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Abstract—Artificial Intelligence is reshaping teacher training 

by enhancing pedagogical practices through automation, 

personalized support, and intelligent content generation. As AI 

technologies integration is advancing globally, its adoption into 

in Moroccan teacher training remains constrained due to 

institutional resistance, insufficient training and lack of 

awareness. These challenges hinder future teachers’ 

engagement with GenAI technologies. This study examines the 

motivational dimensions influencing GenAI adoption among 

Moroccan future teachers, specifically ChatGPT, DeepSeek, 

and Grok, as intelligent supports for pedagogical task 

preparation during their initial training, using Keller’s 

Attention, Relevance, Confidence, and Satisfaction (ARCS) 

model and the Academic Motivation Scale (AMS). A 

quasi-experimental, quantitative approach was employed. Data 

were collected through a structured questionnaire based on the 

Attention, Relevance, Confidence, and 

Satisfaction-Instructional Materials Motivation Survey 

(ARCS-IMMS) and AMS components, administered to 146 

future teachers enrolled in three distinct training specializations 

within ENS teacher training institution. Purposive and 

convenience sampling ensured disciplinary representation. 

Statistical analysis revealed that gender did not significantly 

affect motivation levels, as evidenced by an independent 

samples t-test (p = 0.403), with males reporting a mean score of 

3.35 and females 3.41. The effect size, Cohen’s d = −0.156, 

indicated a small and practically negligible difference. Whereas, 

training specialization significantly influenced motivation 

(Fisher’s exact test, p = 0.046), with future teachers in literary 

disciplines reporting higher motivation (M = 3.49, SD = 0.385), 

likely due to the alignment between GenAI’s capabilities and 

language-related pedagogical tasks. Multiple regression 

analysis confirmed that components of both ARCS and AMS 

significantly predicted motivation levels (p < 0.001 for all 

variables). The model demonstrated high explanatory power, 

with a multiple correlation coefficient R = 0.987, indicating a 

very strong positive relationship between the motivational 

components and the overall motivation score. These findings 

highlighting the value of designing motivationally rich, 

cognitively engaging, and professionally relevant teacher 

training programs to support the effective pedagogical 

integration of GenAI tools. This study contributes to the 

growing body of literature on AI in education by addressing a 

gap in Moroccan teacher training. Further investigations are 

required to systematically evaluate its long-term impact across 

diverse educational settings. 
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I. INTRODUCTION 

Generative Artificial Intelligence (GenAI) has evolved 

into a transformative force in education, particularly in the 

initial training of future teachers, reshaping pedagogical 

preparation and training dynamics by fostering divergent 

thinking, mitigates expertise bias, supports idea evaluation 

and refinement, and enhances collaboration among  

trainees [1]. Among these tools, ChatGPT demonstrates 

significant transformative potential by streamlining access to 

information, supporting diverse content generation and 

promoting pedagogical innovation, thereby empowering both 

learners and educators [2]. It further enhances personalized 

learning, fosters critical thinking through interactive and 

self-directed learning, and aids future teachers in lesson 

planning, curriculum design, and assessment  

development [3]. 

Beyond ChatGPT, newer models such as DeepSeek and 

Grok further exemplify GenAI’s growing capabilities. 

DeepSeek, known for its advanced linguistic processing and 

data modeling functions, supports academic writing and 

data-driven decision-making [4–6]. Grok, developed by xAI, 

integrates multimodal reasoning and real-time data analysis, 

setting itself apart through its responsiveness, sentiment 

analysis, and educational utility, although it remains under 

empirical evaluation [7, 8]. 

GenAI’s integration into educational settings is reshaping 

traditional teaching, training, and learning practices. Its 

flexibility promotes individual engagement, improves 

instructional effectiveness, and enhances self-directed 

learning through intelligent tutoring systems [1, 9, 10]. 

However, the increasing presence of GenAI in education 

underscores the need for responsible implementation guided 

by legal, ethical, and regulatory standards to ensure equity, 

inclusivity, and sustainable improvements in academic 

outcomes [11].  

The successful implementation of GenAI in the initial 

training of future teachers depends significantly on their 

motivation and engagement to adopt and utilize such 

technologies in pedagogical context. Collie and Martin 

highlight the influence of contextual factors, occupational 

variables, and personal background on how GenAI is  

valued [12]. Similarly, Alvarez et al. identify subjective 

norms, self-efficacy, enjoyment, and perceived usefulness as 

key predictors of GenAI acceptance among future  

teachers [13]. Motivation remains central to engagement, 

persistence, and cognitive development, as emphasized by 
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Mohamed et al. [14]. Additionally, Monib et al. and 

UNESCO underscore the importance of cultural and 

linguistic inclusivity in GenAI content to ensure equity and 

learner connection [15]. UNESCO further stresses that 

intrinsic motivation, supported by ethically responsible 

integration and robust teacher training, is essential for the 

effective and equitable implementation of GenAI in 

educational settings [16]. 

While international research on GenAI’s potential and its 

motivational implications is increasingly well established 

and expanding. Studies focusing on its integration within the 

Moroccan educational context remain scarce. This gap is 

partly due to the relatively recent introduction of GenAI tools 

in Morocco’s educational system, where limited access to AI 

technologies and institutional resources constrains both 

implementation and scholarly inquiry. Moreover, current 

teacher-training curricula have yet to incorporate AI-related 

content, resulting in limited exposure and awareness among 

future educators. To date, no studies in Morocco have 

specifically examined the motivational factors influencing 

prospective teachers’ adoption of GenAI tools during initial 

training.  

The research problem addressed in this study is the lack of 

empirical understanding of the motivational factors—guided 

by Keller’s ARCS model and the Academic Motivation Scale 

(AMS)—that influence future Moroccan teachers’ adoption 

of GenAI tools such as ChatGPT, DeepSeek, and Grok as 

intelligent support tools for pedagogical tasks during their 

initial training. 

Self-Determination Theory (SDT) provides a 

comprehensive framework for understanding motivation to 

adopt GenAI in future teacher training, conceptualizing 

motivation along a continuum from intrinsic and extrinsic 

forms to amotivation [17, 18].  

Complementing this, Keller’s ARCS model emphasizes 

four components, Attention, Relevance, Confidence, and 

Satisfaction, as key to enhancing learner motivation, which 

can encourage future teachers to adopt innovative 

technologies such as GenAI into their pedagogical practices 

[19]. The ARCS model has been extensively employed to 

examine the motivational dimensions associated with the 

adoption of innovative technologies in educational contexts. 

Its adaptability and relevance have been demonstrated across 

a wide range of technology-enhanced environments, 

including online and blended learning, gamification, mobile 

and ubiquitous learning, augmented and virtual reality, and 

STEM education [19–23]. 

Building on this foundation, recent studies have applied 

the ARCS framework to explore motivation in the context of 

AI integration. One such study investigated teachers’ 

motivation to utilize AI-based tools, specifically ChatGPT-4, 

for self-directed professional development in lesson planning. 

Conducted with a cohort of physics teachers in the 

Fez-Meknes region of Morocco, the study implemented a 

training program involving both traditional and AI-assisted 

instructional methods. Motivation was assessed using the 

Instructional Materials Motivation Survey based on the 

ARCS model indicating a generally positive disposition 

toward the use of ChatGPT. The four motivational 

components were strongly correlated, suggesting that 

increased attention, perceived relevance, confidence, and 

satisfaction significantly contribute to teachers’ motivation to 

adopt AI tools for developing pedagogical competencies and 

enhancing teaching effectiveness [24]. In a parallel line of 

inquiry, another ARCS-based study examined the 

motivational strategies influencing learners’ engagement 

with AI and found that fostering intrinsic motivation, 

sustaining attention, emphasizing the relevance of AI, and 

building learner confidence collectively enhanced their 

career-oriented motivation to engage with AI tools [25]. 

Additionally, the AMS further refines this understanding 

by distinguishing between subtypes of intrinsic motivation 

(to know, toward accomplishment, to experience stimulation), 

extrinsic motivation (identified, introjected, external 

regulation), and amotivation, offering nuanced insights into 

future teachers’ motivational orientations [26]. The AMS has 

been widely applied in educational research and has 

demonstrated strong validity and reliability across various 

contexts, including initial teacher education [27, 28]. 

In recent studies related to AI tools integration, researchers 

have either adopted the AMS model or developed new tools 

rooted in its theoretical foundation. For example, Jiajing Li et 

al. developed and validated the AI Motivation Scale (AIMS) 

to measure university students’ motivation to learn with AI, 

based on SDT and the AMS framework. Their findings 

revealed that supportive learning environments foster 

increased engagement with AI tools through enhanced 

motivation, emphasizing the central role of motivation in 

AI-based learning [29]. These studies explicitly connect their 

analyses to SDT—on which the AMS is built—and 

demonstrate how its motivational subtypes can be extended 

to investigate the use of GenAI in education [30]. This 

methodological alignment reinforces the relevance of ARCS 

and AMS frameworks in exploring future teachers’ 

motivational orientations toward AI tools and contributes to 

establishing a valid analytical framework for the present 

study. 

II. LITERATURE REVIEW 

A. Artificial Intelligence Technologies 

1) Generative AI 

GenAI refers to a class of AI models designed to create 

new content across various modalities, including text, images, 

sound, video, and code. These models leverage advanced 

machine learning architectures, primarily Large Language 

Models (LLMs), Generative Adversarial Networks (GANs), 

and Variational Autoencoders (VAEs). LLMs, such as 

GPT-3 (Generative Pretrained Transformer), GPT-4, 

DeepSeek, and PaLM (Pathways Language Model), excel in 

text generation, while bidirectional models like BERT 

(Bidirectional Encoder Representations from Transformers) 

enhance text comprehension. GANs employ competing 

neural networks to produce realistic samples, and VAEs 

encode and decode data to preserve essential features for 

generative modeling. 

Cutting-edge tools like ChatGPT, DeepSeek, Stable 

Diffusion, and DALL-E exemplify GenAI’s ability to 

process complex prompts, generate high-quality responses, 

and create realistic multimedia content. This transformative 

capability is driving research and innovation across diverse 

sectors, including healthcare, education, media, and  
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tourism [31–33]. 

The potential of GenAI to enhance societal well-being and 

foster innovation is immense; however, its rapid deployment 

necessitates robust regulatory frameworks to address ethical 

concerns, mitigate biases, and prevent unintended 

consequences at societal, institutional, and individual levels 

[34]. Particularly in the educational sector, GenAI is 

redefining traditional paradigms of learning, teaching, and 

assessment, initiating a transformative shift in instructional 

methodologies and evaluative practices [35–37]. 

2) Intelligent tutoring systems 

Intelligent Tutoring Systems (ITSs) are AI-driven, 

computer-based learning platforms designed to simulate 

personalized, one-on-one tutoring. Originating in the 1970s, 

ITSs adapt instruction to each student’s psychological states, 

prior knowledge, skills, and preferences, offering tailored 

feedback and learning tasks [38]. They integrate fields such 

as cognitive science, AI, computational linguistics, and 

mathematics, delivering individualized support across 

subjects like language, physics, and law without human 

intervention [39]. As transformative educational tools, ITSs 

have significantly shaped modern teaching and learning by 

enabling adaptive, interactive, and feedback-driven 

instruction [40]. These systems monitor learner progress, 

analyze performance, and adjust content to target specific 

strengths and weaknesses, fostering a personalized learning 

experience [41]. 

3) Natural language processing 

Natural Language Processing (NLP) has evolved from 

early rule-based methods in the 1950s, influenced by 

linguistics and Chomsky’s grammar theories, to data-driven, 

statistical approaches in the 1990s that harness annotated 

corpora and machine learning techniques [42]. Today, NLP 

stands as a transformative AI technology, enabling machines 

to understand and generate human language, impacting fields 

such as sentiment analysis, translation, and medical text 

processing, thus reshaping communication and information 

retrieval. As a multidisciplinary field, NLP combines 

linguistics, AI, and cognitive psychology, bridging 

human-machine interaction and unlocking diverse 

applications through processing unstructured text [43]. In 

education, NLP enhances e-learning, generates materials, and 

promotes teacher-student participation. It aids in accessing 

reliable resources, filtering unreliable content, and supports 

information retrieval and quality assessment, contributing to 

more efficient educational systems [44]. 

4) Machine learning 

Machine Learning (ML), a pivotal subset of AI, focuses on 

designing algorithms that enable systems to autonomously 

learn from data, adapt, over time, and make informed 

predictions without explicit programming for every task [45]. 

In 1997, Tom Mitchell provided a canonical definition of ML, 

describing it as the capacity of a system “to learn from 

experiences concerning some class of tasks and performance 

measures.” He emphasized three core elements: the task 

being learned, the performance metric and well-defined 

experiences from which the system learns [46]. ML employs 

sophisticated algorithms to process and analyze extensive 

datasets, enabling robust pattern recognition and predictive 

modeling. Core ML methods include supervised learning, 

which utilizes labeled data for accurate prediction and 

classification, and unsupervised learning, which uncovers 

hidden structures within unlabeled data to aid in exploratory 

analysis. Reinforcement learning optimizes decision-making 

through trial-and-error feedback, while semi-supervised 

learning combines labeled and unlabeled data to enhance 

learning efficiency when labeled data is limited. Together, 

these approaches support data-driven insights and informed 

decision-making [47]. 

ML applications span diverse areas, from data mining, 

where extensive datasets reveal historical patterns, to 

model-based forecasting, which supports predictions for 

future outcomes based on learned experiences. Advanced 

techniques such as neural networks, support vector machines, 

and decision trees, are extensively used in supervised 

learning, while clustering techniques, like k-means, are 

essential in unsupervised learning. Together, these 

approaches empower ML systems to independently model, 

adapt, and respond to new data, enhancing their ability to 

optimize processes, generate insights, and anticipate trends in 

complex, dynamic environments [46]. 

5) Adaptive learning platforms 

Adaptive learning systems are AI-driven platforms that 

personalize instruction by adapting content, task sequencing, 

feedback timing, and difficulty based on individual learner 

needs and learning styles. Leveraging ML, NLP, and data 

analytics, these systems enable trainee autonomy by using 

automated feedback loops for self-paced progression without 

constant instructor involvement [48]. Built upon AI, learning 

analytics, and educational data mining, adaptive systems 

improve learner motivation, engagement, and outcomes. 

Research in AI in Education combines computer science, 

cognitive science, and educational theory to create adaptive 

solutions for diverse learning needs and objectives [49]. 

6) Cognitive computing 

Cognitive computing represents an advanced form of data 

analysis that enables systems to continuously learn, reason, 

and adapt based on evolving data, ultimately aiming to 

emulate certain aspects of human cognitive processes. Unlike 

AI that often seeks autonomous decision-making, cognitive 

computing is designed as a supportive tool for humans, 

enhancing the ability to process and make sense of complex, 

large-scale data [50]. The approach hinges on key 

components like NLP, ML, neural networks, and emotional 

analysis, enabling these systems to tackle intricate problems 

similarly to how humans would, yet without the intent of 

replacing human thought [51]. Fundamentally, cognitive 

computing systems are built upon four core capabilities: 

assisting users, understanding advanced data and language, 

facilitating decision-making, and driving cognition and 

discovery [50]. These systems operate within an interactive 

and iterative framework, adapting to both historical and 

real-time data inputs, which allows them to respond with 

increasingly relevant insights over time [51]. 

In education, cognitive systems provide personalized 

learning through cognitive tutors, which adapt lessons to 

student progress, simulating a human tutor’s guidance. 

Additionally, NLP-driven tools assist in course selection by 

aligning offerings to students’ profiles and learning patterns, 

supported by fields like Educational Data Mining and 
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Learning Analytics [52]. 

B. Overview of Artificial Intelligence in Education 

AI has advanced into a sophisticated field aimed at 

replicating human cognitive processes, including reasoning, 

learning, and decision-making [53]. AI broadly refers to the 

science of developing systems capable of performing tasks 

traditionally requiring human intelligence, such as 

problem-solving, language understanding, and  

perception [54]. Today, AI’s transformative influence spans 

numerous sectors, from healthcare and finance to education, 

driven by innovations in ML, NLP, robotics and computer 

vision, alongside diverse applications [55]. 

The integration of AI in educational settings is reshaping 

traditional teaching, training and learning practices. Through 

diverse applications, AI enables more personalized, 

independent, and interactive learning experiences by 

analyzing learner profiles to tailor content to individual needs. 

This adaptability enhances individual engagement and 

supports more effective educational outcomes [1, 10]. 

AI supports teachers by automating routine tasks, freeing 

their time to focus on personalized instruction [56]. Research 

indicates that AI-enhanced personalized learning 

environments enable learners to outperform those in 

traditional settings, with AI playing a key role in fostering 

self-directed learning through ITS [9]. 

AI supports individualized tutoring and customizes 

content to meet each learner’s unique needs and progress 

through tailored instruction, real-time feedback, and 

automated assessments. Classroom applications, such as 

AI-powered monitoring tools, allow educators to assess 

engagement and refine teaching strategies, while predictive 

analytics identify at-risk students to enable timely 

intervention and reduce dropout rates. Additionally, chatbots 

and intelligent tutors provide continuous support, fostering 

autonomous learning and alleviating educators’ 

administrative load [57]. 

Beyond instruction, AI tools also enhance accessibility and 

create immersive learning experiences through VR/AR, 

making education more inclusive and engaging. Real-time 

dashboards, AI-based proctoring, and predictive insights 

further streamline grading, uphold academic integrity, and 

support strategic decision-making at institutional levels [1, 

58]. The transformative potential of AI in education 

underscores the need for responsible integration, guided by 

legal, regulatory, and ethical standards, to ensure equity, 

legitimacy, and the sustained improvement of academic 

outcomes [11]. 

AI’s progression in education, from basic systems to 

advanced, web-based platforms, has introduced targeted 

improvements across three areas. Learner-facing AI tailors 

learning paths to help individuals achieve content mastery, 

while teacher-facing AI automates tasks like assessment and 

plagiarism checks, providing essential insights into 

individual progress. System-facing AI supports institutional 

management by offering data-driven insights, aiding in 

strategic decision-making and policy development. This triad 

of applications advances personalized learning, enhancing 

the overall educational experience [59]. 

The integration of AI into education raises questions about 

the evolving role of teachers in the classroom. While AI 

offers innovative tools and transformative capabilities, it 

does not replace the unique, human aspects of teaching. 

Human teachers contribute irreplaceable qualities such as 

moral guidance, emotional intelligence, creativity, empathy, 

interpersonal skills and the ability to foster existential 

reflection, norms, and values. Consequently, state-of-the-art 

AI lacks the bodily presence and human connection that are 

central to effective teaching [60]. 

Research suggests that teaching remains a relatively stable 

profession amid automation, as AI serves to enhance rather 

than replace educators’ roles. This enhancement through AI 

allows teachers to focus more on personalized, impactful 

teaching while streamlining tasks and broadening 

instructional methods. Teachers recognize their continued 

importance and often pursue professional development to 

integrate AI tools effectively into their practice, utilizing AI 

as a supportive asset rather than a replacement. Thus, AI’s 

role in education is to empower teachers, making the 

profession more attractive while retaining the foundational 

aspects that have historically enriched it [1, 61]. 

AI’s transformative effects in education extend across 

multiple dimensions. It facilitates communication and 

interaction, advances personalized learning, promotes 

creative problem solving, and enhances time management 

and collaborative communication. Additionally, AI 

strengthens cognitive abilities, accelerates decision-making, 

and increases the effectiveness of strategic planning and 

instructional processes. Notably, AI-based tools improve 

individual performance predictions, helping identify learner 

at risk and enabling timely intervention [62]. 

C. Generative AI in Education: Opportunities and 

Challenges 

1) ChatGPT 

Since its launch in November 2022, ChatGPT has become 

a transformative tool in education, excelling in various 

pedagogical tasks. Built on the GPT architecture and trained 

with Reinforcement Learning from Human Feedback 

(RLHF), it delivers contextually relevant and high-quality 

responses [63]. In early 2025, OpenAI launched the o3-mini 

model, enhancing reasoning and providing faster, more 

accurate responses. Available in ChatGPT and API services, 

it offers higher usage limits for paid users. The o3-mini-high 

variant, designed for demanding tasks like coding, offers 

even greater performance. These advancements support 

diverse applications, including answering questions, 

composing emails, and generating code, meeting the needs of 

educators and learners [64]. 

ChatGPT, an advanced AI language model, presents a 

transformative potential for education, particularly in initial 

training of future teachers. By streamlining information 

access and generating diverse content, it empowers learners, 

future and practice educators [2]. 

Learners can benefit from personalized learning 

experiences, accessing tailored explanations and engaging 

with interactive learning environments. This fosters deeper 

understanding and encourages critical thinking skills through 

structured debates and self-directed learning. For future and 

practice educators, ChatGPT offers valuable support in 

pedagogical tasks, lesson planning, curriculum development, 

and assessment design. Automating routine tasks allows for 
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increased focus on individualized learners support and 

innovative pedagogical approaches. Furthermore, ChatGPT 

can serve as a valuable tool for teacher training, enabling 

future educators to develop pedagogical strategies, simulate 

classroom scenarios, and refine pedagogical task preparation 

techniques through AI-driven insights [3, 24, 65]. 

However, the integration of ChatGPT also presents 

significant challenges. Concerns regarding data privacy, 

algorithmic bias, and the potential for misuse, such as 

plagiarism and over-reliance on AI, necessitate careful 

consideration. Ensuring the ethical and responsible use of AI 

in education requires a nuanced approach that prioritizes 

human interaction, critical thinking, and the development of 

AI literacy skills among both learners and educators [65, 66]. 

By thoughtfully integrating GenAI, such as ChatGPT into 

initial teacher training programs, future educators can acquire 

valuable skills in AI literacy, develop innovative pedagogical 

approaches, effectively navigate and utilize AI tools, and 

ultimately enhance their future teaching practice while 

ensuring ethical and responsible use of this powerful 

technology [67]. 

2) DeepSeek 

DeepSeek has established itself as a leading innovator in 

the development of cost-efficient, large-scale language 

models (LLMs). The Hangzhou-based company introduced 

DeepSeek v3 in December 2024, which quickly gained 

prominence and reinforced the company’s commitment to 

open-access AI solutions. This suite of models, including 

DeepSeekMath, DeepSeek-V2, DeepSeekMoE, 

DeepSeek-V3, and DeepSeek-R1, represents a series of 

significant advancements in AI, specifically in the area of 

language processing. DeepSeek, a next-generation AI model, 

is trained on vast datasets that enable it to process complex 

linguistic structures and generate high-quality text. This 

capability has generated significant discussions about its 

potential impact on academic writing and content creation, 

offering both researchers and educators, whether future or 

experienced teachers, an advanced tool for scholarly 

production. Moreover, its scalability and accessibility have 

solidified DeepSeek’s position as a key driver in the 

evolution of AI-driven research and innovation [4]. 

Beyond academic applications, DeepSeek is also 

revolutionizing data-driven decision-making. Through the 

use of advanced machine learning algorithms and deep neural 

networks, it extracts insights with high precision, uncovers 

hidden patterns, and generates synthetic data for predictive 

modeling. The platform’s scalable architecture ensures its 

adaptability across various applications, setting new 

standards for intelligent automation and innovation [5]. 

The release of DeepSeek-R1 on January 10, 2025, further 

solidified the company’s position in the AI field. This model 

matches the performance of leading AI models while 

maintaining lower computational costs. As an open-source 

platform, DeepSeek-R1 has experienced rapid adoption, 

marking a significant milestone in AI [6]. However, it is 

important to acknowledge that research on the integration of 

DeepSeek in educational contexts, particularly in initial 

teacher training, remains limited.  

3) Grok 

Grok, developed by xAI under the leadership of Elon 

Musk, represents a rapidly evolving GenAI model designed 

to address limitations in existing chatbot technologies. Since 

its initial prototype, Grok 0, with 33 billion parameters, the 

model has undergone significant advancements, culminating 

in Grok 3, which, as of March 2025, is speculated to exceed 1 

trillion parameters. With each iteration, Grok has integrated 

enhanced reasoning capabilities, multimodal processing, and 

real-time data analysis, positioning itself as a competitive AI 

system. Notably, its unique approach to user engagement, 

leveraging humor, sentiment analysis, and responsiveness to 

complex queries, distinguishes it from traditional LLMs. 

While its full potential is yet to be empirically validated, 

Grok’s emerging capabilities in real-time social media 

insights and interactive user experiences suggest promising 

applications in education, content generation, and digital 

communication [7, 8]. 

D. Motivational Factors Influencing the Adoption of 

Generative AI in Initial Teacher Training 

Motivation is a multifaceted construct that plays a pivotal 

role in human behavior, including the educational context. It 

can be conceptualized as the internal drive that energizes, 

directs, and sustains an individual’s efforts towards achieving 

specific goals. While intangible, motivation is influenced by 

a complex interplay of beliefs, interests, values, and external 

factors [25, 68].  

Drawing on theories of human behavior, scholars have 

offered various perspectives on motivation [69]. Spolsky 

emphasizes the temporal aspect, focusing on the time and 

effort invested in tasks. Ortega-Martín highlights the 

interplay between internal dispositions and external 

circumstances, while Bhatia emphasizes its role in 

overcoming initial reluctance. Cole views motivation as the 

internal state that directs and sustains behavior towards 

specific goals. Kleinginna and Kleinginna conceptualize 

motivation as the internal condition that activates and 

energizes behavior, while Reeve emphasizes its role in 

sustaining learner engagement. Robbins, Judge, and 

Campbell further define motivation through its three key 

components: intensity, direction, and persistence [68]. 

Within the context of initial teacher training, motivation 

emerges as a critical factor in ensuring the success and 

engagement of future educators. It drives individuals to 

actively seek knowledge, develop essential skills, and fully 

engage in both the learning process and the preparation of 

pedagogical tasks. Given the critical role of motivation in 

initial teacher training, it is essential to explore how emerging 

technologies, particularly GenAI, are reshaping pedagogical 

practices and influencing future teachers’ motivation. AI 

tools are transforming initial teacher training by redefining 

pedagogical practices and influencing the motivations of 

future teachers. By leveraging AI, initial teacher training 

programs can offer innovative approaches to teaching and 

learning, such as personalized learning pathways, 

AI-powered tutoring and mentoring, and access to a wealth of 

educational resources [19]. Thereby equipping aspiring 

teachers with the skills and competencies required to 

navigate and thrive in an increasingly digitalized educational 

environment [70]. 

However, understanding the factors that motivate future 

teachers is crucial for predicting their professional behaviors 
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and ensuring effective educational outcomes. According to 

the Theory of Planned Behavior, intentions serve as strong 

predictors of actions, providing valuable insights into 

educators’ decisions and behaviors within the teaching 

context [71]. Additionally, SDT offers a valuable framework 

for understanding future teacher motivation, conceptualizing 

it as a continuum ranging from intrinsic motivation to 

amotivation [18].  

Intrinsic motivation, driven by internal satisfaction and 

fulfillment, is considered the most desirable form of 

motivation, fostering greater autonomy, engagement, and 

professional growth [14, 18, 69]. 

Intrinsic motivation, as conceptualized by Deci and Ryan, 

stems from internal satisfaction and enjoyment, fostering 

autonomy, engagement, and professional growth [17]. 

Brophy emphasizes that intrinsic motivation not only 

encourages voluntary engagement but also facilitates the 

development of expertise through sustained interest and 

effort [72]. Asor further elucidates that intrinsic motivation, 

fueled by curiosity and enjoyment, yields numerous benefits, 

including positive emotional experiences, identity formation, 

deep learning, social connectedness, and effective coping 

mechanisms for challenges [69].  

These motivational dimensions are drawn from the AMS, a 

validated instrument grounded in SDT. The AMS 

conceptualizes motivation along a continuum that includes 

intrinsic motivation (with its three subtypes), extrinsic 

motivation (composed of three subtypes), and amotivation. 

This framework allows for a nuanced understanding of the 

psychological mechanisms influencing future teachers’ 

motivation with pedagogical tasks and emerging 

technologies. 

According to Vallerand et al., the taxonomy of intrinsic 

motivation is composed of three subtypes, each representing 

a distinct internal drive for engaging in academic  

activities [26]: 

⚫ Intrinsic Motivation To Know (IMTK): refers to engaging 

in an activity for the inherent pleasure and satisfaction 

derived from learning, exploring, and understanding new 

concepts. It is often driven by curiosity and a desire for 

intellectual growth. 

⚫ Intrinsic Motivation Toward Accomplishment (IMTA): 

reflects motivation based on the satisfaction experienced 

when attempting to accomplish or create something, often 

associated with a sense of competence and personal 

achievement. 

⚫ Intrinsic Motivation To Experience Stimulation (IMES): 

involves engaging in activities to experience stimulating 

sensations, such as excitement, aesthetic enjoyment, or 

sensory pleasure. 

Although intrinsic motivation is key to fostering autonomy, 

extrinsic motivation remains influential, particularly when 

intrinsic motivation is insufficient. 

Extrinsic motivation, driven by external factors such as 

rewards, recognition, or the anticipation of specific outcomes, 

can also influence future teacher behavior, albeit to a lesser 

degree. It refers to the engagement in activities driven by 

external factors [68]. 

According to Deci and Ryan, extrinsic motivation exists 

along a self-determination spectrum, ranging from fully 

externally controlled behaviors to those that are progressively 

more aligned with personal values [69]. 

Within this framework, extrinsic motivation is 

conceptualized as a multidimensional construct that reflects 

varying degrees of internalization and autonomy in the 

regulation of behavior. This continuum is typically composed 

of three subtypes: 

⚫ Extrinsic Motivation-External Regulation (EMER), 

behavior is driven by external contingencies such as 

demands, rewards, punishments, or imposed constraints. 

⚫ Extrinsic Motivation -Introjected Regulation (EMIjR) 

refers to motivation controlled by internal pressures, 

including guilt, self-criticism, or the desire to avoid 

shame, even though the behavior is not fully 

self-endorsed. 

⚫ Extrinsic Motivation -Identified Regulation (EMIR), the 

individual engages in an activity because it is consciously 

valued and seen as personally important, thus aligning 

with one’s goals and values. 

⚫ Amotivation (AMT) refers to a complete lack of intention 

to act. It reflects a psychological state in which learners 

perceive no contingency between their actions and 

expected outcomes, resulting in feelings of incompetence, 

expectations of uncontrollability, disinterest, and low 

engagement with academic tasks [26]. 

The AMS has been extensively employed in educational 

research and has consistently shown sound psychometric 

qualities, including validity and reliability, particularly 

within the context of initial teacher education [27, 28]. In 

more recent investigations into AI integration in educational 

settings, researchers have either utilized the AMS framework 

or developed new instruments grounded in its theoretical 

principles. For instance, the study titled “The AI Motivation 

Scale (AIMS): A Self-Determination Theory Perspective” 

introduced and validated the AI Motivation Scale (AIMS) to 

assess university students’ motivation to engage with 

AI-based learning, drawing on both SDT and the AMS model. 

Their results highlighted that motivational enhancement 

within supportive academic environments significantly 

increases learners’ engagement with AI tools, underscoring 

motivation as a key factor in AI-mediated education [29]. 

These studies affirm the methodological relevance of SDT 

and its motivational subtypes—central to the AMS—in 

exploring the role of GenAI in teaching and learning 

processes [30]. 

In addition, personal relevance significantly influences 

learner engagement by connecting educational content to 

real-world experiences. Research by Stuckey et al. 

emphasizes the importance of aligning learning with 

learners’ lived experiences. Kapon further highlights the 

crucial role of personal relevance in bridging the gap between 

formal education and learners’ everyday lives. Schmidt 

found that when instructors emphasize the real-world 

applications of learning, trainees perceive greater value and 

exhibit higher engagement. Building upon the foundation of 

personal relevance, self-efficacy emerges as a critical 

determinant of learning and training success. Ghasem 

identifies self-efficacy as a pivotal motivational factor, 

influencing learners’ persistence, pedagogical task 

completion, and effective knowledge application. Drawing 

from socio-cognitive theory, Mete emphasizes the profound 

impact of self-efficacy on various aspects of human behavior, 
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including goal-setting, decision-making, and resilience. 

Furthermore, Sanli reveals that higher levels of self-efficacy 

significantly reduce test anxiety, underscoring the 

interconnectedness of self-efficacy, task value, and emotional 

well-being in learning outcomes [73].  

While this discussion addresses key elements affecting 

motivation, it is important to acknowledge the existence of 

additional factors beyond the scope of this analysis.  

E. The ARCS Model Approach 

The ARCS model, developed by John Keller, provides a 

robust framework for designing and implementing 

instructional strategies that significantly enhance learner 

motivation across diverse educational contexts, notably in the 

initial training of future educators [74]. Grounded in 

expectancy-value theory, the model highlights the 

importance of maintaining learners’ attention, aligning 

content with their goals, and fostering confidence in 

achieving them. As learners deepen their understanding, their 

confidence and perceived relevance of the content grow, 

resulting in more satisfying learning experiences [75]. The 

ARCS model has been widely applied in 

technology-enhanced environments including online and 

blended learning; gamification; mobile and ubiquitous 

learning; augmented and virtual reality and STEM education 

as well as various other technological contexts, 

demonstrating its versatility and contemporary  

relevance [19–23]. 

A recent study explored teachers’ motivation to adopt 

GenAI tools—specifically ChatGPT-4—as a means of 

self-professional development in pedagogical tasks. 

Conducted with a group of physics teachers, the study 

implemented a training program that incorporated both 

conventional and AI-supported instructional strategies. 

Motivation levels were assessed using the Instructional 

Materials Motivation Survey (IMMS), grounded in the 

ARCS model. Findings revealed an overall positive attitude 

toward the use of ChatGPT-4, with strong intercorrelations 

among the four motivational dimensions—Attention, 

Relevance, Confidence, and Satisfaction—highlighting their 

collective influence on teachers’ motivation to integrate AI 

tools for enhancing pedagogical skills and instructional 

effectiveness [24]. Complementarily, another ARCS-driven 

investigation focused on learners’ engagement with AI 

technologies, emphasizing that strategies, which promote 

intrinsic motivation, maintain attention, demonstrate 

relevance, and build confidence significantly contribute to 

strengthening learners’ career-oriented motivation to engage 

with AI tools [25]. 

A systematic review by Li and Keller further underscores 

its extensive application across various educational contexts, 

instructional methodologies, and motivational outcomes. The 

model serves as a valuable framework for guiding 

instructional design, analyzing motivational constructs, and 

functioning as a measurement tool through the IMMS [76]. 

The ARCS model emphasizes four key components, 

Attention, Relevance, Confidence, and Satisfaction, which 

collectively foster engagement and motivation in learners. In 

the context of initial teacher training, this framework is 

particularly valuable for understanding and enhancing future 

teachers’ motivation to adopt innovative technologies in their 

instructional practices. 

⚫ Attention (A): involves capturing and sustaining learners’ 

curiosity and interest through novel and varied 

instructional techniques, fostering active participation 

and engagement. 

⚫ Relevance (R): ensures that instructional materials align 

with learners’ goals, needs, and prior experiences. By 

demonstrating clear utility for future application, it 

enhances the personal significance and value of learning. 

⚫ Confidence (C): cultivates learners’ belief in their ability 

to succeed by setting clear objectives, scaffolding 

learning experiences, providing constructive feedback, 

and ensuring a structured progression of tasks. This 

fosters a positive expectation of success, encouraging 

effort and persistence. 

⚫ Satisfaction (S): determines the extent to which learners 

experience reward and achievement. It includes intrinsic 

and extrinsic reinforcement, such as skill application, 

recognition of achievements, and fair evaluation, to 

ensure learners feel valued and motivated to persist [22, 

74]. 

The ARCS model offers a strong theoretical foundation for 

investigating GenAI as an intelligent support tool. By 

aligning the motivational aspects involved in the preparation 

of pedagogical tasks during initial teacher training with 

emerging AI technologies, researchers can better assess how 

these tools influence the motivation and engagement of 

future teachers. Integrating the ARCS framework with the 

analysis of GenAI applications, such as ChatGPT-4, 

DeepSeek V3 and Grok3 offers a novel perspective on the 

interplay between technology and future teacher motivation. 

This approach enables systematic evaluation of how 

AI-driven instructional strategies capture attention, establish 

relevance, build confidence, and provide satisfaction, thereby 

enhancing overall learning outcomes. Ultimately, employing 

the ARCS model in this context not only deepens our 

understanding of motivational dynamics in teacher training 

but also supports the development of more effective, 

technology-enhanced educational practices [23, 74, 76]. 

F. Insights from Recent Studies 

Recent research highlights key factors influencing 

teachers’ motivation and engagement in integrating GenAI 

into educational practices. Collie and Martin emphasizes that 

contextual (autonomy-supportive and autonomy-thwarting 

leadership), occupational (professional growth striving, 

change-related stress), and background factors (gender, age, 

teaching experience, school level, specialization), could 

significantly enhance the adoption of AI-powered generative 

tools in teaching [12]. 

In a complementary perspective, Alvarez et al. 

underscores that subjective norm, self-efficacy, enjoyment, 

and perceived usefulness are strong predictors of GenAI 

technologies adoption among future teachers, though gender 

disparities emerge, with males showing greater 

responsiveness to social norms [13]. 

Møgelvang et al. further support these findings by 

demonstrating that male engage more frequently with GenAI 

tools and utilize them across a broader range of tasks, 

reflecting higher perceived utility and stronger alignment 

with future career relevance. In contrast, female primarily 
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employ GenAI for text-related tasks and express greater 

concerns regarding critical thinking, autonomous judgment, 

and the need for clearer guidance on when and how to 

appropriately trust such technologies. Despite these 

differences, both genders exhibit motivation to engage with 

GenAI technologies, albeit shaped by different needs and 

expectations [77]. 

Similarly, Nyaaba et al. report a significant gender 

disparity in the frequency of GenAI tools use among 

pre-service teachers, with male exhibiting a higher usage 

rates. Nonetheless, both male and female groups expressed 

positive attitude towards the use of GenAI in academic 

research, noting among other benefits that these tools 

provided them with confidence and independence in their 

research writing [78]. 

In line with these observations, recent research conducted 

in the Moroccan context by Fakhar et al. found that both male 

and female teachers reported motivation to use GenAI tools, 

with no significant differences in the level of motivation 

based on gender [24]. This suggests that the universal appeal 

of GenAI motivation in educational settings may be more 

strongly associated with individual perceptions of its utility 

and effectiveness rather than demographic  

differences [79, 80]. 

 Supporting this conclusion, Al Darayseh found no 

statistically significant differences between male and female 

science teachers in their behavioral intentions to use GenAI 

in teaching, indicating that gender may not always play a 

decisive role in the adoption motivation of Gen AI [81].  

However, Otis et al. present a broader concern by 

documenting a near-universal gender gap in GenAI usage 

across global regions, sectors, and occupations. Their 

findings reveal that women are underrepresented among 

GenAI users—even when access is equal—suggesting that 

deeper issues such as motivation, confidence, and social 

norms may hinder adoption. If unaddressed, this gap could 

lead to biased AI systems trained predominantly on 

male-generated data, further entrenching inequality and 

neglecting women’s perspectives in technological 

development [82]. 

These findings underscore the critical importance of 

understanding and mitigating gender-based barriers to GenAI 

adoption, particularly in education and professional 

development contexts. Addressing these disparities is 

essential to ensure equitable access to emerging technologies 

and to foster inclusive AI practices in teacher training 

programs. 

The integration of GenAI in initial teacher education has 

become a critical area of exploration, particularly within the 

context of language education. Despite the increasing 

presence of GenAI in educational settings, its implications 

for Initial Language Teacher Education (ILTE) remain 

relatively underexplored [13]. Moorhouse and Kohnke 

highlights this gap, emphasizing that the perceptions of 

language teacher educators regarding GenAI’s influence on 

ILTE have not been sufficiently examined. His findings 

indicate that educators foresee significant impacts of GenAI 

on the curriculum, instructional practices, and assessment 

frameworks within ILTE programs [83]. 

Complementary to this, several empirical studies have 

examined the use of AI tools in language learning. For 

instance, Jeon conducted an intervention study involving 

language learners and observed that participants who 

perceived a customized English-learning chatbot as an 

authentic conversational partner demonstrated a greater 

willingness to engage with it [84]. Similarly, Chiu et al. 

reported that the integration of AI chatbots significantly 

enhanced learners’ interest and motivation in language 

learning activities [85]. 

Ali et al., who conducted a quantitative survey shortly 

after the release of ChatGPT, provide further evidence. Their 

study revealed that both language instructors and trainees 

perceived ChatGPT-based instruction as positively 

influencing learners’ autonomous, intrinsic, and extrinsic 

motivation. The authors suggest that this effect may partly 

result from the novelty of the tool, which initially captures 

learners’ interest and engagement [86]. 

Moreover, prospective language teachers appear to 

recognize the pedagogical value of GenAI, particularly in its 

ability to provide immediate, individualized feedback and 

generate diverse linguistic examples to support  

instruction [87]. These affordances contribute to a growing 

appreciation of GenAI as a valuable complement to 

traditional language teaching methodologies. 

Beyond the domain of language education, similar trends 

are observed in science education. Al Dayareh reports a high 

level of acceptance of GenAI tools among science teachers, 

with positive correlations identified between GenAI adoption 

and variables such as self-efficacy, perceived ease of use, 

anticipated benefits, attitudes, and behavioral intentions [81]. 

Collectively, these findings underscore the dynamic and 

transformative potential of GenAI in education training. As 

Alvarez et al. emphasize, the rapidly evolving educational 

landscape necessitates informed and strategic adoption of 

GenAI within teacher training institutions [13]. 

Furthermore, motivation proves central to learning and 

training outcomes, as Mohamed et al. asserts it shapes 

engagement, perseverance, and cognitive processes [15]. 

Monib et al. and UNESCO highlight the importance of 

cultural and linguistic representation in GenAI content, 

fostering learner connection and equitable learning 

experiences [16]. UNESCO further stresses that intrinsic 

motivation, paired with responsible AI integration and 

teacher training, is crucial for effective implementation [17]. 

In terms of practical applications, recent studies explore 

ChatGPT’s potential to enhance personalized learning, 

facilitate interactive tutoring, streamline lesson planning, and 

foster collaborative learning environments [88, 89]. Sangwoo 

Ha illustrates its utility in physics lesson simulations, noting 

its ability to generate diverse content and real-time responses. 

However, concerns arise regarding content reliability and the 

risk of uncritical acceptance of AI-generated information, 

emphasizing the need for targeted teacher training [90]. 

While research indicates that prospective teachers 

recognize the potential benefits of ChatGPT, studies reveal a 

lack of confidence and competence in effectively utilizing 

these tools. This highlights the critical need for 

comprehensive teacher training programs that equip 

educators with the necessary knowledge, skills, and 

confidence to integrate GenAI effectively and responsibly 

into their teaching practices [3, 83]. In the Moroccan context, 

recent findings reveal a significant positive correlation 
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between educators’ knowledge of AI-based tools and their 

perceived importance, observed among both prospective and 

experienced teachers. Moreover, interest in and proficiency 

with emerging technologies were identified as critical 

determinants of favorable perceptions. Despite contextual 

challenges, there was strong consensus on the necessity of 

incorporating AI tools into teacher training programs, 

irrespective of years of professional experience. These 

findings not only reflect both the opportunities and 

challenges associated with AI integration in the Moroccan 

educational landscape but also emphasize the imperative to 

embed AI-related competencies within initial teacher 

education curricula to align with the evolving demands of 

21st-century teaching [91].  

Although international research exploring the motivation 

and potential of GenAI is well established, and insights from 

recent studies confirm the increasing interest in exploring the 

role of motivation in AI-enhanced learning environments, 

significant gaps persist in the existing research literature. In 

particular, research has rarely focusing on future teachers’ 

motivation to adopt GenAI tools during initial training in 

pedagogical task within the Moroccan educational context 

particularly using robust theoretical models such as AMS and 

ARCS model.  

Several factors contribute to this discrepancy. First, the 

integration of these technologies tools as a pedagogical 

support tools in educational systems is relatively new in 

Morocco, and many educational institutions face challenges 

such as limited access to AI technologies and resources. 

These barriers hinder both the practical implementation and 

the study of AI tools in education. Second, empirical studies 

that compare traditional and AI-supported task performance 

remain limited. Third, the influence of contextual variables 

such as gender and specialization teacher training on 

motivational dynamics is still underexplored. Additionally, 

the current teacher-training curriculum in Morocco has not 

yet fully incorporated AI-related content or AI-based tools, 

leading to a lack of exposure and awareness among future 

teachers. 

To date, no know studies in Morocco have examined the 

motivational factors influencing future teachers’ adoption of 

GenAI tools like ChatGPT, DeepSeek and Grok for preparing 

pedagogical tasks during their initial training. 

These gaps underscore the need for targeted investigations 

that address these limitations—an objective this study seeks 

to fulfill. In response to these challenges, the present research 

aims to examine the motivational factors that influence future 

teachers’ engagement with GenAI tools, specifically 

ChatGPT, DeepSeek, and Grok, as intelligent pedagogical 

support during their initial training. This inquiry is designed 

to provide empirical evidence and contextual insights that 

can guide the integration of AI-based tools in teacher 

education programs in Morocco. 

III. MATERIALS AND METHODS 

A. Purpose of the Present Study 

To further understand the motivational dynamics, this 

study draws upon Keller’s ARCS model, which suggests that 

motivation can be enhanced by capturing learners’ attention, 

aligning tasks with personal goals (relevance), building 

confidence, and ensuring satisfaction. These components can 

foster future teachers’ motivation to integrate innovative 

technologies like GenAI into their instructional  

practices [74]. 

In parallel, the study incorporates the AMS model, which 

distinguishes between intrinsic motivation (to know, toward 

accomplishment, to experience stimulation), extrinsic 

motivation (identified, introjected, and external regulation), 

and amotivation. These subscales offer deeper insights into 

the underlying motivational orientations of future teachers 

[26]. Therefore, this study proposes a conceptual model to 

explore how the dimensions and subscales of the ARCS, 

along with the AMS motivational components, influence 

future teachers’ motivation to adopt GenAI as intelligent 

support tools during their initial teacher training, particularly 

for pedagogical tasks. 

The study’s conceptual model. 

The hypotheses tested in the model include the following: 

H1: Gender significantly influences future teachers’ 

motivation to adopt GenAI in pedagogical tasks.  

H2: Specialization significantly influences future teachers’ 

motivation to adopt GenAI in pedagogical tasks. 

H3: ARCS-based motivational components positively 

influence future teachers’ motivation to adopt GenAI in 

pedagogical tasks. 

H4: AMS-based motivation dimensions positively 

influence future teachers’ motivation to adopt GenAI in 

pedagogical tasks. 

B. Methodological Framework 

This study employed a quasi-experimental design, 

conducted during the spring semester of the 2024-2025 

academic year. Participants were 146 future teachers from 

three distinct specialty groups (primary, science and future 

literary education teachers) within a Moroccan initial 

teacher-training program. A quantitative approach was 

adopted to investigate the motivational factors influencing 

future teachers’ motivation to adopt GenAI (ChatGPT, 

DeepSeek and Grok) as intelligent support tools during initial 

teacher training, specifically for pedagogical tasks. 

A structured questionnaire was employed for data 

collection. The instrument underwent to reliability and 

validity testing to ensure its robustness. reliability was 

assessed using Cronbach’s alpha and McDonald’s Omega 

coefficient, while content validity was evaluated to confirm 

the appropriateness and relevance of the items. 

Quantitative analyses involved inter-dimensional 

correlations as a preliminary check to assess the relationships 

between different dimensions and ensure construct cohesion. 

Exploratory Factor Analysis (EFA) and Confirmatory Factor 

Analysis (CFA) were conducted to validate the factor 

structure of the questionnaire.  

To examine potential disparities in motivation to adopt 

GenAI tools, gender and specialization were included as 

independent variables. An Independent Samples T-Test was 

conducted to assess whether motivation scores differed 

significantly by gender, in light of prior research suggesting 

gender-based variations in the adoption of digital 

technologies. In parallel, a One-Way ANOVA was 

performed to compare motivation levels across the three 

training specializations (primary, scientific, and literary 
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education), given the distinct pedagogical approaches and 

subject matter focus within each program. These disciplinary 

differences may influence how future teachers engage with 

GenAI tools. The inclusion of these variables enabled the 

investigation of whether significant motivational differences 

exist across groups and informed the potential need for 

differentiated training strategies tailored to specific learner 

profiles in AI-integrated teacher education. Additionally, 

Multiple Linear Regression (MLR) Analysis was utilized to 

examine the effect of each subscale of the ARCS components 

and the AMS dimensions on the motivation to adopt GenAI. 

The dependent variable, measured as a continuous variable 

(based on the mean from a 5-point Likert scale), represented 

future teachers’ motivation to adopt GenAI tools (such as 

ChatGPT, DeepSeek, and Grok) as intelligent support tools 

during their initial teacher training, particularly for 

pedagogical tasks. 

To visually synthesize the research design and procedural 

steps, a flowchart of the methodology (Fig. 1) is presented to 

enhance clarity and facilitate understanding of the overall 

research process. 

Fig. 1. Flowchart of the methodology. 

C. Sample

The sample for this quasi-experimental study was

purposefully selected based on predefined criteria to ensure 

its relevance to the study’s objectives. Participants consisted 

of 3rd year future teachers enrolled in the initial 

teacher-training program at the ENS of Fes, Morocco. This 

cohort was specifically chosen as third-year future teachers 

are in their final year of training, possessing advanced 

academic experience and a deeper conceptual understanding 

of pedagogical practices. Their positioning within the digital 

and technological era equips them with the necessary skills to 

effectively utilize GenAI tools, such as ChatGPT, DeepSeek 

and Grok for pedagogical tasks during their initial training. 

The sample included future teachers from three distinct 

specializations, primary, scientific, and literary education, to 

ensure comprehensive representation across all academic 

tracks offered within the ENS. A mixed sampling strategy 

was employed: purposive sampling (criterion-based) was 

used to select participants based on their specialization, while 

convenience sampling within each group facilitated practical 

access and voluntary participation. 

Ethical approval was obtained prior to data collection, 

adhering to ethical research standards. Informed consent was 

gathered from all participants, ensuring they were fully aware 

of the study’s purpose and procedures. Participation was 

voluntary, and all data was collected anonymously to protect 

participants’ privacy. 

Potential participants were invited to complete the survey, 

and from a pool of 200 candidates, 146 complete responses 

were obtained and analyzed, yielding a response rate of 73 %. 

As indicated in Table 1, in terms of gender distribution, 

27.4% of participants (n = 40) identified as male, while 

72.6% (n = 106) identified as female. Regarding 

specialization, 30.1% (n = 44) of participants were enrolled in 

primary education, 34.9% (n = 51) in scientific education, 

and 34.9% (n = 51) in literary education. 

The age of participants ranged from 20 to 23 years, with an 

average age of 20.64 years. The majority of future teachers 

held a DEUG (68.5%), while less than 9.6% possessed a 

Licence and 21.9% held only a Bac. While this sample 

provides valuable insights, it may not fully represent the 

broader population of future teachers at ENS Fes. Therefore, 

further research involving a larger and more diverse sample is 

recommended to enhance the generalizability of the findings. 

Table 1. Demographic characteristics of sample 

Variable Demographic Frequency (%) Cumulative (%) 

Gender 
Male 40 27.4 27.4 

Female 106 72,6 100.0 

Specialty 

Primary 44 30.1 30.1 

Scientific 51 34.9 65.1 

Literary 51 34.9 100.0 

Age 

20 years 73 50 50 

21 years 56 38.4 88.4 

22 years 13 8.9 97.3 

23 years 4 2.7 100.0 

Diploma 

Bac 32 21.9 21.9 

DEUG 100 68.5 90.4 

Licence 14 9.6 100.0 

D. Instrument

An instrument was meticulously adapted to investigate the

influence of ARCS motivational components, and the AMS 

motivational elements on future teachers’ motivation to adopt 

GenAI as intelligent support tools. The questionnaire utilized 

a 5-point Likert scale to capture participants’ responses, 

ranging from strong disagreement to strong agreement. In 

addition to measuring motivational constructs, the survey 

collected demographic information from participants, 

including gender, specialization, age, and academic 

qualifications. 

The instrument’s items were adapted from established and 

validated sources to ensure content relevance and construct 
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validity. Specifically: 

⚫ The ARCS motivational components were sourced from 

the IMMS. 

⚫ Intrinsic motivation, extrinsic motivation, and 

amotivation items were adapted from the AMS. 

To ensure content validity, six expert educators 

specializing in scientific research, who provided critical 

feedback to refine the instrument, reviewed the finalized 

questionnaire. 

The psychometric properties of the instrument were 

rigorously tested. Reliability analysis was conducted using 

both Cronbach’s alpha and McDonald’s Omega to assess 

internal consistency. Furthermore, the construct validity was 

evaluated through EFA to explore underlying structures, 

followed by CFA to validate the factor structure and confirm 

the model’s fit. 

E. Design Strategies 

1) Study design 

This quasi-experimental study investigates the 

motivational factors influencing future teachers’ to adopt 

GenAI, specifically ChatGPT, DeepSeek, and Grok, as 

intelligent support tools during their initial training for 

pedagogical tasks. A comparative approach was employed 

across three initial training specialties. Each specialty was 

assigned to complete pedagogical tasks using two distinct 

methods: 

⚫ Traditional Method: Participants prepare a pedagogical 

topic aligned with their initial training program. Tasks are 

completed in PDF, Word, or handwritten format using 

conventional resources (e.g., books, search engines, and 

websites). 

⚫ GenAI-Based Method: Participants prepare a different 

pedagogical topic than the one used in the traditional 

method. Tasks are completed in PDF, PowerPoint, or 

Word format using GenAI tools (ChatGPT, DeepSeek, 

and Grok). Additional AI-based tools (e.g., automatic 

PowerPoint design, image, sound, simulation, and video 

generation tools) may also be utilized. 

This structured experimental design allows for a 

systematic comparison between traditional lesson 

preparation methods and AI-assisted approaches, providing 

insights into future teachers’ motivation to integrate GenAI 

applications in educational practices. 

2) Training phase 

In the era of AI and digital transformation, Generation Z, 

who constitute our sampling “future teacher” have been 

immersed in AI-driven technologies from an early age. This 

generation frequently integrates AI tools into both their 

personal and professional activities, including education, 

training, and task automation. 

To ensure the seamless integration of GenAI tools, such as 

ChatGPT, DeepSeek, and Grok, into pedagogical practices, 

this training phase is designed to equip future teachers with 

essential AI competencies. The focus is on understanding 

GenAI functionalities, crafting effective prompts, and 

optimizing AI-generated content for pedagogical tasks. 

3) Controlling biases for experimental rigor 

To maintain the validity and reliability of the study, several 

methodological controls were implemented to mitigate 

potential biases that could distort the results. 

1) Social Desirability and Hawthorne Effects 

To minimize social desirability bias, where participants 

alter their behavior to align with perceived expectations, the 

study’s objective was deliberately withheld until after data 

collection. Additionally, tasks were integrated into a familiar, 

non-evaluative setting, encouraging natural and spontaneous 

engagement. 

To reduce the Hawthorne effect, where participants 

modify their effort due to awareness of being observed, all 

tasks were directly linked to the initial training curriculum. 

This ensured that participants perceived them as part of their 

regular training rather than as an experimental condition, 

thereby fostering authentic engagement. 

2) Learning and Transfer Effects 

A key methodological consideration was preventing the 

learning effect, where performance improves due to task 

familiarity rather than the tool used. To mitigate this, 

different pedagogical topics were assigned for the traditional 

and GenAI-based tasks. 

Additionally, the transfer effect, where prior knowledge 

from one condition influences performance in the next, was 

controlled by maintaining a one-week interval between 

phases (Traditional task → GenAI training → 

GenAI-based task). This separation helped ensure that 

observed improvements were attributable to the methodology 

rather than prior exposure. 

3) Order and Fatigue Effects 

A fixed task sequence was applied to all participants: 

⚫ Traditional method task completion 

⚫ GenAI tool training 

⚫ GenAI-based task completion 

While this standardization ensured uniformity, it could 

introduce an order effect, where experience from the first task 

influences performance in the second. To counteract this, a 

one-week interval was maintained between each phase. 

To mitigate fatigue effects, which could reduce 

engagement due to cognitive overload, the study employed a 

structured timeline with one-week intervals between phases. 

This approach ensured that participants remained 

consistently engaged throughout the study. 

4) Motivation and Complacency Effects 

Revealing the study’s objective prematurely could have 

led to biased motivation, where participants intentionally 

optimize their performance in one condition over the other. 

Keeping the objective undisclosed ensured that participants 

approached both tasks with genuine effort. 

Furthermore, the pedagogical tasks were presented as 

routine educational activities rather than as assessments, 

preventing the complacency effect, where participants might 

either approach the tasks too casually or artificially 

exaggerate their efforts. This methodological choice 

maintained consistent engagement levels across both 

conditions. 

A design strategy flowchart is presented to visually 

illustrate the study’s framework (Fig. 2), offering an 

overview of the sequential phases that guided this 

quasi-experimental research process. 

F. Data Collection 

This study employed a structured questionnaire for data 
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collection. To ensure the instrument’s reliability and validity, 

a rigorous evaluation process was conducted prior to data 

collection. This process comprised two key preliminary 

phases: 

1) Initial Testing Phase: This phase assessed the clarity,

comprehensibility, and feasibility of the questionnaire

to ensure its appropriateness for the target population.

2) Pilot Study: A pilot test was conducted with 45 future

teachers specializing in primary, scientific, and literary

education to gather feedback on the instrument’s

design, item formulation, and overall usability. Insights

from this phase informed necessary refinements to

enhance the questionnaire’s effectiveness.

Given the characteristics of the participant group, all of 

whom were physically present during the data collection 

period, the questionnaire was administered in a paper-based 

format. This approach was chosen to maximize participant 

engagement, ensure higher response rates, and facilitate 

accurate data collection. 

Fig. 2. Flowchart of the strategy design. 

G. Data Analysis

Data analysis was conducted using JAMOVI 2.6.26, an

open-source statistical software package. A quantitative 

approach was employed, incorporating inter-dimensional 

correlation analysis, EFA, CFA, Independent Samples T-Test 

One-Way ANOVA, and MLR Analysis to systematically 

examine the data. 

Given the study’s conceptual model, specialization and 

gender was treated as independent variables to analyze their 

effects on future teachers’ motivation to adopt GenAI in 

pedagogical tasks. 

All independent variables were computed by calculating 

the mean scores of the respective items within each subscale 

(based on the means of 5-point Likert scales). Similarly, the 

dependent variable (Motivation) was calculated as a 

composite mean score derived from all items across the 

relevant subscales. 

Table 2 outlines a detailed overview of the variables 

included in the study, along with the statistical methods 

employed to analyze the relationships and effects related to 

future teachers’ motivation to adopt GenAI as intelligent 

support tools during initial teacher training. 

Table 2. Table summarizing the variables and statistical methods used in the 

analysis 

Category Variable Type Measurement 

Independent 

Variables 

Gender Dichotomous Male, Female 

Specialization Categorical 
Primary, Scientific, 

Literary 

ARCS 

Components 

(5-point Likert 

scale) 1 = Not at all true to 

 5 = Completely true AMS 
Dimensions 

 (5-point Likert 
scale) 

Dependent 

Variable 
Motivation 

Composite 

mean score 

Motivation to adopt 

GenAI in pedagogical 
tasks 

Statistical 

methods 

applied  

Correlation 

Analysis 

Factor 

Analysis 

Check that items are 

correlated enough to 

justify the factor 
structure. 

EFA 

Identifying 

underlying structures 
of a set of observed 

variables 

CFA 

Validating the factor 

structure of 
motivation constructs 

Independent 

 Samples 

T-Test 

Inferential 

Testing whether 

motivation scores 
differ significantly 

between gender 

One-Way 

ANOVA 

Comparing 
motivation levels 

across different 

specializations 

Multiple 

Linear 

Regression  

Modeling effects 
ARCS components 

and AMS dimensions, 

on motivation to adopt 
GenAI 

IV. RESULT AND DISCUSSION

A. Result

1) Instrument reliability

Table 3 presents the internal consistency coefficients

(Cronbach’s alpha and McDonald’s omega) and descriptive 

statistics for each subscale employed in the present study 

(ARCS and AMS dimensions) and the Overall Global Scale. 

Table 3. Scale reliability statistics 

Dimensions Item (n) Mean SD α ω 

Confidence 8 2.85 0.529 0.702 0.704 

Attention 5 2.73 0.895 0.784 0.789 

Satisfaction 4 3.99 0.796 0.778 0.780 
Relevance 7 3.86 0.665 0.753 0.755 

IMTK  4 4.12 0.737 0.742 0.752 

IMTA 4 3.88 0.812 0.767 0.769 
IMES 4 3.93 0.762 0.743 0.745 

EMIR 4 3.94 0.796 0.753 0.767 

EMIjR 4 3.05 1.08 0.828 0.829 
EMER 4 2.97 1.02 0.759 0.778 

AMT  4 1.84 0.970 0.847 0.853 

Overall Global Scale 52 3.61 0.442 0.898 0.910 

To evaluate the internal consistency of the measurement 

instruments, both Cronbach’s alpha (α) and McDonald’s 
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omega (ω) coefficients were computed. Prior to this, 

item-rest correlations were examined for each item within its 

respective subscale. In accordance with standard 

psychometric guidelines, items exhibiting item-rest 

correlation values below 0.30 are considered to contribute 

minimally to the internal consistency of the construct and 

may reflect conceptually divergent or ambiguous content. 

Following this criterion, 12 items were removed (Table 4) 

from the final analysis to enhance the reliability and construct 

validity of the instrument. 
 

Table 4. Items removed based on low item-rest correlation 

Dimension Item Code Item-Rest Correlation (r) 

Confidence C05 0.0461 

Attention 

A01 0.175 

A02 0.157 

A03 0.170 

A06 0.191 

A07 0.0960 

A09 0.242 

A10 0.159 

Satisfaction 
S01 0.0846 

S04 0.345 

Relevance 
R06 0.307 

R07 −0.0935 

 

All retained subscales demonstrated acceptable to 

excellent levels of reliability, with α and ω values exceeding 

the recommended threshold of 0.70. The Overall Global 

Scale, which comprises 52 items, exhibited excellent internal 

consistency (α = 0.898, ω = 0.910). The number of items per 

subscale ranged from 4 to 8. 

These findings affirm the psychometric robustness of the 

scales and support their reliability for assessing motivational 

constructs in this context. 

Descriptive statistics indicate that participants reported the 

highest levels of agreement on the Intrinsic Motivation – To 

Know subscale (M = 4.12, SD = 0.737), while the lowest 

mean score was observed for the Amotivation subscale (M = 

1.84, SD = 0.970). These findings indicate a predominantly 

high level of intrinsic engagement and a relatively low degree 

of amotivation regarding the use of GenAI as intelligent 

support tools during their initial training for pedagogical 

tasks. 

2) Inter-dimensional correlation analysis 

In one set of analyses, Spearman’s rank-order correlations 

(Table 5) were performed among the four dimensions of 

ARCS components. Statistically significant and positive 

correlations were observed between Confidence and the other 

three dimensions: Confidence–Attention (rₛ = 0.273, p < 

0.001), Confidence–Satisfaction (rₛ = 0.240, p = 0.003) and 

Confidence–Relevance (rₛ = 0.274, p < 0.001). 
 

Table 5. Spearman’s correlation matrix of ARCS components 

    C A S R 

C 
Spearman’s rho — 

   

p-value — 
   

A 
Spearman’s rho 0.273*** — 

  

p-value <0.001 — 
  

S 
Spearman’s rho 0.240** 0.050 — 

 

p-value 0.003 0.545 — 
 

R 
Spearman’s rho 0.274*** 0.036 0.698*** — 

p-value <0.001 0.664 <0.001 — 

Note. * p < 0.05, ** p < 0.01, *** p < 0.001 

 

Furthermore, a strong positive correlation was found 

between Satisfaction and Relevance (rₛ= 0.698, p < 0.001), 

supporting their conceptual association within the 

motivational model. In contrast, Attention was not 

significantly correlated with either Satisfaction (rₛ = 0.050, p 

= 0.545) or Relevance (rₛ = 0.036, p = 0.664). Nevertheless, 

the overall pattern of correlations supports the interrelated yet 

distinct nature of the dimensions, which aligns with the 

theoretical expectations of the ARCS model. 

These findings provide preliminary empirical support for 

the construct cohesion of the ARCS components and justify 

proceeding with EFA. 

In a second set of analyses, Spearman’s correlations (Table 

6) were conducted among the seven motivational dimensions 

of AMS constructs. Strong and significant correlations were 

observed among IMTK, IMTA, IMES, and EMIR (all rₛ > 

0.56, p < 0.001), indicating robust interrelationships among 

the intrinsic motivation and identified regulation constructs. 

This supports their theoretical proximity within the 

self-determination continuum.  
 

Table 6. Spearman’s correlation matrix of AMS dimensions 

    IMTK IMTA IMES EMIR EMIjR EMER AMT 

IMTK 
Spearman’s rho — 

      

p-value — 
      

IMTA 
Spearman’s rho 0.578*** — 

     

p-value <0.001 — 
     

IMES 
Spearman’s rho 0.598*** 0.611*** — 

    

p-value <0.001 <0.001 — 
    

EMIR 
Spearman’s rho 0.563*** 0.617*** 0.611*** — 

   

p-value <0.001 <0.001 <0.001 — 
   

EMIjR 
Spearman’s rho 0.101 0.200* 0.095 0.263** — 

  

p-value 0.225 0.016 0.253 0.001 — 
  

EMER 
Spearman’s rho 0.259** 0.281*** 0.292*** 0.280*** 0.290*** — 

 

p-value 0.002 <0.001 <0.001 <0.001 <0.001 — 
 

AMT 
Spearman’s rho 0.411*** 0.390*** 0.372*** 0.468*** 0.015 −0.058 — 

p-value <0.001 <0.001 <0.001 <0.001 0.858 0.489 — 

Note. * p < 0.05, ** p < 0.01, *** p < 0.001 

 

Additionally, EMER and EMIjR demonstrated weaker, yet 

still statistically significant, correlations with intrinsic and 

identified motivations (e.g., IMES–EMER: rₛ = 0.292, p < 

0.001), reflecting their distinct but related positioning as 

external forms of regulation.  

As expected, Amotivation exhibited moderate negative or 

low positive correlations with most types of motivation. 

Notably, AMT was not significantly correlated with EMIjR 

(rₛ = 0.015, p = 0.858) and EMER (rₛ = –0.058, p = 0.489), 

which aligns with its theoretical distinction from externally 
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regulated behaviors.  

Overall, the correlation patterns are consistent with the 

theoretical expectations of SDT, thereby offering strong 

empirical justification for proceeding with EFA. 

3) Construct validity 

a) Exploratory factor analysis 

EFA was employed to identify the underlying structure of 

a set of observed variables without imposing a predefined 

model. In this study, EFA was conducted to examine whether 

the questionnaire items reliably cluster into the hypothesized 

11 subscales. Specifically, the analysis aimed to empirically 

validate the factorial structure of the instrument, assess the 

internal coherence of items within each subscale, eliminate 

weak or cross-loading items (i.e., factor loadings <0.30), and 

evaluate the overall psychometric quality of the scale. This 

process also serves to reduce dimensional complexity while 

preserving the core constructs of motivational engagement. 

Prior to conducting EFA, the assumption of normality was 

examined. The Shapiro–Wilk test revealed significant 

deviations from normality for all dimensions, including 

Attention (p = 0.019), Relevance (p = 0.004), EMIjR (p = 

0.003) and EMER (p = 0.006), confirming non-normality in 

the data. Bartlett’s Test of Sphericity yielded statistically 

significant results across all dimensions (p < 0.001), 

indicating sufficient correlations among the variables to 

justify the application of factor analysis. Furthermore, the 

Kaiser–Meyer–Olkin (KMO) measure of sampling adequacy 

demonstrated an overall value of 0.780, with individual 

subscale KMO values ranging from 0.667 to 0.811. These 

results suggest that the data exhibit an acceptable level of 

factorability, thereby supporting the suitability of proceeding 

with EFA. 

Principal Axis Factoring with Promax rotation was 

employed to extract and rotate the underlying factors. Each 

subscale yielded eigenvalues exceeding the threshold of 1.0, 

explaining a total variance ranging from 24.7% to 54.9% 

(Table 7).  
 

Table 7. Factor summary of total variance explained 

Subscale SS Loadings % of Variance 

C 1.97 24.7 

A 2.17 43.4 
S 1.89 47.1 

R 2.15 30.7 

IMTK 1.74 43.5 
IMTA 1.82 45.5 

IMES 1.69 42.3 

EMIR 1.84 46.0 

EMIjR 2.20 54.9 

EMER 1.93 48.2 

AMT 2.38 59.5 

 

Items with factor loadings ≥ 0.400 were retained as 

significant contributors. Internal consistency was evaluated 

using both Cronbach’s alpha and McDonald’s Omega 

coefficients, based on the retained items, and demonstrated 

acceptable reliability levels across subscales.  

To further validate the factorial structure derived from the 

EFA and to assess the overall model fit, CFA will be 

conducted in a subsequent phase. 

b) Confirmatory factor analysis 

CFA was conducted to confirm the alignment of the 

observed data with the hypothesized measurement model. 

This step ensured that the constructs measured in the study 

were valid and reliable. The ARCS model subscale are 

significantly associated with their respective sets of observed 

variables. The model exhibits a good overall fit to the 

observed data, as reflected by multiple standard fit indices 

(Table 8). The CFI (0.924) and the TLI (0.912), both 

exceeding the commonly accepted threshold of 0.90, 

indicating a satisfactory model-data fit. 
 

Table 8. CFA fit measures (ARCS) 
 RMSEA 90% CI   

CFI TLI SRMR RMSEA Lower Upper AIC BIC 

0.924 0.912 0.0411 0.0541 0.0451 0.0631 7210 7432 

Test for Exact Fit 

  
χ² df p 

305 164 <0.001 

 

Regarding absolute fit, the RMSEA (0.0541), with a 90% 

confidence interval of [0.0451, 0.0631], suggesting a close 

approximation of the model to the population covariance 

structure. The SRMR (0.0411), well below the 0.08 threshold, 

signifying low residual variance and acceptable standardized 

discrepancies between the observed and predicted 

covariance. 

The model’s information criteria, AIC (7210) and BIC 

(7432), further provide a reference for model parsimony and 

complexity. Finally, the chi-square goodness-of-fit test yields 

a statistically significant result (χ² = 305, df = 164, p < 0.001) 

Collectively, these indices indicate that the ARCS model 

demonstrates acceptable to good fit, with all key indices 

aligning with conventional benchmarks, thereby supporting 

the model’s structural validity and theoretical coherence. 

Following the validation of the ARCS model, a CFA was 

similarly conducted to assess the structural validity of the 

AMS model subscale. The results indicate that the model also 

demonstrates a satisfactory fit to the observed data, supported 

by multiple conventional fit indices (Table 9). Specifically, 

the CFI (0.950) and the TLI (0.944), which falls within the 

acceptable range, suggesting that the hypothesized model 

adequately captures the underlying structure of academic 

motivation. 

In terms of absolute fit, the RMSEA (0.0520), with a 90% 

confidence interval ranging from 0.0410 to 0.0670, falls 

within the acceptable limits (< 0.06), indicating a reasonable 

approximation of the population model. Moreover, the 

SRMR (0.0590) remains well below the conventional cut-off 

of 0.08, reflecting low residual discrepancies between the 

observed and predicted values. 
 

Table 9. CFA fit measures (AMS) 

  RMSEA 90% CI   

CFI TLI SRMR RMSEA Lower Upper AIC BIC 

0.950 0.944 0.0590 0.0520 0.0410 0.0670 10885 11175 

Test for Exact Fit   

χ² df p  

581 329 <0.001  

 

The model’s parsimony and complexity are further 

reflected in the AIC (10885) and BIC (11175). Finally, 

although the chi-square test (χ² = 581, df = 329, p < 0.001) is 

statistically significant. 

In sum, these findings confirm that the AMS model 

exhibits good psychometric properties and structural validity, 

rendering it a reliable instrument for measuring academic 

motivation within the present study context. 



  

  

 

 

  

 

 

 

  

 

 
  

   

   

 

  

     

     

 

 

 

  
 

 

 

 
      

 

       

  
           

            

       
  

  

 

 

 
 

  

 

 

 
      

 
      

      

 

  

 

 

 

 
  

   

   

 
  

     

     

 

 

 

 

 

International Journal of Information and Education Technology, Vol. 16, No. 1, 2026

140

  

4) Independent samples t-test (student’s t) 

To investigate the relationship between Motivation and 

Gender as a demographic variable, an Independent Samples 

t-test was conducted. This analysis aimed to evaluate whether 

gender significantly influences future teachers’ motivation to 

adopt GenAI tools, specifically ChatGPT, DeepSeek, and 

Grok, as intelligent support systems during their initial 

teacher training for pedagogical tasks. 

Prior to performing the t-test, key assumptions were 

assessed to ensure the validity of the statistical procedure. 

The Shapiro–Wilk test was used to examine the assumption 

of normality. The resulting p-value (p = 0.676) exceeded the 

conventional threshold of 0.05 (Table 10), indicating that the 

distribution of the motivation scores does not significantly 

deviate from normality and may be considered approximately 

normal. Additionally, Levene’s test for homogeneity of 

variances (Table 11) yielded a non-significant result (p = 

0.312), suggesting that the assumption of equal variances 

across gender groups is also met. 

Given that both assumptions of normality and 

homogeneity of variance are satisfied, the application of the 

Independent Samples t-test is justified. This test will compare 

the mean scores of motivation, computed as the overall 

average of responses across the ARCS and AMS subscales, 

between male and female participants. This methodological 

approach ensures the robustness and reliability of the 

statistical inferences drawn, providing valuable insight into 

how gender may shape the motivation to adopt GenAI tools 

in pedagogical practice. 

 
Table 10. Normality test (Shapiro-Wilk) 

Dependent variable W p 

Motivation 0.993 0.676 

 

Table 11. Homogeneity of variance test (Levene test) 

Dependent variable F df df2 P 

Motivation 1.03 1 144 0.312 

 

The results indicated no significant difference between the 

group means (p = 0.403, Table 12). The mean motivation 

score for Male was 3.35, while for Female it was 3.41, 

yielding a small mean difference of −0.0652 (Table 13). 
 

Table 12. Independent samples t-test results examining the effect of gender on future teachers’ motivation to adopt generative AI tools 

Dependent variable  Test Statistic df P MD SE difference 

Motivation Student’s t −0.839 144 0.403 −0.0652 0.0777 

Effect Size Measure  Value           

Cohen’s d −0.156           

Hypothesis H1      
Results No significant difference between the group means  

  

The effect size, represented by Cohen’s d = −0.156 (Table 

12), further suggests that the magnitude of the difference is 

small and practically negligible difference in motivation 

between gender, reinforcing the conclusion that gender does 

not substantially influence motivation in this context. 

The inclusion of effect size (Cohen’s d) is commendable, 

as it provides insight into the practical significance of the 

findings beyond statistical significance. 
 

Table 13. Descriptive statistics by gender for the independent samples t-test 

examining the effect of gender on future teachers’ motivation to adopt 
generative AI tools 

Dependent  

variable 
Group N Mean Median SD SE 

Motivation 
Male 40 3.35 3.35 0.391 0.0619 

Female 106 3.41 3.45 0.429 0.0416 

 

5) One-way ANOVA 

To investigate the relationship between Motivation and 

Specialization as a demographic variable, a One-Way 

ANOVA was conducted. This analysis aimed to evaluate 

whether specialization significantly influences future 

teachers’ motivation to adopt GenAI tools, specifically 

ChatGPT, DeepSeek, and Grok, as intelligent support 

systems during their initial teacher training for pedagogical 

tasks. 

Prior to performing the analysis, the key assumptions 

underlying ANOVA were systematically assessed to ensure 

the validity of the statistical procedure. The Shapiro–Wilk 

test revealed a p-value of 0.535 (Table 14), indicating that the 

distribution of motivation scores does not significantly 

deviate from normality. Furthermore, Levene’s test yielded a 

p-value of 0.202 (Table 15), suggesting no significant 

difference in variances between the specialization groups and 

variances are equal across groups. The assumption of 

independence of observations was also satisfied, as each 

future teacher belonged exclusively to one specialization 

group (Primary, Scientific, or Literary). 

 
Table 14. Normality test (Shapiro-Wilk) 

Dependent variable W P 

Motivation 0.992 0.535 

 

Table 15. Homogeneity of variance test (Levene test) 

Dependent variable F df1 df2 P 

Motivation 1.62 2 143 0.202 

 

Given that the assumptions of normality, homogeneity of 

variance and independence were all confirmed, the 

application of Fisher’s One-Way ANOVA was deemed 

appropriate. 

The ANOVA test was thus employed to determine whether 

statistically significant differences exist in motivation scores 

among the three specialization groups by comparing 

between-group and within-group variance. This 

methodological rigor ensures the robustness and reliability of 

the statistical inferences drawn, providing valuable insights 

into how specialization may influence the motivation to 

adopt GenAI tools into pedagogical practices. 

Fisher’s One-Way ANOVA revealed a statistically 

significant effect of specialization on future teachers’ 

motivation (p = 0.046, Table 16). Descriptive statistics (Table 

17) showed that participants in the Literary specialization 

reported the highest motivation levels (M = 3.49, SD = 0.385), 

followed by those in the scientific (M = 3.41, SD = 0.353) and 

Primary specializations (M = 3.28, SD = 0.498). 
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Table 16. Fisher’s one-way ANOVA results examining the influence of 

specialization on future teachers’ motivation to adopt generative AI tools 

Dependent 

variable  
Test  F df1 df2 p Hypothesis 

Motivation Fisher’s 3.14 2 143 0.046 H2 

Hypothesis H2      
Results A statistically significant difference in motivation  

 

Table 17. Descriptive statistics by specialization for motivation to adopt 

generative AI tools 

Dependent variable Specialty N Mean SD SE 

Motivation 

Primary 44 3.28 0.498 0.0751 

Scientific 51 3.41 0.353 0.0495 

Literary 51 3.49 0.385 0.0538 

 

Post-hoc analysis using the Tukey HSD test (Table 18) 

revealed a statistically significant difference between the 

literary and primary groups (p = 0.036), indicating that future 

teachers in the literary specialization demonstrated 

significantly higher motivation to adopt GenAI tools. 

However, no significant differences were observed between 

the primary and scientific groups (p = 0.281) or between the 

scientific and literary groups (p = 0.575). 
 

Table 18. Tukey post-hoc test results for pairwise comparisons of motivation 

scores across specialization groups 

Group   Primary Scientific Literary 

Primary 

Mean 

difference 
— −0.130 −0.2117* 

t-value — −1.53 −2.50 

df — 143 143 
p-value — 0.281 0.036 

Scientific 

Mean 

difference 
 — −0.0821 

t-value  — −1.01 

df  — 143 

p-value  — 0.575 

Literary 

Mean 

difference 
  — 

t-value   — 

df   — 

p-value   — 

Note. * p < 0.05, ** p < 0.01, *** p < 0.001 

 

These findings suggest that specialization may play a role 

in shaping the motivation of future teachers to adopt GenAI 

tools into their instructional practices during initial teacher 

training. 

6) Multiple linear regression analysis 

a) Model specification 

Given the continuous nature of the dependent variable, 

MLR analysis was conducted to investigate the predictive 

influence of the ARCS-based motivational components and 

the AMS-based motivation dimensions on future teachers’ 

motivation to adopt GenAI tools, specifically ChatGPT, 

DeepSeek, and Grok, as intelligent support tools during their 

initial teacher training for pedagogical tasks. This analysis 

facilitated the assessment of the explanatory power of the 

independent variables, providing valuable insights into the 

key factors shaping participants’ motivational orientations. 

The modeling process entailed a series of analytical steps 

aimed at examining the relationships between variables and 

evaluating the overall fit and significance of the regression 

model. 

b) Main hypothesis 

The MLR model was guided by the primary hypotheses 

H3 and H4, which articulate the anticipated directional 

relationships between the independent variables (the ARCS 

and the AMS components) and the dependent variable, 

defined as future teachers’ motivation to adopt GenAI tools, 

specifically ChatGPT, DeepSeek, and Grok, as intelligent 

support tools during their initial teacher training for 

pedagogical tasks: 

To examine these theoretical propositions more 

comprehensively, a series of sub-hypotheses were formulated 

and tested: 

(H3)a: Confidence positively influences future teachers’ 

motivation to adopt GenAI tools in pedagogical tasks. 

(H3)b: Attention positively influences future teachers’ 

motivation to adopt GenAI tools in pedagogical tasks. 

(H3)c: Satisfaction positively influences future teachers’ 

motivation to adopt GenAI tools in pedagogical tasks. 

(H3)d: Relevance positively influences future teachers’ 

motivation to adopt GenAI tools in pedagogical tasks. 

(H4)a: Intrinsic Motivation-To Know positively 

influences future teachers’ motivation to adopt genAI tools in 

pedagogical tasks. 

(H4)b: Intrinsic Motivation-Toward Accomplishment 

positively influences future teachers’ motivation to adopt 

GenAI tools in pedagogical tasks. 

(H4)c: Intrinsic Motivation-To Experience Stimulation 

positively influences future teachers’ motivation to adopt 

GenAI tools in pedagogical tasks. 

(H4)d: Extrinsic Motivation-Identified Regulation 

positively influences future teachers’ motivation to adopt 

GenAI tools in pedagogical tasks. 

(H4)e: Extrinsic Motivation-Introjected Regulation 

positively influences future teachers’ motivation to adopt 

GenAI tools in pedagogical tasks. 

(H4)g: Amotivation negatively influences future teachers’ 

motivation to adopt GenAI tools in pedagogical tasks. 

c) Data collection 

Data were collected through a structured questionnaire 

using a 5-point Likert scale to measure participants’ 

responses. Ethical approval was obtained, and participants 

provided informed consent. The collected data were deemed 

reliable, valid, and representative of the target population, 

with no missing or contradictory values. 

d) Verification of the conditions 

⚫ Linearity of the relationship 

To evaluate the assumption of linearity required for MLR 

analysis, scatterplots were generated to examine the 

relationship between each independent variable and the 

dependent variable. The visual inspection of these 

scatterplots revealed a generally linear trend. The fitted 

regression lines adequately captured the directionality of the 

data, indicating a consistent linear pattern across the 

predictors. 

These observations suggest that the assumption of linearity 

is reasonably satisfied, thereby supporting the 

appropriateness of applying MLR to model the data in this 

study. 

⚫ Independence of residuals 

Table 19 presents the results of the global Durbin–Watson 

(DW) test for the MLR model, which includes all 

independent variables representing the ARCS and AMS 

dimensions. The DW statistic was 1.95, a value very close to 
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2, indicating the absence of first-order autocorrelation in the 

model’s residuals. The autocorrelation coefficient was 

0.0253, which is notably low and suggests minimal serial 

correlation. Furthermore, the p-value was 0.624, exceeding 

the conventional threshold of 0.05, thereby leading to a 

failure to reject the null hypothesis of no first-order 

autocorrelation. 

Table 19. Durbin–Watson test for autocorrelation 

 Autocorrelation DW Statistic p 

0.0253 1.95 0.624 

In summary, the residuals do not exhibit significant 

autocorrelation, satisfying the assumption of independent 

errors, one of the key conditions for the proper application of 

MLR. This finding supports the robustness and validity of the 

regression model results. 

⚫ Constant Variance of Errors (homoscedasticity)

To assess the assumption of homoscedasticity in the MLR

model, a scatterplot of residuals versus fitted values was 

employed. The plot (Fig. 3) revealed a random dispersion of 

residuals around the horizontal reference line at zero, with no 

discernible pattern or funnel-shaped distribution. The 

residuals appeared to be evenly spread, and the variance 

remained relatively stable across the range of fitted values. 

In summary, the visual inspection of the scatterplot 

indicates that the residuals exhibit approximately constant 

variance, suggesting that the assumption of homoscedasticity 

is reasonably satisfied. This supports the suitability of the 

MLR model for the data. 

Fig. 3. The scatterplot of residuals against fitted values. 

⚫ Normality of residuals

Fig. 4. The Q-Q plot of residuals. 

The Q–Q plot (quantile–quantile) (Fig. 4) was employed to 

assess the normality of residuals, a key assumption of MLR 

analysis. The visual inspection of the standardized residuals 

indicates that most points align closely with the reference line, 

particularly in the central portion of the distribution. This 

suggests that the residuals are approximately normally 

distributed in the middle range of values, thereby supporting 

the assumption of normality to a reasonable extent. 

⚫ Multicollinearity

To assess the presence of multicollinearity among the

independent variables (the ARCS and AMS dimensions), the 

Variance Inflation Factor (VIF) and Tolerance values were 

examined. The VIF values ranged from 1.18 to 2.83, while 

the corresponding Tolerance values varied between 0.354 

and 0.849 (Table 20). 

Based on established thresholds, none of the predictors’ 

exhibit VIF values approaching or exceeding the commonly 

accepted cutoff of 5, and all Tolerance values are well above 

the critical threshold of 0.2. These results indicate that 

multicollinearity is not a concern in the present model. The 

predictors demonstrate acceptable levels of independence, 

thereby satisfying a key assumption of MLR. This reinforces 

the reliability of the model estimates and supports the validity 

of the inferences drawn from the regression analysis. 

Table 20. Collinearity statistics 

Independent variables VIF Tolerance 

Confidence 1.28 0.781 

Attention 1.18 0.849 

Satisfaction 2.83 0.354 
Relevance 2.37 0.421 

IMTK 2.33 0.429 

IMTA 2.31 0.433 
IMES 2.47 0.406 

EMIR 2.08 0.482 

EMIjR 1.26 0.797 
EMER 1.27 0.788 

AMT 1.34 0.748 

⚫ Outliers or influential observations

To evaluate the presence of influential observations that

could disproportionately affect the regression results, Cook’s 

Distance was examined for all cases. The values ranged from 

1.51e-5 to 0.0666, with a mean of 0.00739 and a median of 

0.00337 (Table 21). 

Conventionally, a Cook’s Distance greater than 1.0 is 

considered indicative of highly influential points. In this case, 

all values fall well below this threshold, suggesting that no 

individual data point exerts an undue influence on the 

regression model. These results confirm the absence of 

problematic outliers or influential observations, thereby 

supporting the stability and reliability of the regression 

estimates. 

Table 21. Cook’s distance 

Mean Median SD Min Max 

0.00739 0.00337 0.0107 1.51e-5 0.0666 

e) Data analysis

To examine the primary hypotheses (H3 and H4) regarding

the factors influencing motivation to adopt GenAI, a MLR 

analysis was performed following a rigorous verification of 

the underlying statistical assumptions. The analysis produced 

the following results: 

⚫ Omnibus ANOVA test

To evaluate the overall significance of the regression

model, an Omnibus ANOVA test was conducted. This test 
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assesses whether each predictor variable (independent 

variable) explains a statistically significant portion of the 

variance in the dependent variable, beyond what would be 

expected by chance. 

As presented in Table 22, all predictors demonstrate 

statistically significant contributions to the model. The 

p-values for all predictors are less than 0.001, indicating that 

each variable contributes meaningfully to the explanation of 

the dependent variable. The F-statistics, ranging from 25.0 to 

298.0, reflect the strength and consistency of these effects 

across variables. Additionally, the residual sum of squares is 

relatively small (SS = 0.633, df = 135), suggesting a good 

overall fit of the model. 
 

Table 22. Omnibus ANOVA test 

Independent 

variables 

Sum of 

Squares 
df 

Mean 

 Square 
F P 

Confidence 0.320 1 0.31970 68.2 <0.001 

Attention 1.324 1 1.32450 282.7 <0.001 
Satisfaction 0.216 1 0.21555 46.0 <0.001 

Relevance 0.400 1 0.39978 85.3 <0.001 

IMTK 0.125 1 0.12453 26.6 <0.001 
IMTA 0.296 1 0.29558 63.1 <0.001 

IMES 0.274 1 0.27376 58.4 <0.001 

EMIR 0.117 1 0.11714 25.0 <0.001 
EMIjR 1.100 1 1.10002 234.8 <0.001 

EMER 1.396 1 1.39634 298.0 <0.001 

AMT 1.297 1 1.29694 239.2 <0.001 
Residuals 0.633 135 0.00469 

  

 

In summary, these findings confirm that each independent 

variable significantly enhances the model’s explanatory 

power. The Omnibus ANOVA test thus supports the 

inclusion of all predictors and validates the overall statistical 

significance and robustness of the regression model. 

⚫ Model fit  

To assess the overall adequacy of the MLR model, several 

model fit indices were examined (Table 23). The results 

indicate that the model demonstrates a very high explanatory 

power, as reflected by the following statistics: 

The multiple correlation coefficient (R = 0.987) indicates a 

very strong positive linear relationship between the set of 

independent variables and the dependent variable. This 

suggests that the predictors collectively provide a highly 

accurate estimation of the outcome variable within the 

regression model.  

The coefficient of determination (R² = 0.975) indicates that 

approximately 97.5% of the variance in the dependent 

variable is explained by the set of independent variables. This 

exceptionally high value suggests a near-perfect model fit, 

highlighting the strong explanatory power of the predictors. 

The Adjusted R² = 0.973 confirms the robustness of the 

model. 

The Root Mean Square Error (RMSE= 0.0658) is 

relatively low, indicating that the average prediction error is 

small and the model predictions are precise. 

The Akaike Information Criterion (AIC = −356) and 

Bayesian Information Criterion (BIC = −320) are both 

substantially negative, which is typically interpreted as 

evidence of strong model parsimony and quality. Negative 

AIC and BIC values suggest that the model achieves a good 

balance between fit and complexity. 

The Overall F-test is highly significant (528, p < 0.001), 

indicating that the set of predictors, taken together, 

significantly improve the model compared to a model with no 

predictors. 

Taken together, these model fit statistics demonstrate that 

the MLR model is both statistically significant and 

substantively strong. The high R² and low RMSE support the 

accuracy and precision of the model’s predictions. Moreover, 

the significant F-test confirms that the predictors, as a whole, 

contribute meaningfully to explaining variance in the 

outcome variable. These findings justify further 

interpretation of individual regression coefficients and 

support the use of the model for inferential purposes. 

 

Table 23. Model fit measures of multiple linear regression 

Overall Model Test 

R R² 
Adjusted 

R² 
AIC BIC RMSE F df1 df2 p 

0.987 0.975 0.973 −356 −320 0.0658 528 10 135 <0.001 

 

⚫ Regression coefficients 

Table 24 presents the results of the multiple linear 

regression analysis for a statistically robust and theoretically 

grounded model that integrates the ARCS motivational 

components (Attention, Relevance, Confidence, and 

Satisfaction) alongside the dimensions of the AMS model, 

which include intrinsic motivation, extrinsic motivation with 

its sub-dimensions, and amotivation. 

All predictors are statistically significant at p < 0.001, 

indicating that each independent variable contributes 

meaningfully to the prediction of the dependent variable 

when controlling for the others. The associated t-values and 

consistently low p-values across all predictors suggest that 

these effects are highly unlikely to have occurred by chance. 

On the one hand, regarding the ARCS model, the 

standardized coefficients (β) demonstrate substantial positive 

contributions from Attention (β = 0.2479), Relevance (β = 

0.1933), and Satisfaction (β = 0.1550). These findings 

underscore the importance of motivational design elements in 

fostering higher levels of engagement, perceived value, and 

motivation among future teachers. Confidence (β = 0.1270) 

also shows a moderate yet statistically significant positive 

influence, suggesting that a strong belief in one’s own 

capabilities, reflected in positive self-concept and favorable 

self-efficacy perceptions, contributes to improved 

performance and sustained motivational involvement. 

On the other hand, with respect to the AMS dimensions, 

Intrinsic Motivation to Know (β = 0.1069), to Accomplish (β 

= 0.1639), and to Experience Stimulation (β = 0.1631) all 

show positive and significant effects on the dependent 

variable. These results are consistent with motivational 

theory, which posits that intrinsic motivations are strongly 

associated with sustained effort and engagement. 

Furthermore, Extrinsic Motivation-Introjected Regulation 

(β = 0.2332) and External Regulation (β = 0.2643) emerge as 

strong positive predictors. This indicates that even externally 

driven motivations, particularly when internalized or 

perceived as purposeful, can significantly enhance 
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task-related outcomes. Identified Regulation (β = 0.0979) 

also contributes positively, albeit to a lesser extent. 

Finally, Amotivation (β = −0.261) is the only negative 

predictor, as theoretically anticipated. Its strong inverse 

relationship with the dependent variable highlights the 

detrimental impact of disengagement, lack of purpose, or 

motivational absence on performance and task-related 

outcomes. 
 

Table 24. Model coefficients—motivation 

Predictor Estimate SE t p Β 

Intercept 0.3348 0.04651 7.20 <0.001 
 

Confidence 0.0762 0.00923 8.26 <0.001 0.1270 

Attention 0.1158 0.00689 16.81 <0.001 0.2479 

Satisfaction 0.0815 0.01202 6.78 <0.001 0.1550 
Relevance 0.1216 0.01317 9.24 <0.001 0.1933 

IMTK 0.0607 0.01177 5.16 <0.001 0.1069 

IMTA 0.0845 0.01064 7.94 <0.001 0.1639 
IMES 0.0895 0.01171 7.64 <0.001 0.1631 

EMIR 0.0515 0.01030 5.00 <0.001 0.0979 

EMIjR 0.0907 0.00592 15.32 <0.001 0.2332 
EMER 0.1087 0.00630 17.26 <0.001 0.2643 

AMT −0.1127 0.00729 −15.47 <0.001 −0.261 

 

⚫ Conclusion 

The results of the MLR analyses (Tables 22, 23, and 24) 

highlight the significant influence of both ARCS 

motivational components and AMS motivational dimensions 

on future teachers’ motivation to adopt GenAI tools, 

specifically ChatGPT, DeepSeek, and Grok, as intelligent 

supports for pedagogical tasks during initial teacher training. 

These findings underscore the pivotal role of Confidence, 

Attention, Satisfaction, and Relevance, alongside Intrinsic 

and Extrinsic motivational dimensions, in shaping positive 

attitudes toward GenAI adoption. Additionally, the negative 

coefficient associated with Amotivation aligns with 

theoretical expectations, confirming its inverse relationship 

with productive engagement. 

Overall, these outcomes provide strong empirical support 

for the primary hypotheses (H3 and H4) and their 

sub-hypotheses, reinforcing the validity of the conclusions 

drawn. The robustness of the results is further substantiated 

by the rigorous verification of all necessary statistical 

assumptions underpinning the multiple linear regression 

model. 

An overall summary table of the statistical results (Table 

25) synthesizes the key findings. While gender differences 

did not significantly influence participants’ motivation to use 

GenAI tools (p = 0.403, Cohen’s d = −0.156), training 

specialty showed a significant effect (p = 0.046), with 

participants from literary programs reporting higher 

motivation than those in scientific and primary education. 

Most notably, motivation-related dimensions, as measured 

by the ARCS and AMS models, significantly predicted 

participants’ perceptions (R² = 0.975), confirming the critical 

influence of these variables in shaping future teachers’ 

motivation to adopt GenAI tools during their initial training. 

 

Table 25. Overall summary table of the statistical results 

Variable / Comparison Test Used p-value Mean(s) / SD(s) Effect Size / R / R² Significant? Hypothesis 

Gender differences 
Independent 

Samples t-test 
0.403 

Male: M = 3.35, SD = 0.391 
Female: M = 3.41, SD = 0.429 

Cohen’s d = −0.156 No 
H1 not 

supported 

Training specialty 
differences 

One-Way ANOVA 
(Fisher’s test) 

0.046 

Literary: M = 3.49, SD = 0.385 

Scientific: M = 3.41, SD = 0.353 

Primary: M = 3.28, SD = 0.498 

— Yes 
H2 

supported 

Motivation prediction 

(ARCS & AMS) 

Multiple Linear 

Regression 
< 0.001 — R = 0.987, R² = 0.975 Yes 

H3 & H4 

supported 

 

B. Discussion 

The present study aimed to investigate the motivational 

factors influencing future teachers’ motivation to adopt 

Generative Artificial Intelligence tools, specifically ChatGPT, 

DeepSeek, and Grok, as intelligent support tools during their 

initial teacher training, particularly for pedagogical tasks. To 

achieve this objective, a structured questionnaire was 

administered, drawing upon the motivational framework 

components (ARCS and the AMS) to capture relevant 

motivational constructs. Quantitative data were collected and 

analyzed using a range of robust statistical methods to ensure 

the validity and reliability of the findings. 

⚫ Inter-dimensional correlation analysis “ARCS and AMS 

elements” 

An inter-dimensional correlation analysis using 

Spearman’s rank-order correlations was performed among 

the motivational framework elements IMMS-ARCS and the 

AMS to assess the relationships between different 

dimensions (Table 5, Table 6). 

On the one hand, the findings underscore the pivotal role 

of Confidence in reinforcing other key motivational 

components to adopt GenAI tools, within the ARCS 

framework. This, in turn, positively influences Attention, 

Relevance, and Satisfaction. 

This positive relationship suggests that when future 

teachers feel more confident in their ability to successfully 

carry out instructional tasks using GenAI as intelligent 

support tools, their overall satisfaction with these emerging 

applications increases. Confidence is fostered through the 

establishment of clear training objectives, the scaffolding of 

instructional experiences, the provision of constructive 

feedback, and a structured progression of pedagogical tasks. 

This sense of accomplishment and perceived value 

contributes to greater satisfaction, thereby promoting 

sustained engagement and motivation throughout the initial 

teacher training process. 

Furthermore, the perceived relevance of these tools is 

enhanced when future teachers recognize a clear alignment 

between GenAI applications and their personal goals, prior 

experiences, and anticipated professional needs. This 

alignment increases the perceived utility and meaningfulness 

of the initial training. 

In addition, attention is heightened as GenAI effectively 

capture and sustain trainees’ curiosity and interest, 

stimulating active cognitive engagement and encouraging 

deeper involvement in the training process.  

These findings align well with Keller’s ARCS 

motivational model and are consistent with previous research 

in the field, which emphasizes the importance of sustaining 
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individuals’ attention, aligning content with their personal 

goals, and fostering confidence in their ability to succeed. As 

trainees deepen their understanding, both their self-efficacy 

and their perception of relevance increase, ultimately leading 

to more meaningful and satisfying technology-enhanced 

educational experiences and practices [3, 22, 75]. 

On the other hand, both intrinsic motivation and 

well-internalized forms of extrinsic motivation, especially 

identified regulation, are closely interconnected and 

collectively exert a positive influence on future teachers’ 

motivation to adopt GenAI tools. These favorable 

motivational orientations play a central role in fostering 

meaningful engagement with intelligent support tools, 

particularly within the framework of the AMS model. 

This positive relationship suggests that when future 

teachers exhibit higher levels of intrinsic motivation, they are 

more inclined to engage in learning and training activities for 

the inherent satisfaction and pleasure it provides. This 

motivation manifests in several interrelated dimensions. 

Firstly, a higher intrinsic motivation to know reflects a 

profound desire to explore, understand and utilize emergent 

technologies. This motivation, driven by curiosity and a 

commitment to cognitive development, encourages future 

teachers to engage with GenAI tools as an integral part of 

their pedagogical development during initial training. 

Furthermore, a heightened intrinsic motivation toward 

accomplishment is evident when future teachers derive 

satisfaction from attempting and completing pedagogical 

tasks using GenAI. This form of motivation is directly 

associated with enhanced feelings of competence and 

personal achievement. 

Moreover, an elevated intrinsic motivation to experience 

stimulation is evident when future teachers engage in the 

pursuit of engaging and stimulating experiences, such as the 

excitement, aesthetic pleasure, or novelty offered by 

interacting with GenAI tools during initial training. 

This result is consistent with the positive findings reported 

in previous studies, which emphasize the significant impact 

of internal motivational factors on various dimensions of 

human behavior, including the adoption of GenAI tools as 

intelligent support tools for pedagogical task preparation 

during initial teacher training. Notably, Mohamed et al, Nitza 

Davidovitch and Ruth Dorot similar conclusions [14, 69]. 

In parallel, extrinsic motivation in the form of identified 

regulation plays a significant and complementary role. When 

future teachers perceive the use of GenAI tools as personally 

meaningful and aligned with their values, professional goals, 

and aspirations, this motivation becomes internalized, 

consistent with the theoretical propositions of Deci and 

Ryan’s SDT [17]. As a result, even though it originates 

externally, it functions similarly to intrinsic motivation in 

promoting sustained engagement and tool adoption. 

In contrast to these forms of motivation, amotivation, as a 

distinct motivational construct, holds particular significance 

in understanding future teachers’ engagement with GenAI 

tools. The findings, characterized by low negative or low 

positive correlations with other forms of motivation, and the 

absence of statistically significant associations, highlight the 

inverse role of amotivation in motivational dynamics. This 

pattern is consistent with the foundational principles of SDT, 

which posits that amotivation reflects a state of lacking 

intentionality or perceived value in an activity [17]. These 

results are further reinforced by the work of  

Vallerand et al. [26] particularly through the development 

and validation of AMS model, which conceptualizes 

amotivation as a motivational dimension that is both 

theoretically and empirically distinct from intrinsic and 

extrinsic motivation in educational contexts. 

The interplay between intrinsic motivation (in all its 

dimensions) and identified extrinsic motivation indicates that 

future teachers who are driven by curiosity, a desire for 

mastery, and stimulating training experiences are more likely 

to embrace GenAI tools. Moreover, when extrinsic 

motivations become internalized, meaning they are 

consciously valued and self-endorsed, they become powerful 

in promoting the motivation of adoption. 

In sum, the synergy between intrinsic and internalized 

extrinsic motivational drivers highlights the necessity of 

designing initial teacher training programs that foster 

personal interest, cognitive challenge, and alignment with 

future professional goals. Such motivationally informed 

frameworks can significantly enhance the adoption and 

pedagogical integration of GenAI tools in initial teacher 

training contexts. 

⚫ Impact of Demographic and Motivational Factors on 

Future Teachers’ Motivation to Adopt Generative AI 

Tools 

The adoption of GenAI tools as intelligent support systems 

in initial teacher training has become an increasingly 

prominent subject of interest and discussion within the 

educational research community. This section examines the 

influence of selected independent variables, namely gender, 

training specialization, ARCS-based motivational 

components, and AMS-based motivational dimensions, on 

future teachers’ motivation to adopt such tools. 

Demographic Factors (gender and training specialty): 

To test the related hypotheses (H1) and (H2), a series of 

statistical analyses were conducted, including Independent 

Samples t-tests (Student’s t) and one-way Analysis of 

Variance (ANOVA) as proposed by Fisher. The findings 

presented in Tables 10 through 18 form the empirical basis 

for this evaluative discussion. 

Regarding the relationship between gender and future 

teachers’ motivation, the results reveal no statistically 

significant differences between male and female participants. 

Both groups exhibit comparable levels of motivation, 

suggesting that gender is not a significant predictor of 

motivational orientations toward adoption GenAI tools 

adoption in pedagogical practices (Tables 12–13). 

Accordingly, Hypothesis (H1) is rejected. 

This finding is consistent with recent studies, which 

similarly report negligible gender-based disparities in AI 

emergent technology adoption and motivational orientation 

in educational contexts [24]. For instance, Møgelvang et al. 

found no significant gender differences in the integration of 

GenAI chatbots training or integration in their courses in 

higher education, indicating that both male and female 

demonstrate a positive motivational orientation toward the 

use of GenAI, albeit informed by distinct priorities and 

expectations. Their study indicates that male tend to engage 

with GenAI tools more frequently and across a broader 

spectrum of academic tasks, often perceiving these tools as 
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highly relevant to their future professional relevance. 

Conversely, female predominantly utilize GenAI for 

text-based assignments and express heightened concerns 

about issues such as critical thinking, autonomous 

decision-making, and the need for clearer pedagogical 

guidance on the appropriate use and trustworthiness of such 

technologies [77]. 

Similarly, Nyaaba et al. in their study titled “Generative AI 

in Academic Research: A Descriptive Study on Awareness, 

Gender Usage, and Views among Pre-Service Teachers”, 

identified a significant gender disparity in the use of GenAI 

tools, with male future teachers exhibiting a higher frequency 

of use compared to their female counterparts. Despite this 

difference, both genders expressed a positive attitude towards 

GenAI tools in academic research, noting among other 

benefits that these tools provided them with confidence and 

independence in their research writing [78]. Together, these 

findings suggest that while motivational orientation toward 

GenAI tools is broadly positive across genders, the frequency 

of use and underlying motivations may diverge, pointing to 

the importance of gender-sensitive pedagogical strategies in 

future teacher training. Consistent with these findings, recent 

research conducted in the Moroccan educational context by 

Fakhar et al. revealed that both male and female teachers 

exhibited comparable levels of motivation toward the use of 

GenAI tools, with no statistically significant gender-based 

differences. This indicates that the motivational drive to 

adopt GenAI in educational environments may be more 

closely linked to individual perceptions of its practical utility 

and pedagogical effectiveness than to demographic  

variables [24]. Supporting this perspective, Al Darayseh 

similarly reported an absence of significant differences in 

behavioral intentions between male and female science 

teachers regarding the integration of GenAI in instructional 

practices. These results further suggest that gender may not 

constitute a determining factor in influencing educators’ 

motivational orientation toward GenAI adoption [81]. 

However, it is important to note that other studies have 

reported gender disparities in the adoption and use of GenAI 

tools; Otis et al. highlight a pervasive and systemic gender 

gap in the use of GenAI across diverse global contexts, 

including various regions, sectors, and professional domains. 

Their research indicates that female remain significantly 

underrepresented among GenAI users, even in environments 

where technological access is equitable. This disparity points 

to underlying barriers—such as reduced motivation, lower 

confidence levels, and prevailing sociocultural norms—that 

may disproportionately inhibit female’s engagement with 

these emerging technologies. If left unaddressed, this 

imbalance risks reinforcing gender biases in AI systems, as 

the data used to train these tools may predominantly reflect 

male-generated input, thereby marginalizing female 

perspectives and exacerbating existing inequities in digital 

innovation and development [82]. 

These contrasting findings underscore the complexity of 

gender dynamics in GenAI adoption and highlight the need 

for further research to understand the underlying factors 

contributing to these differences, particularly within the 

domain of teacher-training education. 

While gender does not appears to significantly predict 

motivational orientations toward the adoption GenAI tools in 

pedagogical practices, training specialization may constitute 

a significant factor, as discussed subsequently. 

Concerning the relationship between training 

specialization and future teachers’ motivation, the results 

revealed a statistically significant effect. Descriptive 

statistics demonstrated that participants in the literary 

specialization reported the highest motivation levels, 

followed by those in the scientific and primary 

specializations (Table 16, 17 and 18). Consequently, 

Hypothesis (H2) is partially supported. 

These findings suggest that training specialization may 

serve as a determining factor influencing the motivation of 

future teachers to adopt these tools in their instructional 

practices during initial teacher training. Notably, among the 

various specializations examined, literary education appears 

to be associated with the highest levels of motivation for the 

GenAI tool adoption. 

This heightened motivation may be attributed to a stronger 

alignment between the functional affordances of GenAI 

applications and the pedagogical demands of literary 

disciplines. Specifically, GenAI technologies, such as 

ChatGPT, DeepSeek, and Grok, are well-suited to support 

tasks commonly encountered in literary training, including 

writing assistance, text generation, and linguistic analysis. 

This perceived pedagogical relevance and utility may 

enhance the willingness of future teachers in literary fields to 

engage with such tools. 

This finding is consistent with recent empirical evidence 

reporting that future language teachers recognize the 

pedagogical potential of GenAI in enhancing language 

instruction, particularly through its ability to provide 

immediate feedback and generate diverse linguistic  

examples [87]. Indeed, the interest in AI tools within the field 

of language education is well established; language educators 

and researchers have long explored the adoption of AI-driven 

applications, especially chatbots and digital writing assistants, 

owing to their perceived effectiveness in supporting language 

learning and fostering self-directed learning practices [83]. In 

support of this perspective, a growing body of empirical 

research has investigated the integration of AI-based tools in 

the context of language learning. Jeon, for example, 

conducted an intervention study with language learners and 

found that those who perceived an AI-powered 

English-learning chatbot as a genuine conversational partner 

exhibited a higher degree of motivation to engage in 

interactive tasks [84]. In a similar vein, Chiu et al. reported 

that the incorporation of AI chatbots into language learning 

environments significantly boosted learners’ interest and 

motivation to participate in educational activities [85]. 

Further evidence is provided by Ali et al., whose quantitative 

survey—conducted shortly after the launch of 

ChatGPT—demonstrated that both language instructors and 

pre-service teachers perceived ChatGPT-supported 

instruction as positively influencing learners’ autonomous, 

intrinsic, and extrinsic motivational orientations. The authors 

attributed this motivational enhancement in part to the 

novelty effect of the tool, which initially stimulates learners’ 

attention and engagement [86]. 

Thus, this potential synergy between GenAI capabilities 

and the nature of pedagogic tasks may contribute to a more 

favorable motivational orientation among different 
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specialization trainees, encouraging them to adopt these 

emerging technologies into their future teaching  

practices [13]. 

Motivational Factors (ARCS and AMS dimensions): 

To further examine and evaluate the potential causal 

impact of motivational factors, specifically the ARCS-based 

components and AMS-based motivational dimensions, on 

future teachers’ motivation, a multiple linear regression 

analysis was conducted. This analytical approach allowed for 

the identification of the most significant predictors 

influencing the perceived motivation to adopt GenAI. The 

results provide a robust empirical foundation for 

understanding motivational orientations and developing 

targeted recommendations. These recommendations aim to 

assist educational stakeholders in recognizing the strategic 

importance of integrating GenAI tools into the training 

curricula of prospective teachers, thereby fostering more 

informed and effective implementation strategies within 

initial teacher education programs [13, 24, 78]. 

The MLR analysis revealed that the independent variables, 

namely Confidence, Attention, Relevance, and Satisfaction 

as components of the ARCS model, along with Intrinsic 

Motivation, Extrinsic Motivation, and Amotivation as 

dimensions of the AMS scale, exert a statistically significant 

influence on future teachers’ perceived motivation. These 

findings are consistent with the formulated hypotheses (H3) 

and (H4), thereby supporting and validating all associated 

sub-hypotheses. 

Building on the ARCS motivational framework and 

grounded in expectancy-value theory, the MLR analysis 

underscores the pivotal role of Attention, Relevance, and 

Satisfaction in shaping future teachers’ motivation to adopt 

GenAI. The strong positive contributions of these 

components highlight the effectiveness of motivational 

design in capturing trainees’ interest, aligning intelligent 

technological applications with their instructional goals, and 

providing meaningful, rewarding training experiences. These 

findings are consistent with prior research emphasizing that 

sustained engagement and perceived utility are critical for 

fostering motivational orientation and driving behavioral 

intentions in educational contexts. Moreover, the moderate 

yet statistically significant influence of Confidence further 

reinforces the importance of developing a strong sense of 

self-efficacy among trainees. As emphasized in the ARCS 

model, cultivating belief in one’s ability to successfully 

engage with and adopt GenAI tools, through clear objectives, 

structured learning progression, and supportive feedback 

mechanisms, can foster persistence and a willingness to 

experiment with innovative pedagogical  

approaches [22, 74, 75, 91]. 

Consistent with these findings, a recent study examined 

teachers’ motivation to adopt GenAI tools as a means of 

self-directed professional development in pedagogical 

contexts. The study, conducted with a cohort of physics 

teachers, implemented a training program integrating both 

traditional and AI-supported instructional strategies. 

Motivation was measured using the Keller’s ARCS model. 

The results indicated a generally positive disposition toward 

the use of GenAI, with strong intercorrelations among the 

four motivational dimensions—Attention, Relevance, 

Confidence, and Satisfaction—underscoring their combined 

impact on teachers’ motivation to utilize AI tools for 

enhancing pedagogical competencies and instructional 

effectiveness [24]. Complementing this, another 

investigation rooted in the ARCS framework explored 

learners’ engagement with AI technologies. It emphasized 

that motivational strategies fostering intrinsic interest, 

sustaining attention, reinforcing perceived relevance, and 

building confidence significantly enhance learners’ 

career-oriented motivation to interact with AI tools [25]. 

The AMS dimensions including Intrinsic Motivation to 

Know, to Accomplish, and to Experience Stimulation 

exhibited positive and statistically significant effects on 

future teachers’ motivation. These findings are align with 

SDT as articulated by Deci and Ryan and extended by 

Vallerand et al, which posits that intrinsic motivations, 

rooted in internal satisfaction, enjoyment and a sense of 

fulfillment, is strongly linked to autonomy, sustained effort, 

engagement and professional development [17, 26, 35, 69]. 

Complementing these results, a recent study explored 

university students’ motivation to engage with AI-based 

learning environments through the lens of both SDT and the 

AMS model. The study revealed that motivational 

enhancement within academically supportive contexts 

significantly increased learners’ engagement with AI tools, 

reinforcing the central role of motivation in AI-mediated 

education [29]. These findings underscore the 

methodological relevance of SDT and its associated 

motivational subtypes—fundamental to the AMS model—in 

understanding the pedagogical implications and learner 

dynamics introduced by the integration of GenAI in teaching 

and learning processes [30]. 

When educational practices are aligned with future 

teachers’ interests and providing opportunities for 

self-directed learning and meaningful engagement, they 

foster an environment conducive to intrinsic motivation. 

Such conditions not only enhance the effectiveness of initial 

teacher training but also support the broader goals of lifelong 

learning and holistic professional growth [73, 91]. 

Furthermore, extrinsic motivation, conceptualized as a 

multidimensional construct that reflects varying degrees of 

internalization and autonomy in behavioral regulation, from 

externally controlled actions to those progressively aligned 

with personal values, also emerged as a significant positive 

predictor of motivation. Specifically, Introjected Regulation 

and External Regulation demonstrated strong positive effects, 

indicating that even when motivations originate from 

external sources, they can meaningfully drive engagement 

when prospective teachers perceive them as relevant or 

compelling. These findings support the view that extrinsic 

motivations, particularly those perceived as purposeful or 

partially internalized, can facilitate productive and 

goal-oriented behavior within training educational contexts. 

Conversely, amotivation was the only negative predictor in 

the model, as theoretically anticipated by SDT. Its strong 

inverse relationship with future teachers’ motivation 

underscores the detrimental effects of disengagement, lack of 

perceived value, and absence of intentionality on 

performance and pedagogical outcomes [17, 26]. These 

results emphasize the importance of fostering both intrinsic 

and well-internalized extrinsic motivational states to support 

the effective adoption of intelligent technologies within 

initial teacher training programs. 

In sum, this research affirms the critical importance of 
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adopting GenAI tools as intelligent support systems within 

initial training curricula. By prioritizing the development of 

AI-driven technological competencies, teacher education 

programs can more effectively prepare future educators to 

navigate the evolving instructional landscape. Embedding 

GenAI proficiency into future teacher programs ensures that 

pre-service teachers not only acquire the skills to utilize tools 

such as ChatGPT, DeepSeek, and Grok effectively for 

pedagogical tasks, but also develop the capacity to critically 

evaluate their pedagogical implications. This proactive 

strategy supports both teachers’ readiness and broader 

educational innovation, aligning teacher training with the 

demands of contemporary, AI-enhanced learning 

environments [35, 37]. 

V. CONCLUSION 

As GenAI technologies, continue to evolve rapidly, 

ongoing research is crucial to understand the long-term 

impact of these tools on teaching, training and learning 

processes. Longitudinal studies are particularly valuable for 

tracking changes in teacher attitudes, identifying emerging 

challenges, and continuously refining teacher education 

programs to meet the evolving needs of the 21st-century 

education. 

This study revealed that future educators in initial training 

are increasingly recognizing the value and potential of GenAI 

tools as an intelligent supports for pedagogical tasks. The 

findings also emphasize the influential role of motivational 

dimensions, specifically those captured by the ARCS model 

and the AMS dimensions, in shaping participants’ 

perceptions motivation regarding the adoption of these tools 

from the early stages of their professional development. 

These important findings underscore the necessity for 

decision-makers in initial teacher training programs, 

particularly within the institution ENS, to prioritize the 

engaging with GenAI tools into their curricula. This adoption 

should go beyond mere introduction but also systematically 

support the meaningful implementation of AI-based 

technologies [67]. By fostering digital competence and 

reflective practice, future teachers can be better equipped to 

navigate and shape the evolving landscape of teaching and 

learning in the era of AI. 

The study’s promising outcomes also suggest several 

avenues for further research. Future investigations, 

particularly those employing qualitative approaches, could 

deepen our understanding of the cognitive and emotional 

responses of future teachers when engaging with GenAI tools, 

shedding light on the underlying factors that shape 

motivation, resistance, or ethical concerns. These avenues 

would contribute to a more comprehensive framework for 

integrating GenAI into teacher education in a sustainable and 

pedagogically sound manner. 

VI. LIMITATIONS 

This study provides valuable insights into the motivational 

factors influencing Moroccan future teachers’ adoption of 

GenAI tools, specifically ChatGPT, DeepSeek, and Grok, as 

intelligent support systems during their initial teacher 

training, particularly for pedagogical tasks. However, several 

limitations must be acknowledged to contextualize the 

findings and inform future research directions. 

Firstly, the sample was limited to future teachers enrolled 

at the ENS in the Fez-Meknes region of Morocco. This 

restriction was primarily due to practical constraints, 

including financial limitations, logistical challenges, and 

time constraints that prevented access to other training 

centers. As a result, the generalizability of the findings to 

other institutions or regions within Morocco, as well as to 

diverse educational systems globally, may be limited. Future 

studies should aim to include a broader and more 

representative sample from diverse institutions and 

geographical areas to enhance the external validity of the 

findings and ensure their applicability across varied 

educational contexts. 

Secondly, the study exclusively relied on quantitative data 

collected via structured questionnaires grounded in 

established motivational frameworks (ARCS and the AMS). 

While this approach facilitated efficient data collection and 

statistical analysis, it may have limited the depth of 

participants’ responses and failed to capture the full range of 

nuanced perspectives and experiences. Incorporating 

qualitative methods, such as semi-structured interviews or 

open-ended survey questions, in future research could 

provide a richer, more comprehensive understanding of the 

motivational dynamics surrounding GenAI adoption. 

Moreover, while the present analysis focused on a specific 

motivational constructs, it is important to acknowledge that 

other potentially influential factors were not explored. 

Factors such as technology-related anxiety, concerns about 

data privacy and security, perceived enjoyment, and 

institutional support, among other relevant factors could also 

play a critical role in shaping motivation. Exploring these 

dimensions in future investigations would contribute to a 

more holistic, nuanced understanding of the motivational 

landscape, and facilitate the development of more targeted, 

contextually appropriate strategies for adopting GenAI into 

initial teacher education programs. 
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