International Journal of Information and Education Technology, Vol. 16, No. 1, 2026

Learning, Behavior, and Pedagogy: A Systematic Review of
Generative Al Use in Programming Education

Tien-Chi Huang' and Hsin-Ping Tseng"

'Department of Information Management, National Taichung University of Science and Technology, Taichung, Taiwan
2Doctoral Program of Intelligent Engineering, National Taichung University of Science and Technology, Taichung, Taiwan
Email: tchuang@nutc.edu.tw (T.-C.H.); s1f11336002@nutc.edu.tw (H.-P.T.)

*Corresponding author
Manuscript received June 19, 2025; revised July 22, 2025; accepted September 4, 2025; published January 13, 2026

Abstract—With the rapid development of Generative
Artificial Intelligence (GAI) technology, programming
education has emerged as a core application domain. Through a
systematic literature review of 45 relevant studies from the
Semantic Scholar database from 2023-2025, this study
examined the current applications of GAI as an auxiliary
learning tool in programming education, and its impact on
learning outcomes. The findings reveal that GAl-assisted
instruction demonstrates significant effectiveness across seven
learning indicators: programming knowledge and skills,
computational thinking and logical reasoning, problem-solving
ability, programming self-efficacy, learning achievement, code
quality, and learning behaviors and engagement. While the
majority of studies confirm that GAI enhances student
performance in various areas such as task completion, test
performance, code structure and quality, and promoting
self-directed learning, some studies indicate that GAI use may
reduce learning depth and lead to over-dependence in specific
tasks or complex reasoning contexts. From a pedagogical
perspective, GAI prompts a transformation in teachers’ roles
from knowledge transmitters to learning facilitators and guides,
necessitating corresponding adjustments in curriculum design
and assessment approaches. Based on the empirical findings,
this study constructs an integrated conceptual model for
GAl-assisted programming education integrating four core
dimensions: implementation context factors, core influencing
factors, learning performance indicators, and learning
outcomes. The study identifies AI tool selection, students’
foundational abilities, and task complexity as key variables
affecting learning effectiveness, and synthesizes seven patterns
of student learning behavior changes under GAI assistance,
providing concrete theoretical foundations and implementation
guidelines for educational practice.

Keywords—Generative Artificial Intelligence (GAlI),
programming education, ChatGPT, learning outcomes, code
quality, self-directed learning; pedagogical adaptation

1. INTRODUCTION

With the rapid development of Generative Artificial
Intelligence (GAI) technology and the widespread adoption
of tools such as ChatGPT, GAI has become an important
instrument across various domains. In the field of
programming education, GAI can generate code and
problem-solving suggestions in real-time, meeting learners’
personalized support needs [1]. However, guiding students to
use Al tools appropriately—preventing them from becoming
mere answer providers while transforming them into
effective auxiliary learning tools that promote deep learning
and subsequent application—has emerged as a critical
challenge in educational applications. In programming
learning, students must not only master programming syntax
and logical structures, but also develop debugging and

doi: 10.18178/ijiet.2026.16.1.2487

verification capabilities to foster long-term knowledge
internalization, and problem-solving abilities.

Previous literature has explored the impact of GAI
applications across various learning domains, and analyzed
students’ understanding and application of GAl-generated
content, revealing that students’ preferences for GAI
demonstrate two orientations: “Substitution” and
“Augmentation” [2]. However, existing research
predominantly focuses on single dimensions and lacks
systematic convergence and synthesis to comprehensively
examine changes in student learning behaviors and
fundamental learning indicators under GAI assistance. In
recent years, research has begun shifting focus from Al tool
application patterns to the integration of GAI by students for
programming, debugging, and optimization [3]. The role of
GAI in programming education extends beyond being merely
an auxiliary tool for knowledge transmission; it has become a
critical factor influencing students’ learning depth and
subsequent application capabilities.

Therefore, this study employed a systematic literature
review focusing on the application outcomes of generative Al
in programming education from 2023 to 2025, integrating
learning indicators and learning behavior changes throughout
students’ learning processes, and further analyzing its impact
on code quality, such as structural clarity, readability, error
rate, or modularity, as well as task completion efficiency. In
particular, the study aimed to address the following research
questions:

RQ1: In GAl-assisted learning contexts, which aspects of
students’ programming learning performance demonstrate
significant impact?

RQ2: What specific effects do GAl-assisted learning have
on the quality of code produced by students and their
completion efficiency?

RQ3: What changes emerge in students’ learning
behaviors and teachers’ instructional strategies during the
implementation of GAI in educational applications?

This research aims to assist educators in achieving a
balance between curriculum design and Al utilization,
ensuring that GAI serves not merely as a technical support
tool, but also promotes students’ subsequent application
capabilities and long-term knowledge consolidation through
rigorous assessment and instructional strategies. This
involves not only understanding the nature of GAI
technology, but also strategic adjustments in curriculum
design and instructional implementation within educational
practice, which has significant implications for the
sustainable development of higher education.

mailto:tchuang@nutc.edu.tw
mailto:s1f11336002@nutc.edu.tw

International Journal of Information and Education Technology, Vol. 16, No. 1, 2026

II. MATERIALS AND METHODS

This study employs a systematic review methodology,
supplemented by thematic analysis to organize qualitative
dimensions, reviewing empirical research findings on
GAl-assisted programming education. The study aims to
examine its impact on student programming learning
outcomes compared to traditional teaching approaches,
including aspects such as programming skill performance,
learning efficiency, and learning behaviors. To focus on the
latest GAI developments in programming education, this
study utilizes Semantic Scholar for literature retrieval. First,
Semantic scholar’s semantic search and automatic summary
(TLDR) features facilitate the rapid comprehension of
generative Al applications across various programming
education contexts, enhancing the efficiency and precision of
literature retrieval. Second, the platform not only
encompasses over 200 million cross-disciplinary documents,
but also provides comprehensive coverage of computer
science, educational ~ technology, and artificial
intelligence-related fields, sufficiently supporting this study’s
requirements for thematic depth and breadth. Moreover, this
database is free and unrestricted by institutional subscriptions,

thus ensuring reproducibility of the research process.
Therefore, this study selected the Semantic Scholar database
and employed rigorous search strategies and screening
criteria to ensure the representativeness and quality of the
subsequently coded literature.

Since the application of generative Al technology in
education largely began with the rapid proliferation of
ChatGPT in 2023, and most relevant empirical studies were
published after 2023, this study sets the literature search
scope from January 1, 2023, to May 1, 2025, to encompass
the critical period of GAI in programming education.
Although Semantic Scholar’s semantic search provides
flexibility and contextual understanding advantages in
exploring emerging topics, to comply with the Preferred
Reporting Items for Systematic Reviews (PRISMA)’s
emphasis on search strategy reproducibility and transparent
reporting principles, this study still employs clearly defined
keywords for initial screening to ensure transparency and
traceability of the search process. The following keywords
were used for result screening: (“generative AI”) AND
(“ChatGPT” OR “GitHub Copilot”) AND (programming OR
coding). The literature inclusion and exclusion criteria
consisted of five items, as listed in Table 1.

Table 1. Literature inclusion criteria

Inclusion Criteria

Description

Educational Domain

Research must be conducted in programming education contexts.

Use of Generative Al Tools

Studies must explicitly utilize generative Al tools.

Empirical Research Design

Only empirical studies including experimental designs, quasi-experimental, and
observational studies are included; literature reviews and meta-analyses are excluded.

Comparative Baseline Design

Studies must include control groups or pre-/post-test to verify differences between
Al-assisted and traditional teaching effectiveness.

Learning Outcome Indicators

Studies must contain quantifiable student learning outcome data, such as test scores, project

completion rates, and code quality.

Records identified through database

searching (n = 527)

+ Database: Semantic Scholar (n = 209),
Scopus (n =303), ERIC (n =15)

* Search string: ("generative AI") AND
("ChatGPT" OR "GitHub Copilot")

AND (programming OR coding)
|—>

Records screened
(n=142)

g
€
g
i
=

« Duplicate records removed (n=304)
* Not related to programming education based on title

and abstract screening (n = 81)

Screening

N
+ Used Al in non-instructional roles (e.g., grading only)
» (n=54)
N
Full-text articles assessed
for eligibility
(n=88)
N
+ Not involving student learning outcomes or lacking
» empirical methodology (n =43)

(n=45)

Studies included in review
* No additional eligible studies from Scopus/ERIC audit

Fig. 1. PRISMA flow diagram.

Subsequently, a systematic review and meta-analysis was
conducted following the PRISMA standards for data
collection and literature screening. The search yielded 209
relevant documents. The data screening process, as shown in
Fig. 1, involved excluding literature unrelated to
programming education based on titles and abstracts (n = 81),
followed by full-text reading to further exclude studies that
did not use Al tools in educational application contexts (n =
44), and research lacking student learning outcomes or
empirical data (n = 39). Ultimately, 45 articles were included
in the content analysis.

A. Data Extraction and Coding Criteria

This study employed a pre-established coding framework
aligned with the research objectives to conduct systematic
data extraction from the literature that met the inclusion
criteria, facilitating subsequent analysis and comparison. The
coding categories are presented in Table 2.

Table 2. Literature coding description

Coding Category

Description

Research Design Type

Primarily includes Randomized Controlled Trial (RCT), Quasi-Experimental Design, Pre-/Post-Test Design,

and Comparative Study

Al Teaching Intervention Methods

Al tool names, application methods (teaching assistant, debugging, practice support, etc.), frequency of use, and

intervention duration

Learning Context

Includes participants’ educational level and programming context

Learning Outcome Indicators

Such as programming performance scores, completion rates, problem-solving abilities, code quality, etc.

Measurement Instruments and Time
Points

Scales and assessment methods utilized

Primary Research Results

Comparison of outcomes between groups, statistical significance

103

International Journal of Information and Education Technology, Vol. 16, No. 1, 2026

III. RESULTS

A. Characteristics of Included Studies

This review included 45 empirical studies, as shown in
Table 3. These studies met the pre-established coding criteria
and demonstrated diverse research design types, including 13
Randomized Controlled Trials (RCTs) [4-16] and 21
Quasi-Experimental Designs [3, 17-36], Among these, 19
studies employed Pre-/Post-Test Designs [4, 9, 11-14, 17, 18,
21, 22, 24-27, 29, 31, 36-38] and 27 were Comparative
Studies [3, 5-8, 10, 11, 15, 16, 19, 20, 23, 28, 30, 32-34, 36,
39—-47]. Although some studies did not explicitly state their
research design type, the overall results still reflected the
methodological diversity and openness in this research
domain.

All the studies confirmed the use of generative Al tools to
align with the research theme. Most studies utilized ChatGPT
[3-28, 30—45, 47], with only one study using Gemini 1.5 [29]
and three studies employing the GitHub Copilot [28, 37, 46].
ChatGPT 3.5 was the most commonly used version, while
two studies used both ChatGPT and GitHub Copilot [28, 37].

Regarding programming learning contexts, most studies
have been conducted in educational settings, including
introductory programming courses at universities (such as
CS1) and various specialized domain courses. Among the

studies, 11 did not explicitly specify the programming
language used in their courses [3, 9, 10, 12, 17, 21, 34, 35, 41,
45, 47], 8 focused on introductory programming courses [7,
15, 31, 33, 38, 40, 44, 46], while the remaining studies
covered various languages and course domains including
C++ [8, 27], JAVA [5, 25, 37, 42], Data analysis [18, 24],
JavaScript to web design [28, 32], Object Oriented
Programming (OOP) [13, 43], PHP [19], Python [4, 11, 14,
20, 23, 30], Visual Basic [26], API test [22], Scratch [39], as
well as Computer engineering [29], Software engineering [6,
16] and Vibration analysis course [36], demonstrating the
application potential of generative Al tools across diverse
educational scenarios.

The primary learning outcome indicators included
programming knowledge acquisition, computational thinking
abilities, problem-solving skills, programming self-efficacy,
and code quality. However, these studies exhibited high
heterogeneity in their assessment tools and observational
dimensions, reflecting that “programming ability” in
Al-assisted learning contexts is a multifaceted learning
outcome difficult to measure with a single scale.

The synthesis of these results indicates current research’s
interest in “integrating generative Al into programming
education,” presenting its potential effectiveness through
diverse research methods and learning scenarios.

Table 3. Literature screening results

Ref. Study Design Programming Context Al Tool Used Primary Outcomes
Quasi-Experimental Design; UML diagram creation, programming
[25] Experimental design with Computer Science (JAVA) ChatGPT 3.5 implementation, closed-book post-evaluation
pre-test/post-test scores
Quasi-Experimental Design; . .
: Academic performance, perception of usefulness
[29] Experimental design with Computer engineering Gemini 1.5 . . .
pre-test/post-test and ease of use, satisfaction and motivation
Randomized controlled trial; . o . .
[9] Experimental design with Programming course ChatGPT Computational thinking skills, programming
pre-test/post-test self-efficacy
. . Time taken to complete tasks, number of tasks
[44] Comparative study Introductory programming ChatGPT 3.5 attempted, scores achieved
. Object-Oriented
[43] Comparative study Programming (OOP) course ChatGPT Performance data (test scores and grades)
Randomized controlled trial, . . .
[11] Experimental design with Python programming ChatGPT COde;‘:rtE)Orﬁ:i f :rﬁzﬁn;;zii;r?ﬁe{hrﬁgfganon
pre-test/post-test ’
3] Quaspexpempental study; Programming course ChatGPT Programmmg performance, percelyed usefulness,
Comparative study perceived ease of use, intention to use
Quasi-experimental study;
[31] Experimental design with Python programming ChatGPT 3.5 Python programming knowledge and skills
pre-test/post-test
[45] Comparative study Programming course ChatGPT 3.5 Computational thinking skills, creative thinking
Quasi-experimental study; . . L .
[24] Experimental with pre/post; Data S.tructures and ChatGPT Problem-solving sk_llls, algorithmic thinking, ability
Comparative study Algorithms course to write executable code
[46] (wi(t:]?ir:—ps?lrl;t;?ssgelgiygn) Introductory programming GltH}ikI)gg pilot Programming performance, self-efficacy
[41] Comparative study Programming course ChatGPT Programm;rrlgglg;ﬁliefg;ggglclts1(;?;; tf/muP level
Quasi-Experimental Design; . . .
33] Experimental design with Introductory programming ChatGPT 4 Programming].mowledge, pejrformance analysis for
pre-test/post-test course different compiler errors
Quasi-Experimental Design; . Programming proficiency, students’ experiences
[23] Comparative study Python programming ChatGPT using ChatGPT
[19] Quasgf:qiz?;liizt:iulzsmgn; PHP programming course ChatGPT Coding (Cla551cal,qulrellsi:£ 2lss)e, Multiple Choice
[42] Comparative study Introduc_tory Java ChatGPT Adherence to godmg co_n_ventlons, cyplomatlc
programming courses complexity, cognitive complexity
Randomized controlled trial; Software engineerin Structure, independence, value, testability,
[16] e 2 ChatGPT P ¥
Comparative study classroom grammar of user stories
[34] Quasi-experimental study; Component Programming ChatGPT Speed of task completion, depth of understanding,
Comparative study course diversity of solutions, critical thinking
[17] Quasi-experimental study with Programming course ChatGPT 3.5 Programming test scores

104

International Journal of Information and Education Technology, Vol. 16, No. 1, 2026

pre-test/post-test

Comprehension and application of programming

[35] Quasi-experimental study Programming course ChatGPT concepts
[36] Cqmp arative study; Vibration aI}alysm course for ChatGPT Computational thinking, problem-solving abilities
Quasi-experimental study mechanical engineers
Experimental design with
[38] pre-test/post-test Introductory programming ChatGPT Normalized learning gain
Quasi-experimental study; JavaScript functions for Web L
[32] Comparative study Design and Coding students ChatGPT Navigation performance, test scores
Randomized controlled trial; Object-oriented programmin, Programming performan de submission
[13] Experimental with pre/post; Ject-oriented prog & ChatGPT 3.5 08 & perto Ce, Coae SubmIssIo
. concepts success rate
Comparative study
Experimental with pre/post; API testing (IT and IS Understanding and using APIs, confidence in using
[22] . . ChatGPT
Quasi-experimental students) APIs
[26] Quasrexpen'mental; Experimental Visual Basic 6 for ChatGPT Programming skills in Visual Basic 6
with pre/post undergraduates
Randomized controlled trial; . Engagement, practice performance, posttest
[7] Comparative study Introductory programming ChatGPT 4 performance, scaffolding apply rate
Randomized controlled trial;
[14] Experimental with pre/post Python programming ChatGPT Code-authoring and code-modification skills
Randomized controlled trial; . .
[5] Comparative study Java programming course ChatGPT 4 Laboratory assignment scores
Quasi-experimental study; . .
[30] Comparative study Python programming ChatGPT 4 Test scores, Python skills enhancement
. Scratch programming for Syntax understanding, code writing ability, Scratch
[39] Comparative study non-CS majors ChatGPT feature use, algorithm understanding
Quasi-experimental study; . el
[20] Comparative study Python programming ChatGPT 3 Problem-solving time and success rate
[18] Quasi-experimental study with Programmmg'and data ChatGPT Programming and data analysis skills
pre/post analysis
Randomized controlled trial; . . .
[4] Experimental with pre/post Python programming ChatGPT 3.5 Python programming skills
Randomized controlled trial; o
[10] Comparative study Programming via debugging ChatGPT Programming performance, computational thinking
[21] Quasi-experimental study with Programming courses ChatGPT Programming skills, conceptual gnderstandmg,
pre/post engagement, satisfaction
[40] Comparative study Introductory programming ChatGPT 3.5 Code correctness, code quality
[6] Randomized cgntrolled trial; Software testing education ChatGPT 3.5 Effectiveness and efficiency in writing tests
Comparative study
Randomized controlled trial; Debugging-focused Comprehensive and accurate hypothesis
[12] ; . ; ‘ ChatGPT 3.5 ;
Experimental with pre/post programming education construction
[47] Comparative study Programming assistance ChatGPT Code quality, task completion time
[37] ExperlmenFal with pr;/post; Java programming course ChatGPT Pre/post-tas}(quiz score, cod§ qual}ty, task
Interview analysis completion time, student interviews
. . . . Practical assignment performance, midterm exam
[8] Randggnr;ze:r:tcl?sg(s)tllllzd trial; Pro ?abrjn i:]ti;lor:fs?rt,edc —_ ChatGPT results, final course grade, student feedback on
P Y g g g ChatGPT usefulness
[27] Quasi-experimental study with C++ programming course ChatGPT Flow expenence,‘self-efﬁcacy, learning
pre/post achievement
28] Quaspexpempental study; JavaScript to web design ChatGPT,. GitHub Coding assignment, code ggneratlon, debugging,
Comparative study Copilot explanation
. - programming posttest score, self-efficacy in
[15] Randomized controlled trial; Introductory programming ChatGPT 3.5 programming, task performance, programming

Comparative study

€I1ror1s

B. Effects of Al-Assisted Programming Learning

1) Learning performance metrics

This study provides an in-depth exploration of
performance indicators across the 45 studies. Through the
analysis of different indicator types and based on Table 3 in
Section 3.1, the Primary Outcomes were consolidated into
seven major learning performance indicators: programming
knowledge/skills, computational thinking/logical reasoning,
problem-solving ability, programming
self-efficacy/confidence, learning achievement, code quality,
and learning behaviors/engagement, with the distribution
shown in Fig. 2.

All the studies addressed learning indicators related to
programming knowledge/skills, demonstrating that students’
understanding and application abilities in programming
languages and concepts constitute the primary assessment
focus. Learning achievement was examined in 41 studies

105

[4-7, 9-22, 24-26, 28—47], represented through quantitative
results such as test scores and academic performance.
Learning behaviors and engagement were investigated in 38
studies [3, 4, 6-9, 11-15, 17, 18, 20-26, 29-45, 47], while
computational thinking and logical reasoning abilities were
addressed in 33 studies [3-5, 7, 9-11, 13, 14, 16-25, 27, 30,
32-34, 36, 38-45], focusing on students’ abstraction and
pattern recognition thinking processes during programming.
Additionally, 29 studies examined students’ abilities in
applying strategies for debugging and problem-solving [3,
5-7,10-15, 18, 20, 23-25, 27, 28, 31, 33, 34, 36, 37, 39, 41,
42, 44-47], while 21 addressed students’ cognition and
attitudes toward their own programming learning and
application capabilities [3, 5, 8, 9, 14, 15, 19, 20, 22, 23, 27,
29, 31, 35, 37-39, 41, 44-46]. Finally, code quality was
examined in 16 studies [3, 5, 8, 9, 14, 15, 19, 20, 22, 23, 27,
29, 31, 35, 37-39, 41, 44-46], emphasizing the structural
quality and maintainability of code produced by the students.

International Journal of Information and Education Technology, Vol. 16, No. 1, 2026

This multidimensional categorization provides a more
comprehensive presentation of students’ multilevel outcomes
in generative Al-assisted learning, and reflects the diversity
of observational focus across different studies.

Further comparisons of the measurement methods and
learning outcomes following generative Al tool intervention
are presented in Table 4. Although some studies did not
explicitly indicate the direction of intervention effects, most
results demonstrated the positive impact of generative Al
instruction on student learning performance. A total of 34
studies reported that Al-assisted groups outperformed
traditional control groups across multiple dimensions,
including learning achievement, problem-solving abilities,
and self-efficacy. However, 11 studies showed significant
negative differences or no improvement in average

performance [5-8, 15, 25, 27-29, 41, 43], indicating that
while generative Al tools demonstrate positive effects in
most studies, variations and challenges persist.

Programming knowledge / Skills
Computational thinking / Logical reasoning

Problem-solving ability

Learning achicvement

|
——
I
Programming self-efficacy / Confidence I NEEEG—
1
Code quality G
]

Learning behaviors / Engagement

Fig. 2. Seven major learning performance indicators.

Table 4. Learning performance indicator screening results

Ref. Measurement Type Al-Assisted Results Traditional Results Converged Outcome
UML diagram, programming Prog. Knowledge/Skills, CT / Logic Reasoning,
[25] implementation, No significant impact No mention found Problem-solving ability, Learning achievement, Learning
post-evaluation scores behaviors / Engagement
. No statistically No statistically Prog. Knowledge/Skills, Prog. Self-Efficacy, Learning
[29] Academic performance significant differences significant differences achievement, Learning behaviors / Engagement
Computational thinking skills, Lo . Lower than Al-assisted Prog. Knowledge/Skllls, CT / Logic Reasqnmg, Prog.
9] . Significantly higher Self-Efficacy, Learning achievement, Learning behaviors
programming self-efficacy group
/ Engagement
Prog. Knowledge/Skills, CT / Logic Reasoning,
[44] Task completion time, scores Faster completion, Slower completion, Problem—solvmg ability, Prpg. Self—E_fﬁcacy, Lparmng
comparable scores comparable scores achievement, Code quality, Learning behaviors /
Engagement
[43] Test scores Scores improved but No mention found Prog. Kr}owledge/skllls,.CT / Logl_c Reasoning, Learning
the effect was average achievement, Learning behaviors / Engagement
1.15x increased Lower than Al-assisted Prog. Knowledge/Skills, CT / Logic Reasoning,
[11] Code-authoring performance completion rate, 1.8x Problem-solving ability, Learing achievement, Code
. group . . .
higher scores quality, Learning behaviors / Engagement
Prog. Knowledge/Skills, CT / Logic Reasoning,
[3] Programming performance M=84.11,SD=1945 M=78.36,SD=17.59 Problem-solving ability, Prog. Self-Efficacy, Learning
behaviors / Engagement
Python programming Average increase of Average decrease of Prog. Knowledge/S'kllls, Pr'oblem-solvmg a}blhty’ Prgg.
[31] . Self-Efficacy, Learning achievement, Learning behaviors
knowledge and skills 12.50 3.17
/ Engagement
Prog. Knowledge/Skills, CT / Logic Reasoning,
. . . . Problem-solving ability, Prog. Self-Efficacy, Learning
[45] Computational thinking skills Enhanced No mention found achievement, Code quality, Learning behaviors /
Engagement
Problem-solving skills, Significantly higher Lower than Al-assisted Prog. Knpwledgf:/Skﬂls, C.T / Loglc Reasoning, .
[24] R Problem-solving ability, Learning achievement, Learning
algorithmic thinking scores group .
behaviors / Engagement
. . . . Lower than Al-assisted Prog. Knowledge/Skills, Problem-solving ability, Prog.
[46] Programming efficiency Significantly increased condition Self-Efficacy, Learning achievement, Code quality
Prog. Knowledge/Skills, CT / Logic Reasoning,
[41] Programming knowledge No substantial No substantial Problem-solving ability, Prog. Self-Efficacy, Learning
acquisition differences differences achievement, Code quality, Learning behaviors /
Engagement
Programming knowledge, Improved error Lower performance in Prog. Knowledgg/ Skllls, CT / Loglg Reasoning,
[33] . troubleshooting . Problem-solving ability, Learning achievement, Code
error troubleshooting s error troubleshooting . . .
capabilities quality, Learning behaviors / Engagement
Statistically significant . Prog. Knowledge/Skills, CT / Logic Reasoning,
[23] Programming proficiency but not practically Lower thaﬁ)ﬁl-asmsted Problem-solving ability, Prog. Self-Efficacy, Learning
significant group behaviors / Engagement
. . Statistically significant ~ Lower than Al-assisted Prog. Knowledge/Skills, CT / Logic Reasoning, Prog.
[19] Coding question performance positive effect group Self-Efficacy, Learning achievement
. Prog. Knowledge/Skills, CT / Logic Reasoning,
[42] Code quality Significantly improved Lower than Al-assisted Problem-solving ability, Learning achievement, Code
group . . .
quality, Learning behaviors / Engagement
[16] User story quality The results are higher ~ Lower than Al-assisted ~ Prog. Knowledge/Skills, QT / Logic Reasoning, Learning
on average group achievement
. Nearly three times Slower than Prog. Knowledgg/Skllls, CT. / Loglg Reasoning,
[34] Task completion speed . . Problem-solving ability, Learning achievement, Code
quicker Al-assisted group . . .
quality, Learning behaviors / Engagement
[17] Programmine test scorcs Increased from 48.33 Lower than Al-assisted ~ Prog. Knowledge/Skills, CT / Logic Reasoning, Learning
g g to 74.47 condition achievement, Learning behaviors / Engagement
Comprehension and Lo . Lower than Al-assisted Prog. Knowledge/Skills, Prog. Self-Efficacy, Learning
331 application of programming Significantly higher group achievement, Code quality, Learning behaviors /

106

International Journal of Information and Education Technology, Vol. 16, No. 1, 2026

concepts

Engagement

Lower than Al-assisted

Prog. Knowledge/Skills, CT / Logic Reasoning,

[36] Quiz scores Increased performance rou Problem-solving ability, Learning achievement, Learning
group behaviors / Engagement
Prog. Knowledge/Skills, CT / Logic Reasoning, Prog.
[38] Normalized learning gain M=52.85,SD=2427 M=41.29,SD=26.84 Self-Efficacy, Learning achievement, Learning behaviors
/ Engagement
132] Test scores Significantly higher Lower than Al-assisted Prog. quwledge/ Skllls,.CT / Logl.c Reasoning, Learning
group achievement, Learning behaviors / Engagement
. Prog. Knowledge/Skills, CT / Logic Reasoning,
[13] Successful submissions Higher Lower than Al-assisted Problem-solving ability, Learning achievement, Code
group . . .
quality, Learning behaviors / Engagement
.o . Prog. Knowledge/Skills, CT / Logic Reasoning, Prog.
[22] Exam test scores Slgmﬁ(&il;%})] higher Lower (~50) Self-Efficacy, Learning achievement, Code quality,
Learning behaviors / Engagement
126] Programming s_kllls in Visual M=834,SD =142 M =7.56,SD = 1.84 Prog. Knowledge/Sklll;, Learning achievement, Learning
Basic 6 behaviors / Engagement
Hicher average Prog. Knowledge/Skills, CT / Logic Reasoning,
[7] Posttest performance g g No mention found Problem-solving ability, Learning achievement, Learning
accuracy f
behaviors / Engagement
Average results Prog. Knowledge/Skills, CT / Logic Reasoning,
[14] Post-test evaluation scores erag No mention found Problem-solving ability, Prog. Self-Efficacy, Learning
improved . . .
achievement, Learning behaviors / Engagement
. Lower than instructor Better than Al Prog. Kno'wledg.e/'Skllls, CT/ Logic Reasonlng,‘
[5] Lab assignment scores Problem-solving ability, Prog. Self-Efficacy, Learning
feedback feedback . .
achievement, Code quality
130] Test scores Improving test No mention found Prog. quwledge/Skllls,.CT / Log{c Reasoning, Learning
accuracy and learning achievement, Learning behaviors / Engagement
. Prog. Knowledge/Skills, CT / Logic Reasoning,
[39] Scratch understanding Significantly higher Lower than Al-assisted Problem-solving ability, Prog. Self-Efficacy, Learning
group . . .
achievement, Learning behaviors / Engagement
Prog. Knowledge/Skills, CT / Logic Reasoning,
. Lower than Al-assisted Problem-solving ability, Prog. Self-Efficacy, Learning
[20] Programming success rate Increased
group achievement, Code quality, Learning behaviors /
Engagement
Proerammine and data Prog. Knowledge/Skills, CT / Logic Reasoning,
[18] ganal sisgs Kills Improve accuracy No mention found Problem-solving ability, Learning achievement, Learning
Y behaviors / Engagement
. . 2 more questions Lower than Al-assisted Prog. Knowledge/Skills, CT / Logic Reasoning, Learning
[4] Python programming skills solved group achievement, Learning behaviors / Engagement
[10] Programmine performance Better for 2nd & 3rd Lower than Al-assisted Prog. Knowledge/Skills, CT / Logic Reasoning,
g &P levels of AIGC group Problem-solving ability, Learning achievement
21] Programming skills Better performance Lower than Al-assisted ~ Prog. Kr}owledge/Skllls,.CT / Logl_c Reasoning, Learning
group achievement, Learning behaviors / Engagement
Minimal chanees in Prog. Knowledge/Skills, CT / Logic Reasoning, Learning
[40] Code correctness scores g No mention found achievement, Code quality, Learning behaviors /
Engagement
Negative impact (8.6% . Prog. Knowledge/Skills, Problem-solving ability,
[6] Effectiveness in writing tests fewer tests, 78% not Better tha;lozzl-assmted Learning achievement, Code quality, Learning behaviors /
useful) group Engagement
. . 12% increase in Lower than Al-assisted PTOg' Knp wledge/Skills, Problem-solvm & ab111ty',
[12] Debugging skills i Learning achievement, Code quality, Learning behaviors /
pre-post scores condition
Engagement
. Better for algorithmic =~ Lower than Al-assisted PTOg' Knp wledge/Skills, Problem-solvm & ablhty.’
[47] Code quality Learning achievement, Code quality, Learning behaviors /
tasks group
Engagement
Effectively improve Prog. Knowledge/Skills, Problem-solving ability, Prog.
[37] Programming success rate Y rmp No mention found Self-Efficacy, Learning achievement, Learning behaviors
completion time
/ Engagement
. Not significantly Not significantly Prog. Knowledge/Skills, Prog. Self-Efficacy, Learning
[8] Programming test scores different different behaviors / Engagement
[27] Post-test evaluation scores and Significant but Better results than the Prog. Knowledge/Skills, CT / Logic Reasoning,
Questionnaire non-enhancing effect experimental group Problem-solving ability, Prog. Self-Efficacy
28] Programming test scores Significant but No mention found Prog. Knowledge/Skills, Problem-solving ability,

non-enhancing effect

Learning achievement

[15]

Programming scores

High user satisfaction

Higher Programming
Score

Prog. Knowledge/Skills, Problem-solving ability, Prog.
Self-Efficacy, Learning achievement, Learning behaviors
/ Engagement

Note: Programming knowledge / skills (Prog. Knowledge/Skills); Computational thinking / Logical reasoning (CT / Logic Reasoning); Programming
self-efficacy / confidence (Prog. Self-Efficacy)

2) Code quality outcomes

Among the 45 studies, 11 examined the potential impact of
generative Al tools on the quality of code produced by
students, with results presented in Table 5. The majority of
studies suggested that Al assistance contributes to improving

the quality of code produced by students, with eight studies
indicating that Al-assisted groups significantly outperformed
the control groups [11, 12, 33, 35, 40, 42, 45, 47], and four
demonstrating statistical significance [12, 35, 42, 47]
including two studies that found students in AI groups
significantly exceeded traditional groups in terms of
modularity or correctness [12, 40]. These studies

107

International Journal of Information and Education Technology, Vol. 16, No. 1, 2026

encompassed multiple dimensions such as coding
conventions, code structure standardization, error-handling
capabilities, and code logic clarity, demonstrating the
potential of generative Al tools for programming language
assistance.

However, three studies revealed potential concerns. One
study reported that although Al-assisted code output was
functional, it exhibited uniformity in strategy design and
problem-solving approaches, potentially constraining
students’ development of diverse thinking and innovative
solutions [34]. Another study indicated that Al assistance had
negative impacts on code quality [41], while Mezzaro et al.
(2024) found that in test case writing tasks, both the quality
and quantity of tests produced by the Al group were
significantly lower than those produced by the control group
[6].

These studies employed various code quality indicators,
most of which appeared in only single studies, creating
challenges for cross-study comparisons. To more clearly
present the observational focuses of different studies and
address the second research question (RQ2) regarding the
impact of generative Al tools on code quality, these
indicators were further consolidated into three major
dimensions: Code Structure & Quality (five studies [11, 35,

40, 42, 47]), Debugging & Error handling (three studies [6,
12, 33]), and Team-Level diversity & Collaborative

outcomes (three studies [34, 41, 45]), as shown in Fig. 3. This
classification helps systematically integrate the diverse
observational results from various studies, and serves as a
subsequent

foundation for
statistical analysis.

in-depth comparison and

u Code Structure & Quality

= Debugging & Error Handlin

Team-Level Diversity &
Collaborative Outcomes

Fig. 3. Three major dimensions of code quality indicators.

Overall, while most studies indicate that Al assistance has
positive impacts on code quality, the benefits are inconsistent,
suggesting that in practical educational applications, a further
balance is needed between technical assistance and students’
development of programming comprehension.

Table 5. Code quality screening results

Ref. Code Quality Metric Al-Assisted Results Traditional Results Context Notes Final Category
Adherence to coding
[42] conventions, cyclqn}atlc Significantly improved Lower than Al-assisted Introduc.tory Java Code Structure & Quality
complexity, cognitive group programming courses
complexity
Improved (Assignment-3 Introducto
[40] Code modularity average modularity ratio: No mention found uctory Code Structure & Quality
1.49) programming Course
Code quality for .
[47] algorithmic and Significantly better Lower tha;loﬁl-assmted Programming assistance ~ Code Structure & Quality
library-related tasks group
[11] Code-authoring 1.8x higher scores Lower than Al-assisted Python programming Code Structure & Quality
performance group
(33] Error troub_lf?s_hootmg fmproved Lower than Al-assisted Introdl_lctory Debugging ‘& Error
capabilities group programming course Handling
34] Diversity of solutions Low@r dlversnyf more Higher d1_/er51ty of Component programming Team-Leve_:l Diversity &
uniform solutions solutions course Collaborative Outcomes
. . H1gher q“a,hty projects Lower than Al-assisted . Team-Level Diversity &
[45] Quality of projects aligned with learning Programming course :
Lo group Collaborative Outcomes
objectives
[41] Group-level programming No substantial No substantial Programmine course Team-Level Diversity &
product quality differences differences g & Collaborative Outcomes
(35] Appllc_atlon of Significantly higher Lower than Al-assisted Programming course Code Structure & Quality
programming concepts performance group
. . Lower quality (78% not Higher than Al-assisted Software testing Debugging & Error
[6] Quality of written tests useful) group education Handling
Accuracy of hypothesis o) : Lower than Al-assisted Programming education Debugging & Error
[12] construction in debugging 15.8% improvement condition (debugging focus) Handling

3) Time efficiency impacts

In programming development learning contexts, beyond
code quality, task completion efficiency represents an
important dimension affecting student learning outcomes.
Among the 45 empirical studies included in this analysis,
eight examined the impact of generative Al tools on students’
programming development time efficiency, with the results
addressing RQ2, as shown in Table 6. Seven studies reported
that generative Al-assisted programming learning enhanced
task completion speed [12, 13, 20, 34, 44, 46, 47], whereas
only one study indicated that traditional instruction
demonstrated superior time performance [22]. These studies

108

encompassed diverse learning contexts, including novice
programming, introductory courses, component-based
programming, object-oriented design concepts, API testing,
general programming learning assistance, and debugging
tasks.

Three studies provided detailed metrics for specific
quantified time improvements. One study indicated that
generative Al-assisted programming learning achieved
nearly three times the speed of traditional methods [34],
whereas Pankiewicz and Baker (2023) reported that the
Al-assisted group reduced problem-solving time by an
average of 375s (6.25 minutes) [13]. Meanwhile, Ma et al.
(2024) demonstrated that in debugging tasks, the Al-assisted

International Journal of Information and Education Technology, Vol. 16, No. 1, 2026

group reduced completion time by 14% [12]. Only one study
reported a better time through traditional instruction, where
the Al group’s average completion time was 49.95 minutes
(SD = 17.32 minutes), while the traditional group completed
tasks in 34.45 minutes (SD 14.92 minutes) [22].
Additionally, the remaining four studies, while not providing
explicit quantitative data, presented Al tools’ time efficiency

“significantly faster” or “reduced time” [20, 44, 46, 47].

These findings clearly indicate that generative Al tools
have positive effects on time efficiency in programming
learning, with this effect exhibiting consistency across
different learning contexts and task types. This constitutes
preliminary evidence regarding the efficiency benefits of Al
tools in programming education.

advantages through qualitative descriptions such as
Table 6. Time efficiency impact screening results
Ref. Time Efficiency Metric Al-Assisted Results Traditional Results Context Notes
[44] Task completion time Significantly faster (Group 1: Slower (Group 1: 59.8 min, Introductory programming

31.5 min, Group 2: 21.5 min)

Group 2: 38.9 min)

Nearly three times quicker on

[34] Task completion speed average Slower than Al-assisted group Component programming course

[46] Programming efficiency Significantly increased f:‘(?r‘lzcitri(t)lzlan Al-assisted Significantly increased

[13] Time to solve tasks 375 seconds (6.25 min) less More time required than Object-oriented programming
on average Al-assisted group concepts
Less efficient (mean time: More efficient (mean time:

[22] Time efficiency 49.95 minutes, SD: 17.32 34.45 minutes, SD: 14.92 API testing for IT and IS students
minutes) minutes)

[20] Time to solve programming problems Decreased Higher than Al-assisted group Python programming

. Faster for algorithmic Slower than Al-assisted group . .
[47] Time taken to complete tasks challenges for algorithmic challenges Programming assistance
[12] Completion time for debugging tasks 14% reduction Higher than Al-assisted Programming education

condition (debugging focus)

C. Thematic Analysis

Following the synthesis of multidimensional empirical
results regarding learning outcomes, code quality, and time
efficiency, this section further employs thematic analysis to
explore changes in student learning behaviors under
generative Al tool assistance as well as implementation
considerations that teachers may face in instructional
adjustments and curriculum design. By integrating
quantitative results and observed learning trends from
various studies, we conducted qualitative thematic synthesis
from behavioral perspectives, systematically presenting
student learning behavior characteristics in Al-assisted
contexts, and exploring how educational settings can respond
to the multifaceted challenges brought about by generative
Al tools. This section is divided into two parts, the first
focusing on changes in student learning behaviors, and the
second examining reflections and recommendations
regarding teachers’ instructional implementation and
curriculum adjustments, addressing the third research
question (RQ3).

1) Student learning behaviors

Based on the empirical literature included in this study, the
introduction of generative Al tools progressively reshapes
student behavioral patterns in programming learning through
several positive dimensions. First, regarding learning
engagement and motivation, Al tools enhance student
involvement and interest in learning activities. Related
research indicates that students generally perceive Al tools as
useful and convenient to operate, thus encouraging higher
usage intentions [3]. Studies also found that compared to
traditional instruction, Al-assisted learning provides greater
appeal and engagement [7]. Second, AI tools have
transformed students’ problem-solving abilities, with some
students tending to rely completely on Al-generated code,
while others combine Al suggestions with their own coding
for hybrid problem-solving [14]. Third, Al tools strengthen
students’ self-directed learning behaviors. Garg and

109

Rajendran [18] found that structured prompts can stimulate
students to actively engage in learning tasks, whereas Chang
and Chien [30] ‘s Al-driven quiz platform observed that
increased student interaction correlated with better test
performance, indicating that Al tools help cultivate
self-directed learning momentum. Fourth, Al tools provide
immediate feedback regarding error handling and debugging
abilities, effectively improving students’ performance in
syntax errors and debugging tasks. Pankiewicz and Baker [33]
reported better student performances in error handling, and
Ma et al. [12] indicated that pre-/post-test scores for
debugging tasks improved by 12%.

However, alongside these enhancements, the literature
simultaneously reveals adaptation challenges and shifts in
collaborative dynamics requiring pedagogical attention. Fifth,
research cautions against the risk of students’
over-dependence on Al tools. Mezzaro et al. [6] observed
that students who over-rely on Al show significant decreases
in both the quantity and quality of test cases written.
Lehmann et al. [4] also noted that if students habitually let Al
handle all problems, it may inhibit their motivation and
ability for active thinking and deep understanding. Even as
research indicates that AI assistance improves
problem-solving speed, it may lead to solution uniformity,
thereby limiting the diversity of problem-solving strategies
[34]. Sixth, most studies show that students demonstrate high
learning adaptability to Al tools, quickly becoming familiar
with and applying them to programming tasks, reflecting
openness and acceptance of emerging learning technologies
[25, 29]. Finally, AI tools also change collaborative
interaction patterns. Research by Fan et al. [41] indicates that
under Al assistance, the patterns and content of team
programming discussions have transformed, suggesting that
Al intervention may open new pathways for collaborative
learning.

These results indicate that Al tools are comprehensively
changing students’ behavioral patterns in programming

International Journal of Information and Education Technology, Vol. 16, No. 1, 2026

learning, as shown in Table 7, including enhanced
engagement, self-directed learning, and debugging abilities.
Such changes also reflect shifts in students’ self-regulation
processes. However, careful consideration must be given to
the potential risks of overdependence and solution
homogenization to effectively balance efficiency and depth
in curriculum design.

Table 7. Seven major learning behavior changes
Description

Demonstrating interest and enthusiasm
for learning activities

Adopting more effective and
innovative methods to solve problems
Exhibiting stronger learning ability
without direct guidance

Becoming more proficient in
identifying and correcting errors
Over-relying on tools, potentially
hindering independent thinking
Easily adapting to learning new tools
and technologies

Demonstrating stronger
communication and cooperation
abilities in teamwork

Behavior

Enhanced Engagement

Problem-solving Ability

Self-directed Learning

Error Handling and
Debugging Ability

Over-dependence

Adaptability

Collaborative Interaction

2) Pedagogical and implementation implications

As generative Al tools become increasingly widespread in
programming education, teachers face unprecedented
challenges in instructional adjustment and implementation.
According to the empirical literature included in this study,
introducing Al-assisted instruction requires the consideration
of multiple dimensions. Tool selection significantly affects
learning effectiveness, whereas integration methods (such as
virtual teaching assistants, quiz prompts, and flipped learning)
determine the appropriateness of learning activities and
student acceptance. Student ability levels also constitute an
influencing factor [4]. Similarly, task complexity must be
considered when determining the applicable scope of Al
tools. Al is particularly effective for algorithmic and library
application tasks [47], but may have limited effectiveness for
innovative and conceptual tasks.

Facing these challenges, teachers’ roles are transforming
from traditional knowledge transmitter to Al learning
facilitator and guide. Anishka er al. [40] explored the
feasibility of using ChatGPT as a virtual teaching assistant,
while Er et al. [5] indicated that teachers must adjust their
feedback approaches to enhance complementarity with Al
feedback. The integration of Al tools has become an
important element in curriculum design, from flipped
teaching strategies to learning support tools [36, 38]. Chang
and Chien [30] utilized Al-driven platforms to provide
personalized learning materials. Additionally, Al literacy
should be incorporated into curriculum design to help
students effectively operate and understand Al tools [4, 14].

The research has demonstrated innovative directions
regarding assessment mechanisms and curriculum content.
Applying Al-generated prompts to help students clarify
compilation errors or developing Al-assisted programming
assessment mechanisms demonstrates that Al tools are
creating new possibilities in assessment design [17, 33].
Furthermore, curriculum design needs to adjust teaching
strategies according to different programming domains. Al
tools have varying effects on introductory courses,

110

component-oriented learning, debugging training, and
advanced topics, demonstrating the need for adaptability in
teaching contexts [16, 25]. Research indicates that curricula
should include discussions on ethical issues related to Al use
[23, 25] to establish students’ responsible attitudes and values
toward technology.

In summary, Fig. 4 illustrates the three key dimensions of
GAI tool-assisted learning. The introduction of GAI tools has
driven programming education toward more personalized,
autonomous, and strategic directions. However, without
comprehensive instructional design and implementation
planning, the potential benefits of Al tools will be difficult to
realize fully and may even negatively impact learning

quality.

GAl-assisted
programming
learning

o Toolselection ~* programming - o Transition from knowledge

 GAl integration methods transmitter to facilitator

* Variations in learning abilities * Incorporating Al literacy into

* Task complexity curriculum design

 Utilizing GAl as a tool for flipped

learning or as a learning aid

* Al-assisted error correction and debugging training

® Development of Al-assisted assessment mechanisms
 Teaching strategies tailored to different course topics
 Incorporation of Al ethics issues

Fig. 4. Key dimensions of GAI tool-assisted learning.
IV. DiscussioN

A. Impact of Generative Al on Students’ Programming
Learning Performance

This section addresses RQ1 based on the synthesis
presented in Fig. 2 and Table 4. Generative Al-assisted
learning demonstrates complex and differentiated impacts on
students’ programming learning outcomes, encompassing
seven major learning indicators: programming knowledge
and skills, computational thinking, problem-solving ability,
self-efficacy, learning achievement, code quality, and
learning behaviors and engagement.

For fundamental programming knowledge and skills, the
results consistently indicate positive effects.
Kazemitabaar et al. [11] found that through code output
provided by generative Al, beginners achieved significant
improvements in both task completion rates and correctness.
This was accomplished without weakening their subsequent
ability to manually modify code, and instead promoted
mastery of basic programming development skills. The
immediate feedback mechanism of generative AI enables
students to locate and correct errors more quickly,
subsequently leading to better learning outcomes and
higher-quality programming assignments in post-course
assessments [3, 48]. Similarly, Sun et al.’s [3] reported
significantly lower code error rates in the Al-assisted group.
Collectively, GAI facilitates early syntax acquisition,
strengthens learner confidence, and reduces novice
frustration [9].

Higher-order outcomes diverge. In a quasi-experimental
CS1 study, Xue et al. [25] observed no significant differences
in final programming scores between ChatGPT and control
groups, consistent with Jayagopal et al. [48], who found
faster completion but no superior knowledge mastery. From a

International Journal of Information and Education Technology, Vol. 16, No. 1, 2026

cognitive-load perspective, Al can reduce extraneous
cognitive load. As evidenced by the decreased debugging
time observed in Table 6, this assistance may reduce extrinsic
cognitive load by offering quick solutions and scaffolding
support. However, for more complex or unfamiliar tasks,
such convenience may increase intrinsic cognitive load, as
students might lack sufficient foundational understanding to
evaluate or modify Al-generated responses. Furthermore, the
overly convenient access to answers may discourage active
problem-solving and critical thinking, thereby increasing
students’ dependency on Al tools. Ready-made answers can
also dampen active problem solving, fostering
over-dependence without proper guidance [31]. For complex
algorithmic work, Al output quality may degrade, risking
misleading learning paths [49].

Effects are moderated by prior ability, task features, and
context. Students with weaker foundations may accept Al
outputs without verification [50], whereas stronger students
use Al to refine strategies. Al is reliably helpful in structured,
lower-complexity exercises, but benefits weaken for tasks
requiring innovation, intricate logic, or algorithm design.
Tool/version differences, integration approaches, and
instructional settings further shape durability of gains.

GAI’s convenience can also influence learning autonomy
and academic integrity. Lyu et al. [31] found that while
short-term performance improved, long-term retention and
deep understanding of fundamental programming concepts
were limited when students bypassed reasoning and
verification. Furthermore, the performance and correctness of
Al-generated responses vary across programming task types
[6], which may introduce bias and compromise assessment
fairness. In terms of equity, disparities in access to Al tools
stemming from limited institutional support or restricted
availability can exacerbate learning inequalities. As
Jayagopal et al. [48] suggest, future research should examine
how such access gaps impact learning processes and
outcomes in low-resource contexts, while also addressing
potential integrity risks [51, 52].

Synthesizing the above empirical findings, GAI in
programming education presents a dual profile: consistent
benefits in foundational skill acquisition and short-term
learning efficiency, alongside potential risks to higher-order
thinking and long-term knowledge construction. Accordingly,
curricula should integrate Al tools strategically, leveraging
them to lower entry barriers, enhance motivation, and build
confidence, while incorporating verification routines, staged
scaffolding, and explicit reflection to sustain active reasoning
and deep learning. The differentiated performance of these
seven learning indicators provides an important empirical
foundation and strategic directions for the appropriate
application of Al tools in programming education.

B. Impact of Generative Al on Code
Completion Time

Quality and

This section addresses RQ2 by examining the mechanisms
and pedagogical implications of generative Al (GAI) on
students’ programming output quality and learning efficiency.
Drawing on the empirical findings in Table 5 and Table 6, the
analysis focuses on three dimensions: Code Structure &
Quality, Debugging & Error Handling, and Team-Level
Diversity & Collaborative Outcomes, as well as their broader

111

implications for programming education The distribution
among these themes are illustrated in Fig. 3.

Generative Al’s impact on code quality demonstrates
distinct hierarchical characteristics. At the level of code
structure and syntactic correctness, Al tools show significant
supportive effects, yet this improvement implies fundamental
transformations in learning patterns [3, 11, 35, 40, 42, 47].
Instant availability of suggestions and refactoring hints can
reduce opportunities for iterative trial-and-error, limiting the
development of intuitive understanding of error causes and
corrective logic. For less-prepared novices, this may result in
syntactically correct code without deep comprehension or
verification—an illusion of competence [33, 40, 42, 50]. In
contrast, students with stronger foundations tend to integrate
Al as a scaffold to refine strategies, indicating that benefits
are uneven and mediated by prior knowledge and
metacognitive skills.

Regarding debugging ability development, generative Al
presents dual impact effects. On one hand, immediate error
diagnosis and correction suggestions can accelerate
problem-solving processes and reduce learning frustration
[11]; on the other hand, over-reliance on Al diagnosis may
weaken students’ motivation and ability to establish
independent debugging strategies. The debugging process
holds unique educational value in programming learning, not
only in training logical reasoning abilities, but also in
cultivating systematic thinking and persistent solution
exploration when facing complex problems. When this
process is simplified or replaced by Al tools, students may
lose opportunities to develop these core abilities, potentially
affecting the depth development of their programming
expertise in the long term.

The impact on team collaboration is more complex and
carries important pedagogical implications. Generative Al
can indeed balance ability gaps among team members,
enabling learners of different levels to actively participate in
collaborative tasks [31]. However, this balancing effect may
obscure important educational values of collaborative
learning. Traditional programming team collaboration
emphasizes the promotion of learning through peer
discussion, knowledge sharing, and collaborative debugging,
whereas Al tool interventions may reduce these interaction
opportunities. When team members can quickly obtain Al
assistance, their interdependence and knowledge exchange
needs may be reduced, thereby affecting the depth and
effectiveness of collaborative learning.

Although a shortened task completion time presents
superficial positive benefits, it requires deep examination
from the perspective of balancing learning efficiency and
effectiveness [13, 34, 44]. Time efficiency improvements
may stem from two different mechanisms: first, genuine
enhancement of learning abilities, enabling students to
complete tasks more quickly and accurately; second,
dependence on Al tools, shortening completion time through
external assistance without necessarily enhancing internal
capabilities. Distinguishing between these is crucial in
evaluating the educational value of Al tools. Reverse cases
appearing in research, such as the phenomenon of Al-assisted
groups taking longer in API testing courses, provide
important opportunities for reflection [22]. This phenomenon
may reflect Al tool limitations in specific task types, or

International Journal of Information and Education Technology, Vol. 16, No. 1, 2026

increased cognitive load when students
suggestions with task requirements.

Behavioral pattern analysis reveals deeper transformations
in learning strategies. Students’ frequent cycling between Al
consultation and code modification demonstrates an
emerging “Al-dependent” problem-solving strategy [3].
While this strategy can effectively solve technical problems
in the short term, it may cultivate passive learning attitudes
and problem-solving habits [52, 53]. Students may gradually
lose confidence and the ability to face challenges
independently, becoming over-dependent on external tools.
This poses potential threats to the long-term goals of
programming education.

From an instructional design perspective, these findings
point to a critical balancing challenge: how to leverage Al
tools to enhance learning efficiency while ensuring that
students still develop the necessary core competencies.
Assessments should capture not only final outputs but also
reasoning processes and strategies. Curricula can adopt
staged Al support adjusting assistance by learning stage to
preserve autonomous skills while still benefiting from
Al-based guidance.

integrate Al

C. Changes in Student Learning Behaviors and Teacher
Instructional Strategies under Generative Al
Implementation

This section addresses RQ3, exploring how GAI adoption
reshapes student behaviors and instructional strategies.
Thematic analysis shows that GAI transforms both cognitive
processes and pedagogical approaches, as discussed in the
following two subsections.

1) Deep mechanisms and educational implications of
student learning behavior changes

The introduction of generative Al tools is fundamentally
restructuring students’ cognitive processing patterns and
learning strategy choices. From the perspective of cognitive
load management, generative Al tools create a phenomenon
of “cognitive outsourcing,” enabling learners to transfer
cognitive resources from basic technical operations to
higher-order thinking levels of conceptual understanding and
problem solving. This transfer mechanism explains the
fundamental reasons for the enhanced engagement and
strengthened self-directed learning behaviors. When the
extrinsic cognitive load is reduced through Al-assistance,
learners gain more cognitive space for intrinsic processing,
thereby demonstrating higher learning investment and
exploratory willingness [54]. However, this mechanism
simultaneously implies risks, as excessive cognitive
outsourcing may lead to “deskilling” of fundamental abilities,
with learners potentially losing the capacity to independently
construct solution pathways while enjoying efficient
problem-solving.

Self-regulated learning theory provides an important
perspective for understanding changes in learning strategies
[55]. In traditional programming learning, self-efficacy and
regulatory strategies develop through repeated practice and
error correction. Under Al assistance, however, learners
often transition from generating their own feedback to
relying on external, immediate feedback [30]. While this
change can boost debugging efficiency and task completion
speed, it risks weakening metacognitive capacities including

self-monitoring, strategy selection, and evaluation of
outcomes when learners grow accustomed to Al’s precise
diagnoses and solutions.

Problem-solving strategies show a parallel divergence.
Learners with strong foundations tend to adopt hybrid
problem-solving, blending AI suggestions with personal
judgment to enhance cognitive performance; those with
weaker foundations often use substitutive problem-solving,
accepting Al outputs without verification [14]. This
differentiation phenomenon reveals the Matthew effect in the
educational applications of Al tools, where existing learning
ability gaps may widen further owing to different tool usage
strategies.

Transformations in collaborative interaction patterns carry
profound social-cognitive implications. Al tools’
intervention as “third-party cognitive partners” changes
knowledge sharing and mutual assistance patterns in
traditional peer learning. When each learner can obtain
immediate expert-level assistance, interdependence in team
collaboration may weaken, and cognitive conflicts and
negotiation processes between learners may become diluted,
which are crucial for deep learning. This change may lead
collaborative learning to shift from “interdependent learning”
to “parallel learning,” affecting team problem-solving
abilities and collective intelligence construction.

The rapid development of adaptive learning behaviors
reflects digital natives’ high acceptance of emerging
technologies, while also exposing potential conflicts between
technological adaptation and learning depth. When learners
master Al tools quickly yet lack awareness of their
limitations, overconfidence may lead to uncritical acceptance
of outputs, undermining accuracy and conceptual
understanding.

The root of the overdependence phenomenon lies in
cognitive preference shifts between immediate and delayed
gratification. Programming learning traditionally requires
learners to tolerate errors and frustration, building resilience
and problem-solving patience through continuous trial and
error. Al tools’ provision of immediate answers satisfies
learners’ desire for quick success, but may weaken their
persistence and willingness for deep exploration when facing
complex challenges [4]. This behavioral pattern
transformation may affect learners’ cognitive resilience
development, resulting in lower adaptability when faced with
complex situations that Al tools cannot handle.

The educational implications of these behavioral changes
point to the need to reconstruct programming education
paradigms. Educators need to reconsider skill cultivation
priorities, shifting from mere programming technique
mastery to comprehensive development of critical thinking,
tool evaluation abilities, and human-AlI collaboration skills.
Curriculum design should incorporate explicit “Al literacy”
cultivation objectives, helping learners establish accurate
recognition of tool capabilities and limitations, and
developing abilities to flexibly switch between Al assistance
and independent thinking. Simultaneously, assessment
mechanisms need to shift from outcome-oriented to
process-oriented approaches, emphasizing learners’ thinking
processes, strategy selection, and reflective abilities, ensuring
effective assessment and promotion of deep learning in the
era of widespread Al tool adoption.

112

International Journal of Information and Education Technology, Vol. 16, No. 1, 2026

2) Theoretical foundations and professional development
implications of teacher pedagogical strategy changes

Based on the teacher-strategy adjustment patterns
identified in this study, generative Al tools drive teachers
from passive adaptation to proactive innovation in their
professional development trajectories. This transformation
reflects a profound shift in educational paradigms, from
traditional knowledge transmission models to collaborative
learning facilitation models, with transformation mechanisms
and professional restructuring requiring in-depth analysis.

Generative Al is redefining teachers’ roles from
knowledge transmitters to Al learning facilitators. The
adoption of ChatGPT as a virtual teaching assistant reflects
not only technology integration but also a deeper need to
reposition professional value. As Er et al. [5] note, adapting
feedback to complement Al marks a shift from monopolizing
knowledge to coordinating the learning ecosystem.

Curriculum design is shifting from content-oriented to
competency-oriented education. Chang and Chien [30]
showed that Al-driven platforms can deliver personalized
materials, requiring teachers to develop advanced curriculum
architecture skills and adjust strategies across programming
domains from introductory topics to advanced debugging and
component-oriented learning.

Assessment is shifting from measurement to learning
support, driven by the widespread adoption of Al tools.
Practices such as Al-generated prompts, process-oriented
evaluation, and authentic, complex tasks replace rote recall.
This shift demands that teachers develop cross-disciplinary
skills in technology and educational assessment to design
diverse evidence-gathering systems and deliver real-time
feedback.

Empirical findings on ethical education integration reflect
the expansion of teachers’ professional responsibilities. As
students gain easy access to Al-generated programming
solutions, academic integrity and responsible technology use
become essential teaching responsibilities. This requires
teachers to pair technical expertise with ethical judgment and
value-education skills, ensuring a balance between
technological convenience and academic rigor.

The empirical manifestations of professional development
challenges reveal the diverse characteristics of teacher
learning needs. Teachers face urgent needs for Al literacy
enhancement and understanding Al tool operational logic and
applicable contexts to avoid losing agency in teaching
settings. This technical literacy requirement aligns with
Gtiner’s [56] research findings, emphasizing that helping
students understand how to effectively use Al tools is more
important than whether they can use them; similarly, teachers
also need to develop critical application abilities for Al tools.
Research indicating teachers’ necessity to carefully evaluate
Al tool applicability in higher-order thinking or innovative
application topics actually reflects the increased importance
of professional judgment abilities in the Al era.

The empirical patterns of adaptive teaching strategy
development demonstrate the importance of teachers’
professional resilience. Research finds teachers designing
differentiated strategies based on curriculum objectives,
students’ foundational abilities, and task complexity,
combining diverse assessment mechanisms and learning
activities to achieve a dynamic balance between Al
convenience and deep learning cultivation. The development

of this adaptive capability requires teachers to possess
stronger contextual sensitivity and strategic flexibility, in
order to maintain teaching effectiveness and professional
stability in rapidly changing technological environments.

Synthesizing this study’s empirical findings, changes in
teachers’ pedagogical strategies point to fundamental
innovation needs in professional development models. Future
teacher education should emphasize comprehensive
cultivation of technology integration abilities, ethical
judgment literacy, and adaptive instructional design
capabilities, helping teachers maintain irreplaceable
professional value in the era of widespread Al tools, and
achieving organic integration of technological enhancement
and humanistic care.

V. CONCLUSION

Through a systematic literature review of 45 empirical
studies, this paper provides an in-depth exploration of the
application effects and impact mechanisms of generative Al
tools in programming education. The findings reveal that
GAl-assisted instruction presents complex and differentiated
impact patterns in programming learning, with effects
influenced by multiple factors, including learners’
foundational abilities, task characteristics, and
implementation contexts. Given the diverse findings and
complex impact mechanisms presented in existing research,
it is necessary to establish an integrated theoretical
framework to systematically understand these interactive
relationships. Based on this important research requirement,
this study constructed an integrated conceptual model for
GAl-assisted programming education, as shown in Fig. 5.

Learning
Performance Metrics

Core influencing

factors Learning outcome

Learner

Programming v
foundational ability l

knowledge / skills
Computational thinking
[Logical reasoning

- &

Low proficiency Learning effectiveness

- B

Code quality

High proficiency

Programming
self-efficacy / confidence

Characteristics
of GAl tools

Learning achievement

=
2
[}
2 ES
o —
5 =
2 3
= 3
Q. <
2 a
S £
=
B =
a =3
o o
g s
0,
m
2

Code qualit)
Task e
complexity Changesin

learning behavior

Learning behaviors
/Engagement

Fig. 5. Integrated conceptual model for GAl-assisted programming
education.

This model presents a multidimensional integration
framework for generative Al tools in programming education,
systematically integrating four core
dimensions—implementation context factors, core influencing
factors, learning performance indicators, and learning
outcome dimensions. As such, it provides a comprehensive
analytical framework for understanding the complex impact
mechanisms of GAI in programming education. The
implementation context factors dimension, located at the
model’s periphery, encompasses educational environmental
factors including teacher instructional strategies, curriculum
design elements, assessment mechanism adjustments, and Al
literacy cultivation. The core influencing factors dimension
focuses on three key impact factors: learners’ foundational
abilities, GAI tool characteristics, and task complexity. The

113

International Journal of Information and Education Technology, Vol. 16, No. 1, 2026

learning performance indicators dimension establishes seven
assessment aspects synthesized in this study, including
programming knowledge and skills, computational thinking
and logical reasoning, problem-solving ability, programming
self-efficacy, learning achievement, code quality, and
learning behaviors and engagement. The learning outcome
dimension integrates three output performances: learning
effectiveness, code quality, and learning behavior changes.

Regarding learning behavior changes, this study identifies
seven major transformation aspects. Enhanced engagement is
reflected in student perceptions of the utility and operational
convenience of Al tools, along with higher usage intentions
and learning investment. Problem-solving strategies show
differentiation phenomena, with some students flexibly
combining Al feedback with personal thinking to leverage
human-AI collaboration advantages, whereas students with
weaker foundational abilities may lack verification and
thinking processes. Strengthened self-directed learning
behaviors are manifested in structured prompts stimulating
students to actively engage in learning tasks, with students
who frequently interact with Al demonstrating higher
efficiency in test performance. Improvements in error
handling and debugging abilities stem from the immediate
feedback provided by Al tools, effectively improving
students’ performance in syntax errors and debugging tasks.
Adaptive learning behaviors show that students can quickly
familiarize themselves with and apply Al tools to
programming tasks. Changes in collaborative interaction
patterns reflect Al tools’ intervention as third-party cognitive
partners, altering knowledge-sharing patterns in traditional
peer learning. However, over-dependence risks require equal
attention, with research indicating that students who
over-rely on Al show significant decreases in both the
quantity and quality of test cases written.

Adjustments in teachers’ instructional strategies present
transformation patterns from passive adaptation to proactive
innovation. Research shows teachers beginning to adopt
diversified teaching modes, introducing blended learning and
flipped classrooms, and actively developing prompt-based
assessment tools and personalized learning paths. The
intervention of generative Al prompts teachers to redefine
classroom roles, transforming from traditional knowledge
transmitters to guides and facilitators who assist students in
collaborative learning with Al tools. Al tool integration has
become an important element in curriculum design, ranging
from flipped teaching strategies to the integrated application
of learning support tools. Innovations in assessment
mechanisms include the use of Al-generated prompts to help
students clarify compilation errors, and the development of
Al-assisted programming assessment mechanisms. These
findings provide concrete guidance for programming
education practice. When implementing GAl-assisted
instruction, educators should use the seven learning
indicators synthesized in this study as foundations for
assessing knowledge mastery and learning behavior
transformation. Curriculum design and assessment methods
should combine diverse teaching strategies such as flipped
classrooms, project-based learning, and peer assessment,
balancing the convenience provided by Al technology with
the development of students’ autonomous learning and
thinking. The conceptual model presented in Fig. 5 provides

114

teachers with a systematic reference framework, assisting
them in making differentiated instructional strategy
adjustments based on students’ foundational abilities,
achieving balanced development among learning
convenience, problem-solving abilities, and long-term
knowledge internalization.

Through multidimensional systematic integration of
generative Al’s application effects and challenges in
programming learning, this study proposes seven learning
indicators, three code quality indicators, and seven learning
behaviors as assessment foundations for curriculum design
and teaching practice. Teachers can select appropriate
indicator dimensions for instructional design based on
curriculum objectives and student characteristics. Fig. 5
further illustrates how teachers can make differentiated
instructional strategy adjustments based on students’
foundational ability differences, using the seven learning
indicators as a foundation to assist in achieving balanced
development among learning convenience, problem-solving
abilities, and long-term knowledge internalization.

In a semester-long programming course, teacher
instructional strategies in the initial phase focus on building a
shared foundation of programming syntax, logical reasoning,
and basic problem-solving skills without the use of Al tools.
This approach ensures that students, regardless of their initial
proficiency level, acquire the necessary competencies before
Al integration. Once these foundational abilities are
established, AI tools are progressively introduced,
accompanied by explicit prompt-design guidance to help
students explore the characteristics and affordances of
generative Al in controlled contexts. Task complexity is
gradually increased, prompting learners to apply
computational thinking, logical reasoning, and
problem-solving strategies while critically evaluating
Al-generated outputs. The assessment mechanism
incorporates self-regulation prompts, peer review, and
iterative feedback cycles, encouraging students to reflect on
Al responses, compare alternative solutions, and articulate
the underlying logic of each code segment. Such an approach
fosters a balanced development across learning performance
metrics—such as programming self-efficacy, engagement,
and code quality—and supports long-term learning outcomes,
including enhanced Al literacy and sustainable learning
behaviors.

Despite the systematic organization and analysis of
relevant literature, this study has several limitations. The
study focuses on rapidly developing short-term applications
in recent years, with long-term learning knowledge
applications and sustained effectiveness requiring further
investigation in subsequent research. The applicability of
generative Al tools and learning behavior differences across
different languages and diverse task contexts also warrant
deeper empirical comparison. Research samples are
concentrated in Western higher education systems, limiting
the cultural representativeness of findings. Although a few
studies have emerged from Asian or African contexts,
comparative empirical evidence remains scarce. More
systematic cross-cultural research is needed to uncover
culturally specific adoption patterns, pedagogical preferences,
and behavioral responses to GAI tools. Additionally, 42 out
of the 45 reviewed studies focused specifically on ChatGPT,

International Journal of Information and Education Technology, Vol. 16, No. 1, 2026

highlighting a tool-specific bias in current research. This
dominance may limit the generalizability of findings to other
generative Al tools with distinct interfaces, functionalities, or
integration mechanisms, and also contributes to the overall
heterogeneity in assessment approaches and observational
dimensions, further complicating meaningful cross-study
comparisons.

Although additional searches were conducted in Scopus
and ERIC, no further eligible studies were identified after
duplicate removal and relevance screening. The final corpus
therefore relied primarily on Semantic Scholar, which
provided broader coverage of emergent GAI keywords and
ensured replicability through its open-access infrastructure.
In total, this review synthesized 45 empirical studies.
However, a full quantitative meta-analysis was not feasible.
Despite all studies adopting experimental or
quasi-experimental designs with treatment and control
groups, 19 did not report sufficient statistical details (e.g.,
means, standard deviations, or test values) required for effect
size estimation, and some reported only average differences,
percentages, or project scores. Consequently, this study
adopted a systematic literature review to capture broader

learning patterns, identifying seven major learning indicators,

three dimensions of code quality, and seven categories of
learning behavior change, instead of producing aggregated
quantitative effect sizes through a meta-analysis.

Future research should broaden database coverage and
assess the potential impact of including additional sources on
the comprehensiveness of the evidence base, while also
developing conceptual models centered on students’
foundational abilities by analyzing the interactive effects of
Al tool use and student learning outcomes. Establishing
standardized measurement tools and assessment systems for
GAl-assisted learning effects would provide a reliable
foundation for cross-study comparisons. While current
studies predominantly report on short-term learning
improvements, there is limited understanding of whether
these benefits persist over time or translate into long-term
programming proficiency. Future longitudinal research is
necessary to assess retention effects, transferability to
advanced tasks, and whether Al-assisted learning fosters
durable cognitive change. Cross-cultural and
cross-educational system comparative research would help
understand the universal principles and context-specific
factors in GAI educational applications.

Overall, generative Al tools provide multifaceted support
and a transformative potential for programming learning in
higher education. Educators can understand and apply the
GAI technology more systematically through the integrated
conceptual model developed in this study. Cultivating
students’ critical thinking, autonomous learning, and
long-term knowledge internalization, while promoting
learning convenience, remains a core issue that requires joint
attention from educational practice and research. Through
continued research and educational applications, generative
Al tools can exert a profound influence on learning
effectiveness and innovation stimulation.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

115

AUTHOR CONTRIBUTIONS

Conceptualization, T.-C. Huang and H.-P. Tseng;
methodology, T.-C. Huang and H.-P. Tseng; software, H.-P.
Tseng; formal analysis, T.-C. Huang and H.-P. Tseng;
investigation, H.-P. Tseng; resources, T.-C. Huang; data
curation, H.-P. Tseng; writing—original draft preparation,
T.-C. Huang; writing—review and editing, T.-C. Huang and
H.-P. Tseng; visualization, H.-P. Tseng; supervision, T.-C.
Huang; project administration, T.-C. Huang and H.-P. Tseng;
funding acquisition, T.-C. Huang. All authors had approved
the final version.

FUNDING

This research was funded by Ministry of Science and

Technology, Taiwan, grant number [NSTC
112-2410-H-025-027-MY3].
REFERENCES

[11 K. Nikolopoulou, “Generative artificial intelligence and sustainable
higher education: Mapping the potential,” Journal of Digital
Educational Technology, vol. 5, no. 1, ep2506, 2025.

P. Wang, Y. Jing, and S. Shen, “A systematic literature review on the
application of Generative Artificial Intelligence (GAI) in teaching
within higher education: Instructional contexts, process, and
strategies,” The Internet and Higher Education, 100996, 2025.

D. Sun, A. Boudouaia, C. Zhu, and Y. Li, “Would ChatGPT-facilitated
programming mode impact college students’ programming behaviors,
performances, and perceptions? An empirical study,” International
Journal of Educational Technology in Higher Education, vol. 21, no. 1,
p. 14,2024.

M. Lehmann, P. B. Cornelius, and F. J. Sting, A Meets the Classroom:
When do Large Language Models Harm Learning? arXiv preprint
arXiv:2409.09047, 2025.

E. Er, G. Akgapnar, A. Bayazit, O. Noroozi, and S. K. Banihashem,
“Assessing student perceptions and use of instructor versus
Al-generated feedback,” British Journal of Educational Technology,
vol. 56, no. 3, pp. 1074-1091, 2025.

S. Mezzaro, A. Gambi, and G. Fraser, “An empirical study on how
large language models impact software testing learning,” in Proc. the
28th International Conference on Evaluation and Assessment in
Software Engineering, 2024, pp. 555-564.

X. Hou, Z. Wu, X. Wang, and B. J. Ericson, “Codetailor: LIm-powered
personalized parsons puzzles for engaging support while learning
programming,” in Proc. the Eleventh ACM Conference on Learning(@
Scale, 2024, pp. 51-62.

T. Kosar, D. Ostoji¢, Y. D. Liu, and M. Mernik, “Computer science
education in chatgpt era: Experiences from an experiment in a
programming course for novice programmers,” Mathematics, vol. 12,
no. 5, p. 629, 2024.

R. Yilmaz and F. G. K. Yilmaz, “The effect of generative Artificial
Intelligence (Al)-based tool use on students’ computational thinking
skills, programming self-efficacy and motivation,” Computers and
Education: Artificial Intelligence, vol. 4, 100147, 2023.

S. Shanshan and G. Sen, “Empowering learners with Al-generated
content for programming learning and computational thinking: The
lens of extended effective use theory,” Journal of Computer Assisted
Learning, vol. 40, no. 4, pp. 1941-1958, 2024.

M. Kazemitabaar, X. Hou, A. Henley, B. J. Ericson, D. Weintrop, and
T. Grossman, “How novices use LLM-based code generators to solve
CS1 coding tasks in a self-paced learning environment,” in Proc. the
23rd Koli calling international conference on computing education
research, 2023, pp. 1-12.

Q. Ma, H. Shen, K. Koedinger, and S. T. Wu, “How to teach
programming in the ai era? using llms as a teachable agent for
debugging,” in Proc. International Conference on Artificial
Intelligence in Education, 2024: Springer, pp. 265-279.

M. Pankiewicz and R. S. Baker, Large Language Models (GPT) for
Automating Feedback on Programming Assignments, arXiv preprint
arXiv:2307.00150, 2023.

M. Kazemitabaar, J. Chow, C. K. T. Ma, B. J. Ericson, D. Weintrop,
and T. Grossman, “Studying the effect of Al code generators on
supporting novice learners in introductory programming,” in Proc. the

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

(11]

[12]

[13]

[14]

[15]

[16

=

[17]

[18]

[19

[}

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32

—

[33]

[34]

International Journal of Information and Education Technology, Vol. 16, No. 1, 2026

2023 CHI Conference on Human Factors in Computing Systems, 2023,
pp. 1-23.

D. M. Johnson, W. Doss, and C. M. Estepp, “Using ChatGPT with
novice Arduino programmers: Effects on performance, interest,
self-efficacy, and programming ability,” Journal of Research in
Technical Careers, vol. 8, no. 1, p. 1, 2024.

A. Brockenbrough and D. Salinas, “Using generative Al to create user
stories in the software engineering classroom,” in Proc. 2024 36th
International Conference on Software Engineering Education and
Training (CSEE&T), 2024, IEEE, pp. 1-5.

G. Akgapinar and E. Sidan, “Al chatbots in programming education:
guiding success or encouraging plagiarism,” Discover Artificial
Intelligence, vol. 4, no. 1, p. 87, 2024.

A. Garg and R. Rajendran, “Analyzing the role of generative Al in
fostering self-directed learning through structured prompt
engineering,” in Proc. International Conference on Intelligent
Tutoring Systems, Springer, 2024, pp. 232-243.

J. Al Hajj and M. Sah, “Assessing the impact of ChatGPT in a PHP
programming course,” in Proc. 2023 7th International Symposium on
Innovative Approaches in Smart Technologies (ISAS), IEEE, 2023, pp.
1-10.

N. Torres, “A reverse code completion approach for enhancing novice
programming skills,” in Proc. 2024 43rd International Conference of
the Chilean Computer Science Society (SCCC), IEEE, 2024, pp. 1-8.
O. L. D. Santos and D. Cury, “Challenging the confirmation bias:
Using ChatGPT as a virtual peer for peer instruction in computer
programming education,” in Proc. 2023 IEEE Frontiers in Education
Conference (FIE), IEEE, 2023, pp. 1-7.

Y. D. Setiawan, L. G. O. P. Yudha, Y. A. Mulyono, V. M. A.
Simalango, and O. Karnalim, “ChatGPT impact analysis on API
testing: A controlled experiment,” Journal of Applied Informatics and
Computing, vol. 8, no. 2, pp. 350-357, 2024.

J. B. Jalon Jr, G. A. Chua, and M. de Luna Torres, “ChatGPT as a
Learning Assistant: Its Impact on Students Learning and Experiences,”
International Journal of Education in Mathematics, Science and
Technology, vol. 12, no. 6, pp. 1603-1619, 2024.

B. Qureshi, “ChatGPT in computer science curriculum assessment: An
analysis of its successes and shortcomings,” in Proc. the 2023 9th
International Conference on e-Society, e-Learning and e-Technologies,
2023, pp. 7-13.

Y. Xue, H. Chen, G. R. Bai, R. Tairas, and Y. Huang, “Does chatgpt
help with introductory programming? An experiment of students using
chatgptin csl,” in Proc. the 46th International Conference on Software
Engineering: Software Engineering Education and Training, 2024, pp.
331-341.

A.-M. M. Gasaymeh and R. M. AlMohtadi, “The effect of Flipped
Interactive Learning (FIL) based on ChatGPT on students’ skills in a
large programming class,” International Journal of Information and
Education Technology, vol. 14, no. 11, 2024.

T.-C. Yang, Y.-C. Hsu, and J.-Y. Wu, “The effectiveness of ChatGPT
in assisting high school students in programming learning: Evidence
from a quasi-experimental research,” Interactive Learning
Environments, pp. 1-18, 2025.

G. Jost, V. Taneski, and S. Karakati¢, “The impact of large language
models on programming education and student learning outcomes,”
Applied Sciences, vol. 14, no. 10, 4115, 2024.

R. Mellado, C. Cubillos, and G. Ahumada, “Effectiveness of
generative artificial intelligence in learning programming to higher
education students,” in Proc. 2024 IEEE International Conference on
Automation/XXVI Congress of the Chilean Association of Automatic
Control (ICA-ACCA), 1IEEE, 2024, pp. 1-7.

C.-K. Chang, “Enhancing academic performance with generative
Al-based quiz platform,” in Proc. 2024 IEEE International Conference
on Advanced Learning Technologies (ICALT), 1EEE, 2024, pp.
193-195.

W. Lyu, Y. Wang, T. Chung, Y. Sun, and Y. Zhang, “Evaluating the
effectiveness of llms in introductory computer science education: A
semester-long field study,” in Proc. the Eleventh ACM Conference on
Learning@ Scale, 2024, pp. 63-74.

M. Firat and S. Kuleli, “GPT vs. Google: A comparative study of
self-code learning in ODL students,” Journal of Educational
Technology and Online Learning, vol. 7, no. 3, pp. 308-320, 2024.

M. Pankiewicz and R. S. Baker, “Navigating compiler errors with Al
assistance—A study of GPT hints in an introductory programming
course,” in Proc. the 2024 on Innovation and Technology in Computer
Science Education V. 1,2024, pp. 94-100.

N. Balaz, J. Porubén, M. Horvath, and T. Kormanik, “Using ChatGPT
during implementation of programs in education,” in Proc. Sth
International Computer Programming Education Conference (ICPEC
2024), Schloss Dagstuhl-Leibniz-Zentrum fiir Informatik, 2024, pp. 18:

116

[35]

[36]

(371

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]
[55]

[56]

1-18: 9.

S. Abdulla, S. Ismail, Y. Fawzy, and A. Elhag, “Using ChatGPT in
teaching computer programming and studying its impact on students
performance,” Electronic Journal of e-Learning, vol. 22, no. 6, pp.
66-81, 2024.

S. McGill and R. McGill, “WIP: Generative Al as an enhanced study
aid in engineering courses,” presented at ASEE Mid-Atlantic Section
Spring Conference, 2024.

M. L. Maher, S. Y. Tadimalla, and D. Dhamani, “An exploratory study
on the impact of ai tools on the student experience in programming
courses: an intersectional analysis approach,” in Proc. 2023 IEEE
Frontiers in Education Conference (FIE), IEEE, 2023, pp. 1-5.

G. Huesca et al., “Effectiveness of using ChatGPT as a tool to
strengthen benefits of the flipped learning strategy,” Education
Sciences, vol. 14, no. 6, p. 660, 2024.

K. Kwangil, “A study on the effectiveness of generative Al utilization
in programming education-focusing on ChatGPT and scratch
programming,” Convergence Security Journal, vol. 24, no. 3, pp.
33-39, 2024.

A. Mehta, N. Gupta, A. Balachandran, D. Kumar, and P. Jalote, Can
Chatgpt Play the Role of a Teaching Assistant in an Introductory
Programming Course? arXiv preprint arXiv:2312.07343, 2023.

F. Ouyang, M. Guo, N. Zhang, X. Bai, and P. Jiao, “Comparing the
effects of instructor manual feedback and ChatGPT intelligent
feedback on collaborative programming in China’s higher education,”
IEEE Transactions on Learning Technologies, 2024.

P. Haindl and G. Weinberger, “Does ChatGPT help novice
programmers write better code? Results from static code analysis,”
IEEE Access, 2024.

M. H. Y. Binhammad, A. Othman, L. Abuljadayel, H. Al Mheiri, M.
Alkaabi, and M. Almarri, “Investigating how generative Al can create
personalized learning materials tailored to individual student needs,”
Creative Education, vol. 15, no. 7, pp. 1499-1523, 2024.

C. Lee, J. Myung, J. Han, J. Jin, and A. Oh, Learning from Teaching
Assistants to Program with Subgoals: Exploring the Potential for Al
Teaching Assistants, arXiv preprint arXiv:2309.10419, 2023.

Y. Chen, S. Xiao, Y. Song, Z. Li, L. Sun, and L. Chen, “MindScratch:
A visual programming support tool for classroom learning based on
multimodal generative Al” International Journal of
Human—Computer Interaction, pp. 1-19, 2025.

N. Gardella, R. Pettit, and S. L. Riggs, “Performance, Workload,
emotion, and self-efficacy of novice programmers using Al code
generation,” in Proc. the 2024 on Innovation and Technology in
Computer Science Education, vol. 1, 2024, pp. 290-296.

J. Liu, X. Tang, L. Li, P. Chen, and Y. Liu, “Which is a better
programming assistant? A comparative study between chatgpt and
stack overflow,” arXiv preprint arXiv:2308.13851, 2023.

S. Li, J. Liu, and Q. Dong, “Generative artificial intelligence-supported
programming education: Effects on learning performance,
self-efficacy and processes,” Australasian Journal of Educational
Technology, 2025.

G. Puthumanaillam and M. Ornik, The Lazy Student’s Dream:
ChatGPT Passing an Engineering Course on Its Own, arXiv preprint
arXiv:2503.05760, 2025.

J. Prather et al,, “The widening gap: The benefits and harms of
generative ai for novice programmers,” in Proc. the 2024 ACM
Conference on International Computing Education Research, vol. 1,
2024, pp. 469-486.

S. Berrezueta-Guzman, S. Krusche, and S. Wagner, From Coders to
Critics: Empowering Students through Peer Assessment in the Age of
Al Copilots, arXiv preprint arXiv:2505.22093, 2025.

P. Denny et al., “Computing education in the era of generative AL”
Communications of the ACM, vol. 67, no. 2, pp. 56-67, 2024.

A. Scholl and N. Kiesler, How Novice Programmers Use and
Experience ChatGPT When Solving Programming Exercises in an
Introductory Course, arXiv preprint arXiv:2407.20792, 2024.

M. Giannakos et al., “The promise and challenges of generative Al in
education,” Behaviour & Information Technology, pp. 1-27, 2024.

B. J. Zimmerman, “Becoming a self-regulated learner: An overview,”
Theory into Practice, vol. 41, no. 2, pp. 64-70, 2002.

H. Giiner and E. Er, “Al in the classroom: Exploring students’
interaction with ChatGPT in programming learning,” Education and
Information Technologies, pp. 1-27, 2025.

Copyright © 2026 by the authors. This is an open access article distributed
under the Creative Commons Attribution License which permits unrestricted
use, distribution, and reproduction in any medium, provided the original
work is properly cited (CC BY 4.0).

https://creativecommons.org/licenses/by/4.0/

	IJIET-V16N1-2487-IJIET-18202

