, Learning achievement

[42] Code quality Significantly improved
Lower than AI-assisted

group

Prog. Knowledge/Skills, CT / Logic Reasoning,

Problem-solving ability, Learning achievement, Code
quality, Learning behaviors / Engagement

[16] User story quality
The results are higher

on average

Lower than AI-assisted

group

Prog. Knowledge/Skills, CT / Logic Reasoning, Learning

achievement

[34] Task completion speed
Nearly three times

quicker
Slower than

AI-assisted group

Prog. Knowledge/Skills, CT / Logic Reasoning,

Problem-solving ability, Learning achievement, Code

quality, Learning behaviors / Engagement

[17] Programming test scores
Increased from 48.33

to 74.47

Lower than AI-assisted

condition

Prog. Knowledge/Skills, CT / Logic Reasoning, Learning

achievement, Learning behaviors / Engagement

[35]
Comprehension and

application of programming
Significantly higher

Lower than AI-assisted
group

Prog. Knowledge/Skills, Prog. Self-Efficacy, Learning
achievement, Code quality, Learning behaviors /

2) Code quality outcomes

Among the 45 studies, 11 examined the potential impact of

generative AI tools on the quality of code produced by

students, with results presented in Table 5. The majority of

studies suggested that AI assistance contributes to improving

the quality of code produced by students, with eight studies

indicating that AI-assisted groups significantly outperformed

the control groups [11, 12, 33, 35, 40, 42, 45, 47], and four

demonstrating statistical significance [12, 35, 42, 47]

including two studies that found students in AI groups

significantly exceeded traditional groups in terms of

modularity or correctness [12, 40]. These studies

International Journal of Information and Education Technology, Vol. 16, No. 1, 2026

107

concepts Engagement

[36] Quiz scores Increased performance
Lower than AI-assisted

group

Prog. Knowledge/Skills, CT / Logic Reasoning,

Problem-solving ability, Learning achievement, Learning

behaviors / Engagement

[38] Normalized learning gain M = 52.85, SD = 24.27 M = 41.29, SD = 26.84

Prog. Knowledge/Skills, CT / Logic Reasoning, Prog.

Self-Efficacy, Learning achievement, Learning behaviors
/ Engagement

[32] Test scores Significantly higher
Lower than AI-assisted

group
Prog. Knowledge/Skills, CT / Logic Reasoning, Learning

achievement, Learning behaviors / Engagement

[13] Successful submissions Higher
Lower than AI-assisted

group

Prog. Knowledge/Skills, CT / Logic Reasoning,

Problem-solving ability, Learning achievement, Code
quality, Learning behaviors / Engagement

[22] Exam test scores
Significantly higher

(~80)
Lower (~50)

Prog. Knowledge/Skills, CT / Logic Reasoning, Prog.

Self-Efficacy, Learning achievement, Code quality,
Learning behaviors / Engagement

[26]
Programming skills in Visual

Basic 6
M = 8.34, SD = 1.42 M = 7.56, SD = 1.84

Prog. Knowledge/Skills, Learning achievement, Learning

behaviors / Engagement

[7] Posttest performance
Higher average

accuracy
No mention found

Prog. Knowledge/Skills, CT / Logic Reasoning,
Problem-solving ability, Learning achievement, Learning

behaviors / Engagement

[14] Post-test evaluation scores
Average results

improved
No mention found

Prog. Knowledge/Skills, CT / Logic Reasoning,
Problem-solving ability, Prog. Self-Efficacy, Learning

achievement, Learning behaviors / Engagement

[5] Lab assignment scores
Lower than instructor

feedback
Better than AI

feedback

Prog. Knowledge/Skills, CT / Logic Reasoning,
Problem-solving ability, Prog. Self-Efficacy, Learning

achievement, Code quality

[30] Test scores
Improving test

accuracy and learning
No mention found

Prog. Knowledge/Skills, CT / Logic Reasoning, Learning

achievement, Learning behaviors / Engagement

[39] Scratch understanding Significantly higher
Lower than AI-assisted

group

Prog. Knowledge/Skills, CT / Logic Reasoning,
Problem-solving ability, Prog. Self-Efficacy, Learning

achievement, Learning behaviors / Engagement

[20] Programming success rate Increased
Lower than AI-assisted

group

Prog. Knowledge/Skills, CT / Logic Reasoning,
Problem-solving ability, Prog. Self-Efficacy, Learning

achievement, Code quality, Learning behaviors /

Engagement

[18]
Programming and data

analysis skills
Improve accuracy No mention found

Prog. Knowledge/Skills, CT / Logic Reasoning,

Problem-solving ability, Learning achievement, Learning

behaviors / Engagement

[4] Python programming skills
2 more questions

solved

Lower than AI-assisted

group

Prog. Knowledge/Skills, CT / Logic Reasoning, Learning

achievement, Learning behaviors / Engagement

[10] Programming performance
Better for 2nd & 3rd

levels of AIGC

Lower than AI-assisted

group

Prog. Knowledge/Skills, CT / Logic Reasoning,

Problem-solving ability, Learning achievement

[21] Programming skills Better performance
Lower than AI-assisted

group

Prog. Knowledge/Skills, CT / Logic Reasoning, Learning

achievement, Learning behaviors / Engagement

[40] Code correctness
Minimal changes in

scores
No mention found

Prog. Knowledge/Skills, CT / Logic Reasoning, Learning

achievement, Code quality, Learning behaviors /

Engagement

[6] Effectiveness in writing tests

Negative impact (8.6%

fewer tests, 78% not

useful)

Better than AI-assisted
group

Prog. Knowledge/Skills, Problem-solving ability,

Learning achievement, Code quality, Learning behaviors /

Engagement

[12] Debugging skills
12% increase in
pre-post scores

Lower than AI-assisted
condition

Prog. Knowledge/Skills, Problem-solving ability,

Learning achievement, Code quality, Learning behaviors /

Engagement

[47] Code quality
Better for algorithmic

tasks
Lower than AI-assisted

group

Prog. Knowledge/Skills, Problem-solving ability,

Learning achievement, Code quality, Learning behaviors /

Engagement

[37] Programming success rate
Effectively improve

completion time
No mention found

Prog. Knowledge/Skills, Problem-solving ability, Prog.

Self-Efficacy, Learning achievement, Learning behaviors

/ Engagement

[8] Programming test scores
Not significantly

different

Not significantly

different

Prog. Knowledge/Skills, Prog. Self-Efficacy, Learning

behaviors / Engagement

[27]
Post-test evaluation scores and

Questionnaire
Significant but

non-enhancing effect
Better results than the
experimental group

Prog. Knowledge/Skills, CT / Logic Reasoning,
Problem-solving ability, Prog. Self-Efficacy

[28] Programming test scores
Significant but

non-enhancing effect
No mention found

Prog. Knowledge/Skills, Problem-solving ability,

Learning achievement

[15] Programming scores High user satisfaction
Higher Programming

Score

Prog. Knowledge/Skills, Problem-solving ability, Prog.

Self-Efficacy, Learning achievement, Learning behaviors

/ Engagement

Note: Programming knowledge / skills (Prog. Knowledge/Skills); Computational thinking / Logical reasoning (CT / Logic Reasoning); Programming
self-efficacy / confidence (Prog. Self-Efficacy)

encompassed multiple dimensions such as coding

conventions, code structure standardization, error-handling

capabilities, and code logic clarity, demonstrating the

potential of generative AI tools for programming language

assistance.

However, three studies revealed potential concerns. One

study reported that although AI-assisted code output was

functional, it exhibited uniformity in strategy design and

problem-solving approaches, potentially constraining

students’ development of diverse thinking and innovative

solutions [34]. Another study indicated that AI assistance had

negative impacts on code quality [41], while Mezzaro et al.

(2024) found that in test case writing tasks, both the quality

and quantity of tests produced by the AI group were

significantly lower than those produced by the control group

[6].

These studies employed various code quality indicators,

most of which appeared in only single studies, creating

challenges for cross-study comparisons. To more clearly

present the observational focuses of different studies and

address the second research question (RQ2) regarding the

impact of generative AI tools on code quality, these

indicators were further consolidated into three major

dimensions: Code Structure & Quality (five studies [11, 35,

40, 42, 47]), Debugging & Error handling (three studies [6,

12, 33]), and Team-Level diversity & Collaborative

outcomes (three studies [34, 41, 45]), as shown in Fig. 3. This

classification helps systematically integrate the diverse

observational results from various studies, and serves as a

foundation for subsequent in-depth comparison and

statistical analysis.

Fig. 3. Three major dimensions of code quality indicators.

Overall, while most studies indicate that AI assistance has

positive impacts on code quality, the benefits are inconsistent,

suggesting that in practical educational applications, a further

balance is needed between technical assistance and students’

development of programming comprehension.

3) Time efficiency impacts

In programming development learning contexts, beyond

code quality, task completion efficiency represents an

important dimension affecting student learning outcomes.

Among the 45 empirical studies included in this analysis,

eight examined the impact of generative AI tools on students’

programming development time efficiency, with the results

addressing RQ2, as shown in Table 6. Seven studies reported

that generative AI-assisted programming learning enhanced

task completion speed [12, 13, 20, 34, 44, 46, 47], whereas

only one study indicated that traditional instruction

demonstrated superior time performance [22]. These studies

encompassed diverse learning contexts, including novice

programming, introductory courses, component-based

programming, object-oriented design concepts, API testing,

general programming learning assistance, and debugging

tasks.

Three studies provided detailed metrics for specific

quantified time improvements. One study indicated that

generative AI-assisted programming learning achieved

nearly three times the speed of traditional methods [34],

whereas Pankiewicz and Baker (2023) reported that the

AI-assisted group reduced problem-solving time by an

average of 375s (6.25 minutes) [13]. Meanwhile, Ma et al.

(2024) demonstrated that in debugging tasks, the AI-assisted

International Journal of Information and Education Technology, Vol. 16, No. 1, 2026

108

Table 5. Code quality screening results

Ref. Code Quality Metric AI-Assisted Results Traditional Results Context Notes Final Category

[42]

Adherence to coding

conventions, cyclomatic
complexity, cognitive

complexity

Significantly improved
Lower than AI-assisted

group
Introductory Java

programming courses
Code Structure & Quality

[40] Code modularity

Improved (Assignment-3

average modularity ratio:

1.49)

No mention found
Introductory

programming Course
Code Structure & Quality

[47]

Code quality for

algorithmic and

library-related tasks

Significantly better
Lower than AI-assisted

group
Programming assistance Code Structure & Quality

[11]
Code-authoring

performance
1.8x higher scores

Lower than AI-assisted

group
Python programming Code Structure & Quality

[33]
Error troubleshooting

capabilities
Improved

Lower than AI-assisted
group

Introductory
programming course

Debugging & Error
Handling

[34] Diversity of solutions
Lower diversity, more

uniform solutions

Higher diversity of

solutions

Component programming

course

Team-Level Diversity &

Collaborative Outcomes

[45] Quality of projects
Higher quality projects
aligned with learning

objectives

Lower than AI-assisted
group

Programming course
Team-Level Diversity &
Collaborative Outcomes

[41]
Group-level programming

product quality

No substantial

differences

No substantial

differences
Programming course

Team-Level Diversity &

Collaborative Outcomes

[35]
Application of

programming concepts
Significantly higher

performance
Lower than AI-assisted

group
Programming course Code Structure & Quality

[6] Quality of written tests
Lower quality (78% not

useful)

Higher than AI-assisted

group

Software testing

education

Debugging & Error

Handling

[12]
Accuracy of hypothesis

construction in debugging
15.8% improvement

Lower than AI-assisted

condition

Programming education

(debugging focus)

Debugging & Error

Handling

group reduced completion time by 14% [12]. Only one study

reported a better time through traditional instruction, where

the AI group’s average completion time was 49.95 minutes

(SD = 17.32 minutes), while the traditional group completed

tasks in 34.45 minutes (SD = 14.92 minutes) [22].

Additionally, the remaining four studies, while not providing

explicit quantitative data, presented AI tools’ time efficiency

advantages through qualitative descriptions such as

“significantly faster” or “reduced time” [20, 44, 46, 47].

These findings clearly indicate that generative AI tools

have positive effects on time efficiency in programming

learning, with this effect exhibiting consistency across

different learning contexts and task types. This constitutes

preliminary evidence regarding the efficiency benefits of AI

tools in programming education.

Table 6. Time efficiency impact screening results

Ref. Time Efficiency Metric AI-Assisted Results Traditional Results Context Notes

[44] Task completion time
Significantly faster (Group 1:

31.5 min, Group 2: 21.5 min)

Slower (Group 1: 59.8 min,

Group 2: 38.9 min)
Introductory programming

[34] Task completion speed
Nearly three times quicker on
average

Slower than AI-assisted group Component programming course

[46] Programming efficiency Significantly increased
Lower than AI-assisted

condition
Significantly increased

[13] Time to solve tasks
375 seconds (6.25 min) less

on average

More time required than

AI-assisted group

Object-oriented programming

concepts

[22] Time efficiency
Less efficient (mean time:
49.95 minutes, SD: 17.32

minutes)

More efficient (mean time:
34.45 minutes, SD: 14.92

minutes)

API testing for IT and IS students

[20] Time to solve programming problems Decreased Higher than AI-assisted group Python programming

[47] Time taken to complete tasks
Faster for algorithmic

challenges

Slower than AI-assisted group

for algorithmic challenges
Programming assistance

[12] Completion time for debugging tasks 14% reduction
Higher than AI-assisted
condition

Programming education
(debugging focus)

C. Thematic Analysis

Following the synthesis of multidimensional empirical

results regarding learning outcomes, code quality, and time

efficiency, this section further employs thematic analysis to

explore changes in student learning behaviors under

generative AI tool assistance as well as implementation

considerations that teachers may face in instructional

adjustments and curriculum design. By integrating

quantitative results and observed learning trends from

various studies, we conducted qualitative thematic synthesis

from behavioral perspectives, systematically presenting

student learning behavior characteristics in AI-assisted

contexts, and exploring how educational settings can respond

to the multifaceted challenges brought about by generative

AI tools. This section is divided into two parts, the first

focusing on changes in student learning behaviors, and the

second examining reflections and recommendations

regarding teachers’ instructional implementation and

curriculum adjustments, addressing the third research

question (RQ3).

1) Student learning behaviors

Based on the empirical literature included in this study, the

introduction of generative AI tools progressively reshapes

student behavioral patterns in programming learning through

several positive dimensions. First, regarding learning

engagement and motivation, AI tools enhance student

involvement and interest in learning activities. Related

research indicates that students generally perceive AI tools as

useful and convenient to operate, thus encouraging higher

usage intentions [3]. Studies also found that compared to

traditional instruction, AI-assisted learning provides greater

appeal and engagement [7]. Second, AI tools have

transformed students’ problem-solving abilities, with some

students tending to rely completely on AI-generated code,

while others combine AI suggestions with their own coding

for hybrid problem-solving [14]. Third, AI tools strengthen

students’ self-directed learning behaviors. Garg and

Rajendran [18] found that structured prompts can stimulate

students to actively engage in learning tasks, whereas Chang

and Chien [30] ‘s AI-driven quiz platform observed that

increased student interaction correlated with better test

performance, indicating that AI tools help cultivate

self-directed learning momentum. Fourth, AI tools provide

immediate feedback regarding error handling and debugging

abilities, effectively improving students’ performance in

syntax errors and debugging tasks. Pankiewicz and Baker [33]

reported better student performances in error handling, and

Ma et al. [12] indicated that pre-/post-test scores for

debugging tasks improved by 12%.

However, alongside these enhancements, the literature

simultaneously reveals adaptation challenges and shifts in

collaborative dynamics requiring pedagogical attention. Fifth,

research cautions against the risk of students’

over-dependence on AI tools. Mezzaro et al. [6] observed

that students who over-rely on AI show significant decreases

in both the quantity and quality of test cases written.

Lehmann et al. [4] also noted that if students habitually let AI

handle all problems, it may inhibit their motivation and

ability for active thinking and deep understanding. Even as

research indicates that AI assistance improves

problem-solving speed, it may lead to solution uniformity,

thereby limiting the diversity of problem-solving strategies

[34]. Sixth, most studies show that students demonstrate high

learning adaptability to AI tools, quickly becoming familiar

with and applying them to programming tasks, reflecting

openness and acceptance of emerging learning technologies

[25, 29]. Finally, AI tools also change collaborative

interaction patterns. Research by Fan et al. [41] indicates that

under AI assistance, the patterns and content of team

programming discussions have transformed, suggesting that

AI intervention may open new pathways for collaborative

learning.

These results indicate that AI tools are comprehensively

changing students’ behavioral patterns in programming

International Journal of Information and Education Technology, Vol. 16, No. 1, 2026

109

learning, as shown in Table 7, including enhanced

engagement, self-directed learning, and debugging abilities.

Such changes also reflect shifts in students’ self-regulation

processes. However, careful consideration must be given to

the potential risks of overdependence and solution

homogenization to effectively balance efficiency and depth

in curriculum design.

Table 7. Seven major learning behavior changes

Behavior Description

Enhanced Engagement
Demonstrating interest and enthusiasm

for learning activities

Problem-solving Ability
Adopting more effective and

innovative methods to solve problems

Self-directed Learning
Exhibiting stronger learning ability

without direct guidance

Error Handling and

Debugging Ability

Becoming more proficient in

identifying and correcting errors

Over-dependence
Over-relying on tools, potentially

hindering independent thinking

Adaptability
Easily adapting to learning new tools

and technologies

Collaborative Interaction

Demonstrating stronger

communication and cooperation

abilities in teamwork

2) Pedagogical and implementation implications

As generative AI tools become increasingly widespread in

programming education, teachers face unprecedented

challenges in instructional adjustment and implementation.

According to the empirical literature included in this study,

introducing AI-assisted instruction requires the consideration

of multiple dimensions. Tool selection significantly affects

learning effectiveness, whereas integration methods (such as

virtual teaching assistants, quiz prompts, and flipped learning)

determine the appropriateness of learning activities and

student acceptance. Student ability levels also constitute an

influencing factor [4]. Similarly, task complexity must be

considered when determining the applicable scope of AI

tools. AI is particularly effective for algorithmic and library

application tasks [47], but may have limited effectiveness for

innovative and conceptual tasks.

Facing these challenges, teachers’ roles are transforming

from traditional knowledge transmitter to AI learning

facilitator and guide. Anishka et al. [40] explored the

feasibility of using ChatGPT as a virtual teaching assistant,

while Er et al. [5] indicated that teachers must adjust their

feedback approaches to enhance complementarity with AI

feedback. The integration of AI tools has become an

important element in curriculum design, from flipped

teaching strategies to learning support tools [36, 38]. Chang

and Chien [30] utilized AI-driven platforms to provide

personalized learning materials. Additionally, AI literacy

should be incorporated into curriculum design to help

students effectively operate and understand AI tools [4, 14].

The research has demonstrated innovative directions

regarding assessment mechanisms and curriculum content.

Applying AI-generated prompts to help students clarify

compilation errors or developing AI-assisted programming

assessment mechanisms demonstrates that AI tools are

creating new possibilities in assessment design [17, 33].

Furthermore, curriculum design needs to adjust teaching

strategies according to different programming domains. AI

tools have varying effects on introductory courses,

component-oriented learning, debugging training, and

advanced topics, demonstrating the need for adaptability in

teaching contexts [16, 25]. Research indicates that curricula

should include discussions on ethical issues related to AI use

[23, 25] to establish students’ responsible attitudes and values

toward technology.

In summary, Fig. 4 illustrates the three key dimensions of

GAI tool-assisted learning. The introduction of GAI tools has

driven programming education toward more personalized,

autonomous, and strategic directions. However, without

comprehensive instructional design and implementation

planning, the potential benefits of AI tools will be difficult to

realize fully and may even negatively impact learning

quality.

Fig. 4. Key dimensions of GAI tool-assisted learning.

IV. DISCUSSION

A. Impact of Generative AI on Students’ Programming

Learning Performance

This section addresses RQ1 based on the synthesis

presented in Fig. 2 and Table 4. Generative AI-assisted

learning demonstrates complex and differentiated impacts on

students’ programming learning outcomes, encompassing

seven major learning indicators: programming knowledge

and skills, computational thinking, problem-solving ability,

self-efficacy, learning achievement, code quality, and

learning behaviors and engagement.

For fundamental programming knowledge and skills, the

results consistently indicate positive effects.

Kazemitabaar et al. [11] found that through code output

provided by generative AI, beginners achieved significant

improvements in both task completion rates and correctness.

This was accomplished without weakening their subsequent

ability to manually modify code, and instead promoted

mastery of basic programming development skills. The

immediate feedback mechanism of generative AI enables

students to locate and correct errors more quickly,

subsequently leading to better learning outcomes and

higher-quality programming assignments in post-course

assessments [3, 48]. Similarly, Sun et al.’s [3] reported

significantly lower code error rates in the AI-assisted group.

Collectively, GAI facilitates early syntax acquisition,

strengthens learner confidence, and reduces novice

frustration [9].

Higher-order outcomes diverge. In a quasi-experimental

CS1 study, Xue et al. [25] observed no significant differences

in final programming scores between ChatGPT and control

groups, consistent with Jayagopal et al. [48], who found

faster completion but no superior knowledge mastery. From a

International Journal of Information and Education Technology, Vol. 16, No. 1, 2026

110

cognitive-load perspective, AI can reduce extraneous

cognitive load. As evidenced by the decreased debugging

time observed in Table 6, this assistance may reduce extrinsic

cognitive load by offering quick solutions and scaffolding

support. However, for more complex or unfamiliar tasks,

such convenience may increase intrinsic cognitive load, as

students might lack sufficient foundational understanding to

evaluate or modify AI-generated responses. Furthermore, the

overly convenient access to answers may discourage active

problem-solving and critical thinking, thereby increasing

students’ dependency on AI tools. Ready-made answers can

also dampen active problem solving, fostering

over-dependence without proper guidance [31]. For complex

algorithmic work, AI output quality may degrade, risking

misleading learning paths [49].

Effects are moderated by prior ability, task features, and

context. Students with weaker foundations may accept AI

outputs without verification [50], whereas stronger students

use AI to refine strategies. AI is reliably helpful in structured,

lower-complexity exercises, but benefits weaken for tasks

requiring innovation, intricate logic, or algorithm design.

Tool/version differences, integration approaches, and

instructional settings further shape durability of gains.

GAI’s convenience can also influence learning autonomy

and academic integrity. Lyu et al. [31] found that while

short-term performance improved, long-term retention and

deep understanding of fundamental programming concepts

were limited when students bypassed reasoning and

verification. Furthermore, the performance and correctness of

AI-generated responses vary across programming task types

[6], which may introduce bias and compromise assessment

fairness. In terms of equity, disparities in access to AI tools

stemming from limited institutional support or restricted

availability can exacerbate learning inequalities. As

Jayagopal et al. [48] suggest, future research should examine

how such access gaps impact learning processes and

outcomes in low-resource contexts, while also addressing

potential integrity risks [51, 52].

Synthesizing the above empirical findings, GAI in

programming education presents a dual profile: consistent

benefits in foundational skill acquisition and short-term

learning efficiency, alongside potential risks to higher-order

thinking and long-term knowledge construction. Accordingly,

curricula should integrate AI tools strategically, leveraging

them to lower entry barriers, enhance motivation, and build

confidence, while incorporating verification routines, staged

scaffolding, and explicit reflection to sustain active reasoning

and deep learning. The differentiated performance of these

seven learning indicators provides an important empirical

foundation and strategic directions for the appropriate

application of AI tools in programming education.

B. Impact of Generative AI on Code Quality and

Completion Time

This section addresses RQ2 by examining the mechanisms

and pedagogical implications of generative AI (GAI) on

students’ programming output quality and learning efficiency.

Drawing on the empirical findings in Table 5 and Table 6, the

analysis focuses on three dimensions: Code Structure &

Quality, Debugging & Error Handling, and Team-Level

Diversity & Collaborative Outcomes, as well as their broader

implications for programming education The distribution

among these themes are illustrated in Fig. 3.

Generative AI’s impact on code quality demonstrates

distinct hierarchical characteristics. At the level of code

structure and syntactic correctness, AI tools show significant

supportive effects, yet this improvement implies fundamental

transformations in learning patterns [3, 11, 35, 40, 42, 47].

Instant availability of suggestions and refactoring hints can

reduce opportunities for iterative trial-and-error, limiting the

development of intuitive understanding of error causes and

corrective logic. For less-prepared novices, this may result in

syntactically correct code without deep comprehension or

verification—an illusion of competence [33, 40, 42, 50]. In

contrast, students with stronger foundations tend to integrate

AI as a scaffold to refine strategies, indicating that benefits

are uneven and mediated by prior knowledge and

metacognitive skills.

Regarding debugging ability development, generative AI

presents dual impact effects. On one hand, immediate error

diagnosis and correction suggestions can accelerate

problem-solving processes and reduce learning frustration

[11]; on the other hand, over-reliance on AI diagnosis may

weaken students’ motivation and ability to establish

independent debugging strategies. The debugging process

holds unique educational value in programming learning, not

only in training logical reasoning abilities, but also in

cultivating systematic thinking and persistent solution

exploration when facing complex problems. When this

process is simplified or replaced by AI tools, students may

lose opportunities to develop these core abilities, potentially

affecting the depth development of their programming

expertise in the long term.

The impact on team collaboration is more complex and

carries important pedagogical implications. Generative AI

can indeed balance ability gaps among team members,

enabling learners of different levels to actively participate in

collaborative tasks [31]. However, this balancing effect may

obscure important educational values of collaborative

learning. Traditional programming team collaboration

emphasizes the promotion of learning through peer

discussion, knowledge sharing, and collaborative debugging,

whereas AI tool interventions may reduce these interaction

opportunities. When team members can quickly obtain AI

assistance, their interdependence and knowledge exchange

needs may be reduced, thereby affecting the depth and

effectiveness of collaborative learning.

Although a shortened task completion time presents

superficial positive benefits, it requires deep examination

from the perspective of balancing learning efficiency and

effectiveness [13, 34, 44]. Time efficiency improvements

may stem from two different mechanisms: first, genuine

enhancement of learning abilities, enabling students to

complete tasks more quickly and accurately; second,

dependence on AI tools, shortening completion time through

external assistance without necessarily enhancing internal

capabilities. Distinguishing between these is crucial in

evaluating the educational value of AI tools. Reverse cases

appearing in research, such as the phenomenon of AI-assisted

groups taking longer in API testing courses, provide

important opportunities for reflection [22]. This phenomenon

may reflect AI tool limitations in specific task types, or

International Journal of Information and Education Technology, Vol. 16, No. 1, 2026

111

increased cognitive load when students integrate AI

suggestions with task requirements.

Behavioral pattern analysis reveals deeper transformations

in learning strategies. Students’ frequent cycling between AI

consultation and code modification demonstrates an

emerging “AI-dependent” problem-solving strategy [3].

While this strategy can effectively solve technical problems

in the short term, it may cultivate passive learning attitudes

and problem-solving habits [52, 53]. Students may gradually

lose confidence and the ability to face challenges

independently, becoming over-dependent on external tools.

This poses potential threats to the long-term goals of

programming education.

From an instructional design perspective, these findings

point to a critical balancing challenge: how to leverage AI

tools to enhance learning efficiency while ensuring that

students still develop the necessary core competencies.

Assessments should capture not only final outputs but also

reasoning processes and strategies. Curricula can adopt

staged AI support adjusting assistance by learning stage to

preserve autonomous skills while still benefiting from

AI-based guidance.

C. Changes in Student Learning Behaviors and Teacher

Instructional Strategies under Generative AI

Implementation

This section addresses RQ3, exploring how GAI adoption

reshapes student behaviors and instructional strategies.

Thematic analysis shows that GAI transforms both cognitive

processes and pedagogical approaches, as discussed in the

following two subsections.

1) Deep mechanisms and educational implications of

student learning behavior changes

The introduction of generative AI tools is fundamentally

restructuring students’ cognitive processing patterns and

learning strategy choices. From the perspective of cognitive

load management, generative AI tools create a phenomenon

of “cognitive outsourcing,” enabling learners to transfer

cognitive resources from basic technical operations to

higher-order thinking levels of conceptual understanding and

problem solving. This transfer mechanism explains the

fundamental reasons for the enhanced engagement and

strengthened self-directed learning behaviors. When the

extrinsic cognitive load is reduced through AI-assistance,

learners gain more cognitive space for intrinsic processing,

thereby demonstrating higher learning investment and

exploratory willingness [54]. However, this mechanism

simultaneously implies risks, as excessive cognitive

outsourcing may lead to “deskilling” of fundamental abilities,

with learners potentially losing the capacity to independently

construct solution pathways while enjoying efficient

problem-solving.

Self-regulated learning theory provides an important

perspective for understanding changes in learning strategies

[55]. In traditional programming learning, self-efficacy and

regulatory strategies develop through repeated practice and

error correction. Under AI assistance, however, learners

often transition from generating their own feedback to

relying on external, immediate feedback [30]. While this

change can boost debugging efficiency and task completion

speed, it risks weakening metacognitive capacities including

self-monitoring, strategy selection, and evaluation of

outcomes when learners grow accustomed to AI’s precise

diagnoses and solutions.

Problem-solving strategies show a parallel divergence.

Learners with strong foundations tend to adopt hybrid

problem-solving, blending AI suggestions with personal

judgment to enhance cognitive performance; those with

weaker foundations often use substitutive problem-solving,

accepting AI outputs without verification [14]. This

differentiation phenomenon reveals the Matthew effect in the

educational applications of AI tools, where existing learning

ability gaps may widen further owing to different tool usage

strategies.

Transformations in collaborative interaction patterns carry

profound social-cognitive implications. AI tools’

intervention as “third-party cognitive partners” changes

knowledge sharing and mutual assistance patterns in

traditional peer learning. When each learner can obtain

immediate expert-level assistance, interdependence in team

collaboration may weaken, and cognitive conflicts and

negotiation processes between learners may become diluted,

which are crucial for deep learning. This change may lead

collaborative learning to shift from “interdependent learning”

to “parallel learning,” affecting team problem-solving

abilities and collective intelligence construction.

The rapid development of adaptive learning behaviors

reflects digital natives’ high acceptance of emerging

technologies, while also exposing potential conflicts between

technological adaptation and learning depth. When learners

master AI tools quickly yet lack awareness of their

limitations, overconfidence may lead to uncritical acceptance

of outputs, undermining accuracy and conceptual

understanding.

The root of the overdependence phenomenon lies in

cognitive preference shifts between immediate and delayed

gratification. Programming learning traditionally requires

learners to tolerate errors and frustration, building resilience

and problem-solving patience through continuous trial and

error. AI tools’ provision of immediate answers satisfies

learners’ desire for quick success, but may weaken their

persistence and willingness for deep exploration when facing

complex challenges [4]. This behavioral pattern

transformation may affect learners’ cognitive resilience

development, resulting in lower adaptability when faced with

complex situations that AI tools cannot handle.

The educational implications of these behavioral changes

point to the need to reconstruct programming education

paradigms. Educators need to reconsider skill cultivation

priorities, shifting from mere programming technique

mastery to comprehensive development of critical thinking,

tool evaluation abilities, and human-AI collaboration skills.

Curriculum design should incorporate explicit “AI literacy”

cultivation objectives, helping learners establish accurate

recognition of tool capabilities and limitations, and

developing abilities to flexibly switch between AI assistance

and independent thinking. Simultaneously, assessment

mechanisms need to shift from outcome-oriented to

process-oriented approaches, emphasizing learners’ thinking

processes, strategy selection, and reflective abilities, ensuring

effective assessment and promotion of deep learning in the

era of widespread AI tool adoption.

International Journal of Information and Education Technology, Vol. 16, No. 1, 2026

112

2) Theoretical foundations and professional development

implications of teacher pedagogical strategy changes

Based on the teacher-strategy adjustment patterns

identified in this study, generative AI tools drive teachers

from passive adaptation to proactive innovation in their

professional development trajectories. This transformation

reflects a profound shift in educational paradigms, from

traditional knowledge transmission models to collaborative

learning facilitation models, with transformation mechanisms

and professional restructuring requiring in-depth analysis.

Generative AI is redefining teachers’ roles from

knowledge transmitters to AI learning facilitators. The

adoption of ChatGPT as a virtual teaching assistant reflects

not only technology integration but also a deeper need to

reposition professional value. As Er et al. [5] note, adapting

feedback to complement AI marks a shift from monopolizing

knowledge to coordinating the learning ecosystem.

Curriculum design is shifting from content-oriented to

competency-oriented education. Chang and Chien [30]

showed that AI-driven platforms can deliver personalized

materials, requiring teachers to develop advanced curriculum

architecture skills and adjust strategies across programming

domains from introductory topics to advanced debugging and

component-oriented learning.

Assessment is shifting from measurement to learning

support, driven by the widespread adoption of AI tools.

Practices such as AI-generated prompts, process-oriented

evaluation, and authentic, complex tasks replace rote recall.

This shift demands that teachers develop cross-disciplinary

skills in technology and educational assessment to design

diverse evidence-gathering systems and deliver real-time

feedback.

Empirical findings on ethical education integration reflect

the expansion of teachers’ professional responsibilities. As

students gain easy access to AI-generated programming

solutions, academic integrity and responsible technology use

become essential teaching responsibilities. This requires

teachers to pair technical expertise with ethical judgment and

value-education skills, ensuring a balance between

technological convenience and academic rigor.

The empirical manifestations of professional development

challenges reveal the diverse characteristics of teacher

learning needs. Teachers face urgent needs for AI literacy

enhancement and understanding AI tool operational logic and

applicable contexts to avoid losing agency in teaching

settings. This technical literacy requirement aligns with

Güner’s [56] research findings, emphasizing that helping

students understand how to effectively use AI tools is more

important than whether they can use them; similarly, teachers

also need to develop critical application abilities for AI tools.

Research indicating teachers’ necessity to carefully evaluate

AI tool applicability in higher-order thinking or innovative

application topics actually reflects the increased importance

of professional judgment abilities in the AI era.

The empirical patterns of adaptive teaching strategy

development demonstrate the importance of teachers’

professional resilience. Research finds teachers designing

differentiated strategies based on curriculum objectives,

students’ foundational abilities, and task complexity,

combining diverse assessment mechanisms and learning

activities to achieve a dynamic balance between AI

convenience and deep learning cultivation. The development

of this adaptive capability requires teachers to possess

stronger contextual sensitivity and strategic flexibility, in

order to maintain teaching effectiveness and professional

stability in rapidly changing technological environments.

Synthesizing this study’s empirical findings, changes in

teachers’ pedagogical strategies point to fundamental

innovation needs in professional development models. Future

teacher education should emphasize comprehensive

cultivation of technology integration abilities, ethical

judgment literacy, and adaptive instructional design

capabilities, helping teachers maintain irreplaceable

professional value in the era of widespread AI tools, and

achieving organic integration of technological enhancement

and humanistic care.

V. CONCLUSION

Through a systematic literature review of 45 empirical

studies, this paper provides an in-depth exploration of the

application effects and impact mechanisms of generative AI

tools in programming education. The findings reveal that

GAI-assisted instruction presents complex and differentiated

impact patterns in programming learning, with effects

influenced by multiple factors, including learners’

foundational abilities, task characteristics, and

implementation contexts. Given the diverse findings and

complex impact mechanisms presented in existing research,

it is necessary to establish an integrated theoretical

framework to systematically understand these interactive

relationships. Based on this important research requirement,

this study constructed an integrated conceptual model for

GAI-assisted programming education, as shown in Fig. 5.

Fig. 5. Integrated conceptual model for GAI-assisted programming
education.

This model presents a multidimensional integration

framework for generative AI tools in programming education,

systematically integrating four core

dimensions–implementation context factors, core influencing

factors, learning performance indicators, and learning

outcome dimensions. As such, it provides a comprehensive

analytical framework for understanding the complex impact

mechanisms of GAI in programming education. The

implementation context factors dimension, located at the

model’s periphery, encompasses educational environmental

factors including teacher instructional strategies, curriculum

design elements, assessment mechanism adjustments, and AI

literacy cultivation. The core influencing factors dimension

focuses on three key impact factors: learners’ foundational

abilities, GAI tool characteristics, and task complexity. The

International Journal of Information and Education Technology, Vol. 16, No. 1, 2026

113

learning performance indicators dimension establishes seven

assessment aspects synthesized in this study, including

programming knowledge and skills, computational thinking

and logical reasoning, problem-solving ability, programming

self-efficacy, learning achievement, code quality, and

learning behaviors and engagement. The learning outcome

dimension integrates three output performances: learning

effectiveness, code quality, and learning behavior changes.

Regarding learning behavior changes, this study identifies

seven major transformation aspects. Enhanced engagement is

reflected in student perceptions of the utility and operational

convenience of AI tools, along with higher usage intentions

and learning investment. Problem-solving strategies show

differentiation phenomena, with some students flexibly

combining AI feedback with personal thinking to leverage

human-AI collaboration advantages, whereas students with

weaker foundational abilities may lack verification and

thinking processes. Strengthened self-directed learning

behaviors are manifested in structured prompts stimulating

students to actively engage in learning tasks, with students

who frequently interact with AI demonstrating higher

efficiency in test performance. Improvements in error

handling and debugging abilities stem from the immediate

feedback provided by AI tools, effectively improving

students’ performance in syntax errors and debugging tasks.

Adaptive learning behaviors show that students can quickly

familiarize themselves with and apply AI tools to

programming tasks. Changes in collaborative interaction

patterns reflect AI tools’ intervention as third-party cognitive

partners, altering knowledge-sharing patterns in traditional

peer learning. However, over-dependence risks require equal

attention, with research indicating that students who

over-rely on AI show significant decreases in both the

quantity and quality of test cases written.

Adjustments in teachers’ instructional strategies present

transformation patterns from passive adaptation to proactive

innovation. Research shows teachers beginning to adopt

diversified teaching modes, introducing blended learning and

flipped classrooms, and actively developing prompt-based

assessment tools and personalized learning paths. The

intervention of generative AI prompts teachers to redefine

classroom roles, transforming from traditional knowledge

transmitters to guides and facilitators who assist students in

collaborative learning with AI tools. AI tool integration has

become an important element in curriculum design, ranging

from flipped teaching strategies to the integrated application

of learning support tools. Innovations in assessment

mechanisms include the use of AI-generated prompts to help

students clarify compilation errors, and the development of

AI-assisted programming assessment mechanisms. These

findings provide concrete guidance for programming

education practice. When implementing GAI-assisted

instruction, educators should use the seven learning

indicators synthesized in this study as foundations for

assessing knowledge mastery and learning behavior

transformation. Curriculum design and assessment methods

should combine diverse teaching strategies such as flipped

classrooms, project-based learning, and peer assessment,

balancing the convenience provided by AI technology with

the development of students’ autonomous learning and

thinking. The conceptual model presented in Fig. 5 provides

teachers with a systematic reference framework, assisting

them in making differentiated instructional strategy

adjustments based on students’ foundational abilities,

achieving balanced development among learning

convenience, problem-solving abilities, and long-term

knowledge internalization.

Through multidimensional systematic integration of

generative AI’s application effects and challenges in

programming learning, this study proposes seven learning

indicators, three code quality indicators, and seven learning

behaviors as assessment foundations for curriculum design

and teaching practice. Teachers can select appropriate

indicator dimensions for instructional design based on

curriculum objectives and student characteristics. Fig. 5

further illustrates how teachers can make differentiated

instructional strategy adjustments based on students’

foundational ability differences, using the seven learning

indicators as a foundation to assist in achieving balanced

development among learning convenience, problem-solving

abilities, and long-term knowledge internalization.

In a semester-long programming course, teacher

instructional strategies in the initial phase focus on building a

shared foundation of programming syntax, logical reasoning,

and basic problem-solving skills without the use of AI tools.

This approach ensures that students, regardless of their initial

proficiency level, acquire the necessary competencies before

AI integration. Once these foundational abilities are

established, AI tools are progressively introduced,

accompanied by explicit prompt-design guidance to help

students explore the characteristics and affordances of

generative AI in controlled contexts. Task complexity is

gradually increased, prompting learners to apply

computational thinking, logical reasoning, and

problem-solving strategies while critically evaluating

AI-generated outputs. The assessment mechanism

incorporates self-regulation prompts, peer review, and

iterative feedback cycles, encouraging students to reflect on

AI responses, compare alternative solutions, and articulate

the underlying logic of each code segment. Such an approach

fosters a balanced development across learning performance

metrics—such as programming self-efficacy, engagement,

and code quality—and supports long-term learning outcomes,

including enhanced AI literacy and sustainable learning

behaviors.

Despite the systematic organization and analysis of

relevant literature, this study has several limitations. The

study focuses on rapidly developing short-term applications

in recent years, with long-term learning knowledge

applications and sustained effectiveness requiring further

investigation in subsequent research. The applicability of

generative AI tools and learning behavior differences across

different languages and diverse task contexts also warrant

deeper empirical comparison. Research samples are

concentrated in Western higher education systems, limiting

the cultural representativeness of findings. Although a few

studies have emerged from Asian or African contexts,

comparative empirical evidence remains scarce. More

systematic cross-cultural research is needed to uncover

culturally specific adoption patterns, pedagogical preferences,

and behavioral responses to GAI tools. Additionally, 42 out

of the 45 reviewed studies focused specifically on ChatGPT,

International Journal of Information and Education Technology, Vol. 16, No. 1, 2026

114

highlighting a tool-specific bias in current research. This

dominance may limit the generalizability of findings to other

generative AI tools with distinct interfaces, functionalities, or

integration mechanisms, and also contributes to the overall

heterogeneity in assessment approaches and observational

dimensions, further complicating meaningful cross-study

comparisons.

Although additional searches were conducted in Scopus

and ERIC, no further eligible studies were identified after

duplicate removal and relevance screening. The final corpus

therefore relied primarily on Semantic Scholar, which

provided broader coverage of emergent GAI keywords and

ensured replicability through its open-access infrastructure.

In total, this review synthesized 45 empirical studies.

However, a full quantitative meta-analysis was not feasible.

Despite all studies adopting experimental or

quasi-experimental designs with treatment and control

groups, 19 did not report sufficient statistical details (e.g.,

means, standard deviations, or test values) required for effect

size estimation, and some reported only average differences,

percentages, or project scores. Consequently, this study

adopted a systematic literature review to capture broader

learning patterns, identifying seven major learning indicators,

three dimensions of code quality, and seven categories of

learning behavior change, instead of producing aggregated

quantitative effect sizes through a meta-analysis.

Future research should broaden database coverage and

assess the potential impact of including additional sources on

the comprehensiveness of the evidence base, while also

developing conceptual models centered on students’

foundational abilities by analyzing the interactive effects of

AI tool use and student learning outcomes. Establishing

standardized measurement tools and assessment systems for

GAI-assisted learning effects would provide a reliable

foundation for cross-study comparisons. While current

studies predominantly report on short-term learning

improvements, there is limited understanding of whether

these benefits persist over time or translate into long-term

programming proficiency. Future longitudinal research is

necessary to assess retention effects, transferability to

advanced tasks, and whether AI-assisted learning fosters

durable cognitive change. Cross-cultural and

cross-educational system comparative research would help

understand the universal principles and context-specific

factors in GAI educational applications.

Overall, generative AI tools provide multifaceted support

and a transformative potential for programming learning in

higher education. Educators can understand and apply the

GAI technology more systematically through the integrated

conceptual model developed in this study. Cultivating

students’ critical thinking, autonomous learning, and

long-term knowledge internalization, while promoting

learning convenience, remains a core issue that requires joint

attention from educational practice and research. Through

continued research and educational applications, generative

AI tools can exert a profound influence on learning

effectiveness and innovation stimulation.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

Conceptualization, T.-C. Huang and H.-P. Tseng;

methodology, T.-C. Huang and H.-P. Tseng; software, H.-P.

Tseng; formal analysis, T.-C. Huang and H.-P. Tseng;

investigation, H.-P. Tseng; resources, T.-C. Huang; data

curation, H.-P. Tseng; writing—original draft preparation,

T.-C. Huang; writing—review and editing, T.-C. Huang and

H.-P. Tseng; visualization, H.-P. Tseng; supervision, T.-C.

Huang; project administration, T.-C. Huang and H.-P. Tseng;

funding acquisition, T.-C. Huang. All authors had approved

the final version.

FUNDING

This research was funded by Ministry of Science and

Technology, Taiwan, grant number [NSTC

112-2410-H-025-027-MY3].

REFERENCES

[1] K. Nikolopoulou, “Generative artificial intelligence and sustainable

higher education: Mapping the potential,” Journal of Digital
Educational Technology, vol. 5, no. 1, ep2506, 2025.

[2] P. Wang, Y. Jing, and S. Shen, “A systematic literature review on the

application of Generative Artificial Intelligence (GAI) in teaching
within higher education: Instructional contexts, process, and

strategies,” The Internet and Higher Education, 100996, 2025.
[3] D. Sun, A. Boudouaia, C. Zhu, and Y. Li, “Would ChatGPT-facilitated

programming mode impact college students’ programming behaviors,

performances, and perceptions? An empirical study,” International
Journal of Educational Technology in Higher Education, vol. 21, no. 1,

p. 14, 2024.
[4] M. Lehmann, P. B. Cornelius, and F. J. Sting, AI Meets the Classroom:

When do Large Language Models Harm Learning? arXiv preprint

arXiv:2409.09047, 2025.
[5] E. Er, G. Akçapınar, A. Bayazıt, O. Noroozi, and S. K. Banihashem,

“Assessing student perceptions and use of instructor versus
AI‐generated feedback,” British Journal of Educational Technology,

vol. 56, no. 3, pp. 1074–1091, 2025.

[6] S. Mezzaro, A. Gambi, and G. Fraser, “An empirical study on how

large language models impact software testing learning,” in Proc. the

28th International Conference on Evaluation and Assessment in
Software Engineering, 2024, pp. 555–564.

[7] X. Hou, Z. Wu, X. Wang, and B. J. Ericson, “Codetailor: Llm-powered

personalized parsons puzzles for engaging support while learning
programming,” in Proc. the Eleventh ACM Conference on Learning@

Scale, 2024, pp. 51–62.
[8] T. Kosar, D. Ostojić, Y. D. Liu, and M. Mernik, “Computer science

education in chatgpt era: Experiences from an experiment in a

programming course for novice programmers,” Mathematics, vol. 12,
no. 5, p. 629, 2024.

[9] R. Yilmaz and F. G. K. Yilmaz, “The effect of generative Artificial
Intelligence (AI)-based tool use on students’ computational thinking

skills, programming self-efficacy and motivation,” Computers and

Education: Artificial Intelligence, vol. 4, 100147, 2023.
[10] S. Shanshan and G. Sen, “Empowering learners with AI‐generated

content for programming learning and computational thinking: The
lens of extended effective use theory,” Journal of Computer Assisted

Learning, vol. 40, no. 4, pp. 1941–1958, 2024.

[11] M. Kazemitabaar, X. Hou, A. Henley, B. J. Ericson, D. Weintrop, and
T. Grossman, “How novices use LLM-based code generators to solve

CS1 coding tasks in a self-paced learning environment,” in Proc. the
23rd Koli calling international conference on computing education

research, 2023, pp. 1–12.

[12] Q. Ma, H. Shen, K. Koedinger, and S. T. Wu, “How to teach
programming in the ai era? using llms as a teachable agent for

debugging,” in Proc. International Conference on Artificial

Intelligence in Education, 2024: Springer, pp. 265–279.
[13] M. Pankiewicz and R. S. Baker, Large Language Models (GPT) for

Automating Feedback on Programming Assignments, arXiv preprint
arXiv:2307.00150, 2023.

[14] M. Kazemitabaar, J. Chow, C. K. T. Ma, B. J. Ericson, D. Weintrop,

and T. Grossman, “Studying the effect of AI code generators on
supporting novice learners in introductory programming,” in Proc. the

International Journal of Information and Education Technology, Vol. 16, No. 1, 2026

115

2023 CHI Conference on Human Factors in Computing Systems, 2023,

pp. 1–23.
[15] D. M. Johnson, W. Doss, and C. M. Estepp, “Using ChatGPT with

novice Arduino programmers: Effects on performance, interest,

self-efficacy, and programming ability,” Journal of Research in

Technical Careers, vol. 8, no. 1, p. 1, 2024.

[16] A. Brockenbrough and D. Salinas, “Using generative AI to create user
stories in the software engineering classroom,” in Proc. 2024 36th

International Conference on Software Engineering Education and
Training (CSEE&T), 2024, IEEE, pp. 1–5.

[17] G. Akçapınar and E. Sidan, “AI chatbots in programming education:

guiding success or encouraging plagiarism,” Discover Artificial
Intelligence, vol. 4, no. 1, p. 87, 2024.

[18] A. Garg and R. Rajendran, “Analyzing the role of generative AI in
fostering self-directed learning through structured prompt

engineering,” in Proc. International Conference on Intelligent

Tutoring Systems, Springer, 2024, pp. 232–243.
[19] J. Al Hajj and M. Sah, “Assessing the impact of ChatGPT in a PHP

programming course,” in Proc. 2023 7th International Symposium on
Innovative Approaches in Smart Technologies (ISAS), IEEE, 2023, pp.

1–10.

[20] N. Torres, “A reverse code completion approach for enhancing novice
programming skills,” in Proc. 2024 43rd International Conference of

the Chilean Computer Science Society (SCCC), IEEE, 2024, pp. 1–8.

[21] O. L. D. Santos and D. Cury, “Challenging the confirmation bias:

Using ChatGPT as a virtual peer for peer instruction in computer

programming education,” in Proc. 2023 IEEE Frontiers in Education
Conference (FIE), IEEE, 2023, pp. 1–7.

[22] Y. D. Setiawan, L. G. O. P. Yudha, Y. A. Mulyono, V. M. A.
Simalango, and O. Karnalim, “ChatGPT impact analysis on API

testing: A controlled experiment,” Journal of Applied Informatics and

Computing, vol. 8, no. 2, pp. 350–357, 2024.
[23] J. B. Jalon Jr, G. A. Chua, and M. de Luna Torres, “ChatGPT as a

Learning Assistant: Its Impact on Students Learning and Experiences,”
International Journal of Education in Mathematics, Science and

Technology, vol. 12, no. 6, pp. 1603–1619, 2024.

[24] B. Qureshi, “ChatGPT in computer science curriculum assessment: An
analysis of its successes and shortcomings,” in Proc. the 2023 9th

International Conference on e-Society, e-Learning and e-Technologies,
2023, pp. 7–13.

[25] Y. Xue, H. Chen, G. R. Bai, R. Tairas, and Y. Huang, “Does chatgpt

help with introductory programming? An experiment of students using
chatgpt in cs1,” in Proc. the 46th International Conference on Software

Engineering: Software Engineering Education and Training, 2024, pp.
331–341.

[26] A.-M. M. Gasaymeh and R. M. AlMohtadi, “The effect of Flipped

Interactive Learning (FIL) based on ChatGPT on students’ skills in a
large programming class,” International Journal of Information and

Education Technology, vol. 14, no. 11, 2024.
[27] T.-C. Yang, Y.-C. Hsu, and J.-Y. Wu, “The effectiveness of ChatGPT

in assisting high school students in programming learning: Evidence

from a quasi-experimental research,” Interactive Learning
Environments, pp. 1–18, 2025.

[28] G. Jošt, V. Taneski, and S. Karakatič, “The impact of large language
models on programming education and student learning outcomes,”

Applied Sciences, vol. 14, no. 10, 4115, 2024.

[29] R. Mellado, C. Cubillos, and G. Ahumada, “Effectiveness of
generative artificial intelligence in learning programming to higher

education students,” in Proc. 2024 IEEE International Conference on
Automation/XXVI Congress of the Chilean Association of Automatic

Control (ICA-ACCA), IEEE, 2024, pp. 1–7.

[30] C.-K. Chang, “Enhancing academic performance with generative
AI-based quiz platform,” in Proc. 2024 IEEE International Conference

on Advanced Learning Technologies (ICALT), IEEE, 2024, pp.
193–195.

[31] W. Lyu, Y. Wang, T. Chung, Y. Sun, and Y. Zhang, “Evaluating the

effectiveness of llms in introductory computer science education: A
semester-long field study,” in Proc. the Eleventh ACM Conference on

Learning@ Scale, 2024, pp. 63–74.
[32] M. Fırat and S. Kuleli, “GPT vs. Google: A comparative study of

self-code learning in ODL students,” Journal of Educational

Technology and Online Learning, vol. 7, no. 3, pp. 308–320, 2024.
[33] M. Pankiewicz and R. S. Baker, “Navigating compiler errors with AI

assistance—A study of GPT hints in an introductory programming

course,” in Proc. the 2024 on Innovation and Technology in Computer
Science Education V. 1, 2024, pp. 94–100.

[34] N. Baláž, J. Porubän, M. Horváth, and T. Kormaník, “Using ChatGPT
during implementation of programs in education,” in Proc. 5th

International Computer Programming Education Conference (ICPEC

2024), Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2024, pp. 18:

1–18: 9.

[35] S. Abdulla, S. Ismail, Y. Fawzy, and A. Elhag, “Using ChatGPT in
teaching computer programming and studying its impact on students

performance,” Electronic Journal of e-Learning, vol. 22, no. 6, pp.

66–81, 2024.

[36] S. McGill and R. McGill, “WIP: Generative AI as an enhanced study

aid in engineering courses,” presented at ASEE Mid-Atlantic Section
Spring Conference, 2024.

[37] M. L. Maher, S. Y. Tadimalla, and D. Dhamani, “An exploratory study
on the impact of ai tools on the student experience in programming

courses: an intersectional analysis approach,” in Proc. 2023 IEEE

Frontiers in Education Conference (FIE), IEEE, 2023, pp. 1–5.
[38] G. Huesca et al., “Effectiveness of using ChatGPT as a tool to

strengthen benefits of the flipped learning strategy,” Education
Sciences, vol. 14, no. 6, p. 660, 2024.

[39] K. Kwangil, “A study on the effectiveness of generative AI utilization

in programming education-focusing on ChatGPT and scratch
programming,” Convergence Security Journal, vol. 24, no. 3, pp.

33–39, 2024.
[40] A. Mehta, N. Gupta, A. Balachandran, D. Kumar, and P. Jalote, Can

Chatgpt Play the Role of a Teaching Assistant in an Introductory

Programming Course? arXiv preprint arXiv:2312.07343, 2023.
[41] F. Ouyang, M. Guo, N. Zhang, X. Bai, and P. Jiao, “Comparing the

effects of instructor manual feedback and ChatGPT intelligent

feedback on collaborative programming in China’s higher education,”

IEEE Transactions on Learning Technologies, 2024.

[42] P. Haindl and G. Weinberger, “Does ChatGPT help novice
programmers write better code? Results from static code analysis,”

IEEE Access, 2024.
[43] M. H. Y. Binhammad, A. Othman, L. Abuljadayel, H. Al Mheiri, M.

Alkaabi, and M. Almarri, “Investigating how generative AI can create

personalized learning materials tailored to individual student needs,”
Creative Education, vol. 15, no. 7, pp. 1499–1523, 2024.

[44] C. Lee, J. Myung, J. Han, J. Jin, and A. Oh, Learning from Teaching
Assistants to Program with Subgoals: Exploring the Potential for AI

Teaching Assistants, arXiv preprint arXiv:2309.10419, 2023.

[45] Y. Chen, S. Xiao, Y. Song, Z. Li, L. Sun, and L. Chen, “MindScratch:
A visual programming support tool for classroom learning based on

multimodal generative AI,” International Journal of
Human–Computer Interaction, pp. 1–19, 2025.

[46] N. Gardella, R. Pettit, and S. L. Riggs, “Performance, Workload,

emotion, and self-efficacy of novice programmers using AI code
generation,” in Proc. the 2024 on Innovation and Technology in

Computer Science Education, vol. 1, 2024, pp. 290–296.
[47] J. Liu, X. Tang, L. Li, P. Chen, and Y. Liu, “Which is a better

programming assistant? A comparative study between chatgpt and

stack overflow,” arXiv preprint arXiv:2308.13851, 2023.
[48] S. Li, J. Liu, and Q. Dong, “Generative artificial intelligence-supported

programming education: Effects on learning performance,
self-efficacy and processes,” Australasian Journal of Educational

Technology, 2025.

[49] G. Puthumanaillam and M. Ornik, The Lazy Student’s Dream:
ChatGPT Passing an Engineering Course on Its Own, arXiv preprint

arXiv:2503.05760, 2025.
[50] J. Prather et al., “The widening gap: The benefits and harms of

generative ai for novice programmers,” in Proc. the 2024 ACM

Conference on International Computing Education Research, vol. 1,
2024, pp. 469–486.

[51] S. Berrezueta-Guzman, S. Krusche, and S. Wagner, From Coders to
Critics: Empowering Students through Peer Assessment in the Age of

AI Copilots, arXiv preprint arXiv:2505.22093, 2025.

[52] P. Denny et al., “Computing education in the era of generative AI,”
Communications of the ACM, vol. 67, no. 2, pp. 56–67, 2024.

[53] A. Scholl and N. Kiesler, How Novice Programmers Use and
Experience ChatGPT When Solving Programming Exercises in an

Introductory Course, arXiv preprint arXiv:2407.20792, 2024.

[54] M. Giannakos et al., “The promise and challenges of generative AI in
education,” Behaviour & Information Technology, pp. 1–27, 2024.

[55] B. J. Zimmerman, “Becoming a self-regulated learner: An overview,”
Theory into Practice, vol. 41, no. 2, pp. 64–70, 2002.

[56] H. Güner and E. Er, “AI in the classroom: Exploring students’

interaction with ChatGPT in programming learning,” Education and
Information Technologies, pp. 1–27, 2025.

Copyright © 2026 by the authors. This is an open access article distributed
under the Creative Commons Attribution License which permits unrestricted

use, distribution, and reproduction in any medium, provided the original
work is properly cited (CC BY 4.0).

International Journal of Information and Education Technology, Vol. 16, No. 1, 2026

116

https://creativecommons.org/licenses/by/4.0/

	IJIET-V16N1-2487-IJIET-18202

