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Abstract—The existing predetermined paradigms of learning
styles, including the Felder-Silverman Learning Style Model
(FSLSM), VARK, Kolb’s experiential learning theory, and the
Honey and Mumford model, have found significant application
in personalized e-learning settings. However, these models
typically rely on fixed, self-reported surveys that are not
validated against actual learner behavior. This research
addresses this shortcoming by conducting a behavioral analysis
based on engagement data within a Learning Management
System (LMS), incorporating elements such as content
interaction, forum participation, and assessment performance.
The K-Means++ clustering algorithm was employed to cluster
learners and uncover latent behavioral profiles, which were then
empirically compared with conventional models of learning
styles to evaluate alignment. The FSLSM exhibited the strongest
level of correlation with the behaviorally derived clusters (ARI
= 0.87; NMI = 0.81), suggesting that it might encapsulate some
persistent behavioral tendencies. But some key differences
emerged in terms of time-on-task dynamics, student interaction
behavior, and patterns of stress, none of which are wrapped
within the FSLSM framework. This suggests that behavioral
clustering describes actionable insights beyond profiles, which
are static and self-reported, and allow for adaptive interventions
responding to the real-time state of the learner.

Keywords—learning styles, clustering, adaptive learning,
student engagement, K-Means, academic performance

I. INTRODUCTION

Learning style theories are not new in education research
since they can determine the instructional strategy an
instructor can use to accommodate individual students [1, 2].
The problem of personalization according to the learning
styles is even more important in the field of digital learning
environments, where the direct observation is hardly
possible [3]. Behavioral data can provide useful insights into
engagement and content interest. These insights enable more
timely and focused instructional interventions [4, 5].
Regardless of their popularity, traditional learning style
models, including the VARK model, Kolb Experiential
Learning Theory, and the Felder-Silverman model, have
landed under criticism of insufficient empiricism and over-
dependence on subjective preferences of learners [6, 7].

Besides, several empirical studies have shown mixed
results in terms of the efficiency of aligning of instructional
strategies with prefixed styles of learning [8, 9], and therefore
doubts exist about the usefulness of such models when using
e-learning systems in modern, data-rich e-learning systems.
Consequently, the learning styles are being more and more
thought of not as an immutable feature, but rather as a
behavior-related construct [10]. This paradigm transition
highlights more observable signals, e.g. learner interactions,
time-on-task, resource consumption, and reaction to
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instruction strategies compared to self-reports [11]. Rich
behavioral data on a granular level has become available due
to the popularization of digital learning environments,
enabling teachers to use more adaptable and responsive
pedagogical practices [12].

Machine learning further improves the analysis of patterns
of engagement, and it is possible to cluster learners on the
basis of similar behavioral patterns and performance
indicators. This data dynamics-based segmentation can be
used to inform the design of personalized learning
interventions that are personalized in real-time based on
learners’ specific profiles [13]. Even though learning styles
have been widely discussed on the theoretical level, very little
has been done on the empirical level with regard to behavioral
validation of the learning styles theory, especially using
unsupervised learning methods.

In the majority of available studies, learner profiles are
considered fixed, whereas the approach is very based on
subjective surveys, which often do not correlate with real
learner engagement. The current paper seeks to alleviate this
shortage by undertaking K-Means clustering on behavioral
data of a large and heterogeneous group of learners in hopes
that segments will be empirically derived and compared to
the conventional learning style models. The result of this
effort is a new area of unsupervised clustering and adaptive
learning design providing the evidence-based approach to
behavior-informed personalization in automated e-learning
systems [14, 15].

A.  Theoretical Positioning

This study adopts a refinement approach rather than a
wholesale rejection of traditional learning style models.
While behavioral clustering offers a dynamic, data-driven
alternative, we recognize that established models such as
FSLSM retain explanatory value for certain learner traits. Our
framework, therefore, integrates behavioral profiles with
selected elements of LS theory to enhance interpretability and
pedagogical relevance. This integration is empirical rather
than conceptual: we use FSLSM and other models as
reference points to evaluate alignment, but not as fixed
determinants of learning paths. In doing so, we position
behavioral clustering as an evolution of LS models—
preserving their pedagogical strengths while overcoming
their reliance on static, self-reported measures.

B. Research Questions

1) Do K-Means clustering with behavioral data display
usable profiles of learners?

2) In what ways are clustered learner types congruent to
traditional learning style theories?
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3) What are the appropriate adaptive strategies implied by
behavior-based clusters?

II. STATE OF ART

As the world converts to long-distance learning, it is e-
learning that stands out as the medium of education in
institutions [16]. This is easily accessible, expandable, and
flexible, and is an acceptable alternative to classroom-based
lessons [17]. Nevertheless, with the current fast development
of technology, several e-learning systems fail to support all
the differing needs of the learners. The students often
incorrectly termed as slow learners, that is, those students
who need more time, feedback modulated to their needs, and
scaffolded learning, are inadequately served in the traditional
online platforming [18]. Such learners are not inept; they
enjoy the learning tempo and style, and that is served through
self-paced feedback-rich learning environment [19].

Such systems of individual learning paths are often not
supported by the traditional e-learning systems, and thus the
individuals have less engagement and performance in
academic disciplines [20]. As an answer, there has been the
utilization of Learning Style (LS) models in educational
research over time to deal more comprehensively with learner
heterogeneity. Examples of such frameworks include the
Experiential Learning Theory of Kolb, the VARK model
(Visual, Auditory, Reading/Writing, Kinesthetic), and the
Felder-Silverman Learning Style Model (FSLSM), each of
which gives a more structured explanation of how people
prefer to receive and process information [1, 21, 22]. Kolb
laid his stress on the experiential learning processes, whereas
VARK typifies examples with respect to preferred sense, and
FSLSM makes use of aspects of Koncept Active-reflective
and Visual-verbal [23]. These theories have, over the years,
greatly impacted the design of instructions, delivery of the
content, and evaluation in face-to-face and online classes [7].

The coupling of clustering methods-mostly K-Means, in
behavioral profiling of educational systems is starting to bear
fruit largely due to preceding studies such as Tin Tin [24],
and Calderon-Valenzuela [25]. These papers validate the
applicability of a data-driven segmentation of the learner as a
basis for adaptive and personalized e-learning environments.

Several empirical studies demonstrate the practical value
of behavioral analytics for adaptive learning. For example,
Uzir et al. [26] showed that time-on-task and navigation
sequences in LMS logs could predict course completion with
over 80% accuracy. [27] successfully used clickstream data
to model self-regulated learning phases, enabling
personalized prompts that improved retention. Similarly, [28]
integrated forum participation metrics into adaptive
recommendation systems, resulting in measurable gains in
learner engagement. These studies validate the feasibility and
effectiveness of behavior-driven personalization strategies in
real-world educational settings.

However, in the modern context of the educational
literature, the LS-based interventions have been increasingly
questioned in spite of their popularity. There have been
several systematic reviews and well-controlled studies that
have described very little empirical evidence regarding the
potential of LS-aligned instruction to enhance academic
outcomes [8, 9, 29]. Also, in the traditional face-to-face
classrooms, the educators could change the teaching strategy
instantly following the visual and verbal signals of the
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students. But this degree of dynamism in responsiveness is
commonly wanting in online learning conditions, in which an
instructor proactively communicates with extensive cohorts
distantly [30]. Consequently, teachers are usually bound to
specific existing instructional strategies and lose the
flexibility they could use to personalize learning as initially
conceived of by LS frameworks [3]. This disjuncture brings
to bear a central problem in the translation of theoretical
models of learning style to practice into actionable models of
education in the digital environment.

Online communication also contributes to the
disadvantages of Learning Style (LS) models because digital
media are reverse and are inclined towards uniformity and a
lack of immediate interpersonal communication [31]. As an
example, kinesthetic learners might not have a large physical
interaction in the virtual space, and learners with low reading
skills would have difficulties in reading-based courses. As a
result, e-learning environments, which use fixed LS design
models, do not take into consideration the flexibility of the
engagement modes of learners as well as cognitive
needs [12].

Recent studies also tend to advocate the idea that learning
preferences are not inherent characteristics but change over
time and according to the context [7]. The way individuals
process information is affected by factors like the type of task
to be undertaken, the learning setting, and the topic being
learnt. Unlike basing on single self-reported LS inventories,
scholars recommend behavior-based modeling, which
examines the interactions and engagement pattern of learners
and evaluates their performance parameters to determine their
learning preference [4, 5]. This world view is important
especially to slow learners whose intellectual improvement
can vary dynamically as the mode and the field of study create
relevance [18].

To this extent, there is a move to applying the measurable
and real-time behavioral measurement to promote
adaptiveness in online teaching. Machine learning and
educational data mining have advanced to the point where it
is now possible to extract patterns of behavior within
massively large datasets, and base instruction techniques
around them based on data [32]. One benefit of this kind of
systems is that, it is able to group learners dynamically in
accordance with the immediate social interactions and
outputs and can hence aid in the development of constructive,
extensible and situation computing learning ecologies [5, 33].

Although there are a variety of traditional LS models used
as frameworks on which digital pedagogy has been shaped
such as the VARK, Kolb and FSLSM, moment-to-moment
variation tends to be ignored when it comes to its application.
In addition, most of these models are confirmed with self-
report measures but not center on behavioral ones.
Remarkably, no comparative research exists on theoretically
based profiles of learners against behaviorally based ones is
available. Such a disparity indicates that data-driven solutions
are needed to determine the match between the relationship
between LS models and real engagement patterns-especially
in large-scale e-learning ecosystems.

III. METHODOLOGY

In this research, the K-Means clustering algorithm is used
to perform the analysis of the behavioral engagement and



International Journal of Information and Education Technology, Vol. 16, No. 1, 2026

academic performance data of the students to come up with
different learning profiles [9]. The first one is to formulate a
dynamic framework that can support individual and dynamic
needs of learners, especially in an online learning context [5].
Five key steps include the methodological pipeline of data
collection, data preprocessing, feature selection, clustering
via K-Means++, and cluster validation based on the known
evaluation criteria [30, 32]. The general workflow is shown
in Fig. 1.
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Fig. 1. Clustering pipeline and modeling framework.
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Fig. 1 explains the procedure used to conduct the study.
Initial data collection is performed, then comes the stage of
pre-processing missing values, looking at outliers, and
normalizing the data. Before performing the K-Means
clustering, correlation analysis, RFE, and hyperparameter
tuning are used for choosing the relevant features. Adaptive
learning is recommended, and the technology gives students
creative profiles and custom learning insights

A. Data Collection and Description

The information employed was based on two publicly
available educational datasets sourced from Kaggle, both
focusing on learning styles and digital engagement
indicators [34, 35]. These datasets include variables such as
student age, gender, academic level, study period, class
attendance, resource usage, learning style preferences, and
academic performance. Following preprocessing and
integration, a consolidated dataset comprising 14,003 student
records and 16 key behavioral features relevant to online
learning was created [32, 33]. While detailed contextual
metadata about the dataset’s institutional origin or geographic
background is not explicitly documented, the combined data
offers a comprehensive view of learner behavior in digital
education environments, providing a solid foundation for
behavior-based personalized learning system development.
However, the limited information on the cultural and
institutional contexts of these datasets may restrict the
generalizability of the findings, underscoring the need for
future research involving more diverse and well-documented
datasets to validate and extend these results (Table 1).

Table 1. Overview of student-related variables used for analysis

Variable Type Description
Age Numeric Student’s age in years
Gender Categorical Gender (encoded as 1 = Male, 0 = Female)
Learning Style Categorical ~ Self-reported learning style (VARK/FSLSM)
Motivation Categorical Motivation level (Low to Very High)
Internet Binary Access to internet (1 = Yes, 0 = No)
Resources Binary Access to learning resources
Edu-Tech Binary Use of educational technology
Extracurricular Binary Participation in extracurricular activities
Online Courses Numeric Number of online courses completed
Discussions Binary Participation in classroom discussions
Study Hours Numeric Average weekly study hours
Attendance Numeric (%) Percentage of classes attended
Assignment Completion ~ Numeric (%) Percentage of assignments completed
Exam Score Numeric Final exam score
Stress Level Categorical ~ Self-reported stress level (Low to Very High)
Final Grade Categorical Final academic grade (A, B, C, D)

Table 2. Encoding of categorical variables for analysis

Variable Original Values Encoded Values
Gender Male / Female 1=Male, 0=Female
Learning Style Visual, Auditory, Kinesthetic, Reading  1=Visual, 2=Auditory, etc.
Motivation Low, Medium, High, Very High 0=Low—3=Very High

Internet, Resources, Edu-Tech, Extracurricular, Discussions
Stress Level
Final Grade

Yes / No 1=Yes, 0=No
Low, Medium, High, Very High 0=Low—3=Very High
A,B,C,D 0=A—3=D

Categorical values were encoded numerically during
preprocessing. Details provided in Table 2.

B. Data Pre-Processing

Data preparation was done to ascertain the strength and
efficiency of the clustering process. The missing data was
imputed in terms of mean imputation in the case of numerical
attributes and mode imputation in the case of categorical
features, thus maintaining the completeness of the dataset but

198

not at the risk of statistical bias [33]. The Interquartile Range
(IQR) method was applied to find outliers, and thus remove
them effectively, so that the clusters were more separated, and
then the corresponding outcomes of segmentation were
reliable [32]. Also, 32 identical records were discovered and
removed to ensure the integrity of the data and avoid the
biased clustering tendency.

Dichotomy data were encoded as may be needed to be
processed by the K-Means algorithm. Categories (e.g., for
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motivation and stress levels) were mapped to integer codes,
and so were aspects with a binary value (e.g., having access
to the internet). Gender was coded as 1 in case of male and 0
in case of female, so that categorical variables can be used in
the machine learning algorithm. Notably, all the values were
encoded on a binary basis rather than ordinal, such as 1 and
2, to discourage the artificial ranking or bias of the
unsupervised learning process [36].

All the numerical variables were put through Min-Max
normalization, where all features became [0, 1]. It was
important since K-Means uses Euclidean distance, which is
easily affected by the scale of the data. Consequently, work
done on homework, the number of classes, and the hours
spent studying became as similar as possible, facilitating
clustering.

C. Feature Selection

We improved how well the clusters were grouped by using
several feature selection methods [33]. Initially, Pearson’s
correlation was applied to assess linear relationships among
numerical variables, while Chi-square tests were used to
evaluate associations between categorical features [27].
Features that exhibited high multicollinearity or contributed
minimally to the clustering process were removed to reduce
redundancy and noise in the data [34, 35].

To further enhance the relevance of the feature set,
Recursive Feature Elimination (RFE) was employed to
iteratively rank and retain the most discriminative attributes
for distinguishing student clusters [36]. This was followed by
a domain-specific validation phase, where the coauthors—
two senior educational technologists—reviewed the
remaining variables. Their selection was guided by
pedagogical relevance, alignment with adaptive learning
frameworks, and prior empirical associations between
learning styles, stress levels, engagement indicators, and
academic performance [37].

D. Clustering Algorithm

K-Means clustering algorithm was chosen to perform this
experiment, taking into consideration its efficiency,
scalability, and success in a range of previously reported data
mining tasks in the field of education, where it is used to
segment learners based on their behavioral patterns [32, 33].
Its mechanism makes use of the centroid and as a result it is
highly interpretable and is imperative in developing relevant,
contextual learner profiles in line with the behavior patterns
and their conceived learning styles. K-Means scales to
normalized and fairly high-dimensional data, and hence a
good fit to the data that is going to be used in this study.
However, compared to them, other algorithms like DBSCAN
are sensitive to different densities, and they also face
problems of global structures in clustering, and hierarchical
clustering produces non-stable and non-scalable solutions
when used on large datasets, as this type of clustering is
computationally complex.

To increase the performance of the clustering, the K-
Means++ initialization method was used, which helped to
make the choice of initial centroids that was optimal as well
as well distributed to increase both speed and accuracy of
convergence and clustering [38].

Earlier studies published have proved that the K-Means
clustering algorithm can be applied to the Learning
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Management System (LMS) context and thus the relevance
in the current study [39]. The algorithm would recalculate
cluster centroids with iterations until it has converged either
by stabilizing the centroids or by reaching the maximum
iterations. To find the best number of clusters, we used the
Elbow Method which detects the position where extra
clusters after a certain number of them would result in
reduced intra-cluster variance [40]. The Silhouette coefficient
was computed further to corroborate the goodness of the
clustering pattern. This measure quantifies the degree of
correspondence between each data point with its assigned
cluster, as contrasted with adjacent, clusters and provides an
idea of cluster cohesion and segregation [41]. The above
validation methods were used before the downstream analysis
was employed to ascertain that the generated clusters were
not only meaningful but also statistically sound.

E. Technical Implementation

Python was used to run the computational process,
including data manipulation, numerical analysis, clustering,
and model validation, using well-established libraries such as
Pandas, NumPy, and Scikit-learn [42-44]. Principal
Component Analysis (PCA) was employed to reduce the
feature space dimensionality and enhance the interpretability
of the resulting clusters. PCA is a commonly used technique
in educational data mining that enables dimensionality
reduction while preserving the most significant variance in
the dataset [44]. In this study, the first two principal
components retained approximately 72% of the total variance,
allowing a meaningful visual representation of the clustering
output without major information loss. This step also
improved clustering efficiency by reducing computational
complexity. To determine the optimal number of clusters, the
Elbow Method was applied by plotting the within-cluster sum
of squares (WCSS) against different values of K. The
inflection point observed at K=6 indicated the most
appropriate trade-off between model complexity and
performance. This selection was further supported by internal
validation metrics.

IV. RESULTS

Findings by Cluster and Analysis. This section presents the
results obtained from applying the K-Means clustering
algorithm to the normalized and preprocessed dataset,
comprising behavioral engagement records from 14,003
students. The analysis identified six distinct learner clusters,
each representing a unique behavioral engagement profile.

To ensure the robustness and interpretability of the
clustering solution, several internal validation measures were
employed, including inertia (within-cluster sum of squares),
the Silhouette Coefficient, and the Davies-Bouldin Index
(DBI) [45, 46]. Inertia was used to assess the compactness of
each cluster, reflecting the tightness of data points within the
same group.

The Silhouette Coefficient provided a quantitative measure
of both cluster cohesion and separation, with values closer to
1.0 indicating well-defined, non-overlapping clusters. The
maximum silhouette score of 0.62 was observed at K=6,
suggesting a strong internal structure and clear separation
between behavioral profiles. Fig. 2 illustrates the variation in
silhouette scores for different values of K (ranging from 2 to
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10), with a clear peak at K=6, supporting the selection of this
configuration as the most stable and interpretable.

The Davies-Bouldin Index (DBI) also supported this
conclusion, reaching a minimum value of 0.47 at K=6, which
indicates minimal intra-cluster variance and high inter-cluster
separation. This combination of a high silhouette score and a
low DBI at K=6 demonstrates that the identified clusters are
both internally cohesive and externally well-separated,
providing a strong empirical foundation for subsequent
analysis.

Silhouette Score by Number of Clusters (K)
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Fig. 2. Silhouette analysis for optimal cluster selection.

Silhouette coefficient as a function of the number of
clusters (K) for K-Means clustering. The maximum silhouette
score (0.62) at K=6 (dashed line) demonstrates strong intra-
cluster cohesion and inter-cluster separation, supporting the
selection of six distinct learner profiles for further analysis
(see Fig. 2).

The silhouette analysis provides strong internal validation
for the six-cluster solution. The clear maximum in the
silhouette score, alongside supporting metrics such as the
Davies-Bouldin Index, reinforces the stability and
distinctiveness of the identified learner groups. These
findings provide a solid empirical basis for subsequent
profiling and analysis of each cluster.

A trend analysis of the silhouette score across K values (2
to 10) consistently indicated that K = 6 yields the most stable
and interpretable structure. Accordingly, further analyses and
interpretations in this study are based on the six-cluster
solution.

A. Tools Used for Clustering Evaluation

Inertia also refers to the Within-Cluster Sum of Squares.
For each data point, the Inertia Eq. (1) measures the distance
from that point to its assigned cluster centroid. As compute a
smaller value, the data is more tightly grouped. It can be
determined by a formula as follows:

K
inertia = 2 Z ||xj - yi”z @)
i=1 njEC;
where:

x; is a data point in cluster ¢;
i 1s the centroid of cluster c¢;
k is the number of clusters

B. Silhouette Coefficient

The Silhouette Coefficient measures how well a data point
fits within its cluster compared to other clusters. It is defined
in Eq. (2) as:
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b(i)—a(i) (2)

SW = L Gos®)

where:

a(i): average distance between i and all other points in the
same cluster

b(7): lowest average distance of i to all points in any other
cluster

Values close to 1 suggest well-clustered points, while
values near 0 indicate overlapping clusters.

C. Cluster Profiles

Each cluster distinctly represents a homogeneous group of
students sharing closely aligned behavioral and academic
characteristics, allowing targeted and highly effective
pedagogical interventions.

1) Cluster 0: Strategic  Self-Directed  Achievers:
These learners demonstrate consistently high study hours,
robust class attendance, and moderate stress levels,
reflecting strong self-regulation and intrinsic motivation.
They embody mastery-oriented strategies and stand to
benefit significantly from self-paced, enriched learning
modules and access to advanced digital resources that
foster deep learning.

Average study hours: 20.08

Class attendance: 80.40%

Resource utilization: 1.10

Participation in extracurriculars: 0.58

Participation in discussions: 0.57

Stress level: 1.28

Educational technology use: 0.73

2) Cluster 1: High-Stress Underperformers: Despite
comparable study hours and attendance to top performers,
this group exhibits elevated stress coupled with
suboptimal academic outcomes, indicating possible
cognitive overload and ineffective coping mechanisms.
Tailored scaffolding, emotional support resources, and
adaptive pacing are critical to mitigate stress and unlock
their learning potential.

Average study hours: 19.74

Class attendance: 79.68%

Resource utilization: 1.10

Extracurriculars: 0.58

Discussions: 0.60

Stress level: 1.32

3) Cluster 2: Consistent but Plateaued Learners: Maintaining
high engagement and attendance, these students
experience a performance plateau, highlighting the need
for interventions that develop metacognitive skills and
introduce varied instructional approaches. Such strategies
will be essential to stimulate continuous academic growth.

Study hours: 20.07

Highest class attendance: 80.85%

Resource usage: 1.10

Discussions: 0.62

Stress level: 1.34

Tech use: 0.69

4) Cluster 3: Intensively Engaged  Achievers:
Characterized by the highest study hours and moderate
stress, this resilient group thrives on challenging,
problem-based learning experiences and benefits greatly
from peer mentoring opportunities that deepen
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understanding and sustain motivation.

Study hours: 20.43 (highest among all clusters)

Attendance: 79.82%

Resources: 1.08

Discussions: 0.62

Stress level: 1.27

5) Cluster 4: Overextended Multitaskers: These learners
juggle numerous extracurricular and online commitments,
resulting in the highest stress levels and the lowest study
hours. Effective support through time management
training, workload balancing, and flexible deadlines is
vital to maintain sustainable engagement and prevent
burnout.

Study hours: 19.49 (lowest)

Attendance: 79.99%

Extracurriculars: 0.60

Online course participation: 10.28

Stress level: 1.35 (highest)

6) Cluster 5: Flexible but Inconsistent Performers:
Displaying adaptable learning behaviors paired with low
stress, this group’s inconsistent academic performance
suggests a need for adaptive learning systems offering
diversified content delivery and goal-setting tools, which
can help stabilize and enhance outcomes.

e Study hours: 19.89

e Attendance: 79.44%

® Resource use: 1.11 (highest)

e Stress level: 1.21 (lowest)

To enhance interpretability and practical application, each
cluster label is rigorously grounded in quantitative behavioral
metrics—such as study hours, attendance, and stress—and
directly linked to actionable pedagogical strategies.
Complementary visualizations, including heatmaps with z-
scored feature means, distinctly characterize each cluster,
ensuring that the categorization is both data-driven and
deeply educationally meaningful.

D. Cluster—Learning Style Alignment Analysis

To quantify the correspondence between the behaviorally
derived clusters and self-reported FSLSM types, we
computed the Adjusted Rand Index (ARI) and Normalized
Mutual Information (NMI) between the two label sets.
Results showed a strong alignment (ARl =0.87; NMI =0.81),
indicating that FSLSM categories capture many aspects of
learner behavior, yet some variance remains unique to
behavioral clustering. This supports the argument that
behavioral clustering provides complementary insights
beyond those offered by static LS models.

E. Cluster Distribution

Measurement Results in Fig. 3 clearly show that clusters
are clearly divided according to the studied variables. It is
possible to see in Fig. 4 that clusters have populations of
different sizes and possess unique characteristics.

Here, the six student groups identified by behavior and
performance are shown on a chart made from the two leading
principal components. Every cluster is clearly associated with
a certain color, proving that learners with similar behaviors
are grouped.

Fig. 4 demonstrates how the students are spread across the
six clusters and what percentage each group represents. The
largest group, Cluster 5, points to a big percentage of students
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who have changed engagement habits and many different
outcomes. The next clusters are 2 (Consistent but Plateaued
Learners) and 4 (Overextended Multitaskers), where learners
take part actively, but Overextended Multitaskers seem to feel
more stressed and are involved in more activities outside
school. There are similar numbers of students in groups 0
(Strategic Self-Directed Achievers) and 3 (Intensively
Engaged Achievers), which suggests a fair share of devoted
learners. Even though Cluster 1 holds the least number of
students, it needs the most specific teaching strategies. Since
students are divided into many different clusters, effective
learning programs should be designed for each type of student,
as one profile doesn’t dominate.

Cluster Visualization
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Fig. 3. Clustering results of students’ behavior.
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Fig. 5. Heatmap of mean feature values across learner clusters.

The heatmap in Fig. 5 provides a compact visual
comparison of feature means across all clusters. Consistent
high attendance rates are evident across clusters, with subtle
variations in study hours and assignment completion.
Clusters 2 and 3 stand out with the highest exam scores (86.9
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and 85.6, respectively), aligning with their strong assignment
completion rates. In contrast, Cluster 1 and Cluster 4 show
comparatively lower exam scores (54.0 and 54.5) despite
moderate study hours, suggesting that factors beyond time
investment—such as study strategy or resource use—may
influence performance. Stress levels remain generally low
across clusters, although Clusters 2 and 3 report slightly
higher levels, possibly reflecting greater academic effort.
These patterns highlight the multidimensional nature of
engagement and performance differences among learner
groups.

V. DISCUSSION

A. Cluster Learner-Profiles and Implications

The K-Means clustering was used to identify learner
profiles in subgroups in terms of behavior engagement and
academic performance, which is why diversified pedagogical
approaches should be used.

Cluster 0 was a high-achieving and low stress group of
learners showing a high preference towards structured and
self-directors learning environment. These students were
extremely independent and in line in their performance, thus
making them to be appropriate when offered advanced self-
paced learning modules and enriched digital materials. Their
description coincides with previous studies of personalized
learning scenery that is focused on independent learners [47].

Cluster 1, in its turn, represented learners with regular
attendance and efforts, and low academic performance but
high-level stress. It is possible that such a group needs a two-
pronged strategy, including a better instructional design and
emotional and mental health management. Both their
cognitive and well-being levels may improve through
formative feedback loops, stress-counseled pacing, and
scaffolded learning tasks [48].

Clusters 2 and 3 revealed students with high attendance and
extended study time, yet only moderate academic success.
These learners showed signs of motivation, but inefficiencies
in learning strategies and stress management were evident.
Implication and Discussion

Individual measures on metacognitive skills development
and time management assistance could be especially useful to
Cluster 4, the Overextended Multitaskers, who also registered
the highest level of stress. Such learners are also prone to
having a cognitive overload caused by multitasking demands
in scholarly and extra-scholarly spheres. In order to help
address their requirements, flexible content delivery
mechanisms and stress-sensitive pacing strategies that are
designed to improve academic resilience should be included
in adaptive learning systems [49, 50].

Cluster five, or Flexible but Inconsistent Performers, as
they can be called, showed a reduced level of stress and
flexible attitude but had irregular academic performances.
Their dynamics of interaction imply that they prefer new
experiences and content in various forms. The group is more
likely to respond to adaptive platforms that automatically
change the mode of delivery according to behavioral inputs
and can work in line with their diverse preferences [51].

These behavioral findings also stress the necessity to base
personalized learning system information on empirical data
of engagement or rather than on static theories of Learning
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Style (LS). Several clusters identified similar needs of longer
duration of tasks, decreased cognitive load, and non-
standardized pace, frequent aspects of traditional LS
modelling. This illustrates the possibility of behavioral
clustering that can be used in informing the feedback loops
and adaptivity in real-time in intelligent tutoring
systems [37, 52]. Behavioral segmentation, unlike self-
reported surveys, can be freely personalized in real time
according to the context and is not subject to bias and
outdated assumptions.

While the high ARI/NMI scores might suggest strong
equivalence between FSLSM and behavioral clustering, this
interpretation is misleading. The overlap largely reflects
stable cognitive-orientation traits (e.g., preference for visual
vs. verbal information), but our behavioral model
incorporates temporal, contextual, and affective indicators
that FSLSM omits. This allows for real-time adaptation when
learner behavior deviates from their nominal style — a
flexibility critical for modern LMS-based environments.

B. Practical Implementation Framework

In an operational adaptive learning system, behavioral
clustering can be implemented through real-time learner
dashboards updated on a weekly basis. Intervention triggers
may include: (1) deviation from typical cluster behavioral
patterns by more than one standard deviation, (2) sustained
high stress levels for two consecutive weeks, and (3)
declining assessment performance despite high engagement.
Instructors can receive automated recommendations—such
as assigning targeted practice modules, initiating one-on-one
check-ins, or adjusting pacing parameters—based on the
learner’s current cluster assignment. This cycle of continuous
monitoring, clustering, and intervention ensures that
personalization remains responsive to evolving learner needs.

C. FEthical and Practical Considerations

Segmenting students by behavioral profiles carries
potential risks related to profiling bias, misclassification, and
reduced learner agency. Instructors and system designers
must ensure data privacy, implement fairness checks in
clustering algorithms, and maintain human oversight in
adaptive interventions. Policies should be in place to allow
learners to contest or adapt their assigned profiles.
Furthermore, the use of unsupervised -clustering for
pedagogical decision-making must remain transparent and
accountable. Learners’ profiles should not rigidly determine
learning paths, and systems must remain adaptable to
evolving learner behaviors and preferences.

D. Restrictions and Future Work

Despite the encouraging results, this study presents notable
limitations. The use of open-source datasets may constrain
the generalizability of findings, as they lack cultural and
institutional diversity. Additionally, certain key features—
such as motivation and stress—were self-reported,
introducing potential response biases. While internal
validation metrics (inertia, Silhouette Coefficient, DBI)
support the structural robustness of the clustering, they do not
directly assess pedagogical impact. Future research should
incorporate diverse, real-world datasets and pursue external
validation using concrete learning outcomes. Moreover,
considering the dynamic nature of learner behavior,
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subsequent adaptive models should be capable of evolving
over time while ensuring fairness, transparency, and ethical
integrity in personalized interventions.

VI. CONCLUSION

This study employed unsupervised clustering of behavioral
data to generate adaptive learner profiles within online
educational environments. By applying the K-Means
clustering algorithm to a large dataset of student interactions,
six distinct learner types were identified—including Strategic
Self-Directed Achievers, Overextended Multitaskers, and
Struggling Learners. These profiles revealed nuanced
insights into how students engage with digital platforms and
highlighted the varying forms of support they require.
Traditional learning style models, though historically
influential, are increasingly critiqued for relying on self-

reported preferences that lack stability and context-awareness.

In contrast, the behavioral approach adopted in this study
captures real-time engagement and facilitates dynamic
personalization, making it especially effective for
underserved populations such as cognitively overloaded or
slower-paced learners.

K-Means clustering, when applied to educational data
mining, offers substantial promise for the development of
Intelligent Tutoring Systems (ITS) and adaptive learning
environments. The study underlines that effective results
depend on meticulous data preprocessing, careful feature
engineering, and hyperparameter optimization, which
collectively ensure that clustering outcomes are both
interpretable and actionable. The implications for educational
institutions and system designers are profound: interventions
can be crafted to align with the needs of each learner profile.
For instance, wellness-oriented modules may benefit high-
stress students, while learners with high activity but
inconsistent focus may thrive under scaffolded content with
clearly defined progression paths.

Furthermore, the potential for real-time personalization is
underscored through the idea of dynamically updated learner
dashboards—tools that can adapt learner profiles as new
behavioral data becomes available. Future research may
enrich these models by incorporating psychological
constructs such as grit, resilience, and self-regulation, and by
examining how learner profiles evolve longitudinally.
Comparing cluster assignments across diverse educational
contexts could also reveal systemic factors that influence
learner behavior and outcomes.

Overall, this study contributes significantly to the field of
learning analytics by demonstrating that unsupervised
machine learning can uncover latent learner typologies.
These findings not only strengthen theoretical frameworks in
online learning but also provide a practical foundation for
scalable, personalized educational technologies. As the
demand for inclusive and flexible digital education continues
to grow, behavioral clustering offers a path forward for
achieving equity and effectiveness in adaptive learning
systems.
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