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Abstract—The existing predetermined paradigms of learning 

styles, including the Felder-Silverman Learning Style Model 

(FSLSM), VARK, Kolb’s experiential learning theory, and the 

Honey and Mumford model, have found significant application 

in personalized e-learning settings. However, these models 

typically rely on fixed, self-reported surveys that are not 

validated against actual learner behavior. This research 

addresses this shortcoming by conducting a behavioral analysis 

based on engagement data within a Learning Management 

System (LMS), incorporating elements such as content 

interaction, forum participation, and assessment performance. 

The K-Means++ clustering algorithm was employed to cluster 

learners and uncover latent behavioral profiles, which were then 

empirically compared with conventional models of learning 

styles to evaluate alignment. The FSLSM exhibited the strongest 

level of correlation with the behaviorally derived clusters (ARI 

= 0.87; NMI = 0.81), suggesting that it might encapsulate some 

persistent behavioral tendencies. But some key differences 

emerged in terms of time-on-task dynamics, student interaction 

behavior, and patterns of stress, none of which are wrapped 

within the FSLSM framework. This suggests that behavioral 

clustering describes actionable insights beyond profiles, which 

are static and self-reported, and allow for adaptive interventions 

responding to the real-time state of the learner. 
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I. INTRODUCTION  

Learning style theories are not new in education research 

since they can determine the instructional strategy an 

instructor can use to accommodate individual students [1, 2]. 

The problem of personalization according to the learning 

styles is even more important in the field of digital learning 

environments, where the direct observation is hardly  

possible [3]. Behavioral data can provide useful insights into 

engagement and content interest. These insights enable more 

timely and focused instructional interventions [4, 5]. 

Regardless of their popularity, traditional learning style 

models, including the VARK model, Kolb Experiential 

Learning Theory, and the Felder-Silverman model, have 

landed under criticism of insufficient empiricism and over-

dependence on subjective preferences of learners [6, 7]. 

 Besides, several empirical studies have shown mixed 

results in terms of the efficiency of aligning of instructional 

strategies with prefixed styles of learning [8, 9], and therefore 

doubts exist about the usefulness of such models when using 

e-learning systems in modern, data-rich e-learning systems. 

Consequently, the learning styles are being more and more 

thought of not as an immutable feature, but rather as a 

behavior-related construct [10]. This paradigm transition 

highlights more observable signals, e.g. learner interactions, 

time-on-task, resource consumption, and reaction to 

instruction strategies compared to self-reports [11]. Rich 

behavioral data on a granular level has become available due 

to the popularization of digital learning environments, 

enabling teachers to use more adaptable and responsive 

pedagogical practices [12].  

Machine learning further improves the analysis of patterns 

of engagement, and it is possible to cluster learners on the 

basis of similar behavioral patterns and performance 

indicators. This data dynamics-based segmentation can be 

used to inform the design of personalized learning 

interventions that are personalized in real-time based on 

learners’ specific profiles [13]. Even though learning styles 

have been widely discussed on the theoretical level, very little 

has been done on the empirical level with regard to behavioral 

validation of the learning styles theory, especially using 

unsupervised learning methods. 

 In the majority of available studies, learner profiles are 

considered fixed, whereas the approach is very based on 

subjective surveys, which often do not correlate with real 

learner engagement. The current paper seeks to alleviate this 

shortage by undertaking K-Means clustering on behavioral 

data of a large and heterogeneous group of learners in hopes 

that segments will be empirically derived and compared to 

the conventional learning style models. The result of this 

effort is a new area of unsupervised clustering and adaptive 

learning design providing the evidence-based approach to 

behavior-informed personalization in automated e-learning 

systems [14, 15]. 

A.  Theoretical Positioning 

This study adopts a refinement approach rather than a 

wholesale rejection of traditional learning style models. 

While behavioral clustering offers a dynamic, data-driven 

alternative, we recognize that established models such as 

FSLSM retain explanatory value for certain learner traits. Our 

framework, therefore, integrates behavioral profiles with 

selected elements of LS theory to enhance interpretability and 

pedagogical relevance. This integration is empirical rather 

than conceptual: we use FSLSM and other models as 

reference points to evaluate alignment, but not as fixed 

determinants of learning paths. In doing so, we position 

behavioral clustering as an evolution of LS models—

preserving their pedagogical strengths while overcoming 

their reliance on static, self-reported measures. 

B. Research Questions 

1) Do K-Means clustering with behavioral data display 

usable profiles of learners? 

2) In what ways are clustered learner types congruent to 

traditional learning style theories? 
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3) What are the appropriate adaptive strategies implied by 

behavior-based clusters? 

II. STATE OF ART 

As the world converts to long-distance learning, it is e-

learning that stands out as the medium of education in 

institutions [16]. This is easily accessible, expandable, and 

flexible, and is an acceptable alternative to classroom-based 

lessons [17]. Nevertheless, with the current fast development 

of technology, several e-learning systems fail to support all 

the differing needs of the learners. The students often 

incorrectly termed as slow learners, that is, those students 

who need more time, feedback modulated to their needs, and 

scaffolded learning, are inadequately served in the traditional 

online platforming [18]. Such learners are not inept; they 

enjoy the learning tempo and style, and that is served through 

self-paced feedback-rich learning environment [19]. 

Such systems of individual learning paths are often not 

supported by the traditional e-learning systems, and thus the 

individuals have less engagement and performance in 

academic disciplines [20]. As an answer, there has been the 

utilization of Learning Style (LS) models in educational 

research over time to deal more comprehensively with learner 

heterogeneity. Examples of such frameworks include the 

Experiential Learning Theory of Kolb, the VARK model 

(Visual, Auditory, Reading/Writing, Kinesthetic), and the 

Felder-Silverman Learning Style Model (FSLSM), each of 

which gives a more structured explanation of how people 

prefer to receive and process information [1, 21, 22]. Kolb 

laid his stress on the experiential learning processes, whereas 

VARK typifies examples with respect to preferred sense, and 

FSLSM makes use of aspects of Koncept Active-reflective 

and Visual-verbal [23]. These theories have, over the years, 

greatly impacted the design of instructions, delivery of the 

content, and evaluation in face-to-face and online classes [7]. 

The coupling of clustering methods-mostly K-Means, in 

behavioral profiling of educational systems is starting to bear 

fruit largely due to preceding studies such as Tin Tin [24], 

and Calderon-Valenzuela [25]. These papers validate the 

applicability of a data-driven segmentation of the learner as a 

basis for adaptive and personalized e-learning environments. 

Several empirical studies demonstrate the practical value 

of behavioral analytics for adaptive learning. For example, 

Uzir et al. [26] showed that time-on-task and navigation 

sequences in LMS logs could predict course completion with 

over 80% accuracy. [27] successfully used clickstream data 

to model self-regulated learning phases, enabling 

personalized prompts that improved retention. Similarly, [28] 

integrated forum participation metrics into adaptive 

recommendation systems, resulting in measurable gains in 

learner engagement. These studies validate the feasibility and 

effectiveness of behavior-driven personalization strategies in 

real-world educational settings. 

However, in the modern context of the educational 

literature, the LS-based interventions have been increasingly 

questioned in spite of their popularity. There have been 

several systematic reviews and well-controlled studies that 

have described very little empirical evidence regarding the 

potential of LS-aligned instruction to enhance academic 

outcomes [8, 9, 29]. Also, in the traditional face-to-face 

classrooms, the educators could change the teaching strategy 

instantly following the visual and verbal signals of the 

students. But this degree of dynamism in responsiveness is 

commonly wanting in online learning conditions, in which an 

instructor proactively communicates with extensive cohorts 

distantly [30]. Consequently, teachers are usually bound to 

specific existing instructional strategies and lose the 

flexibility they could use to personalize learning as initially 

conceived of by LS frameworks [3]. This disjuncture brings 

to bear a central problem in the translation of theoretical 

models of learning style to practice into actionable models of 

education in the digital environment. 

Online communication also contributes to the 

disadvantages of Learning Style (LS) models because digital 

media are reverse and are inclined towards uniformity and a 

lack of immediate interpersonal communication [31]. As an 

example, kinesthetic learners might not have a large physical 

interaction in the virtual space, and learners with low reading 

skills would have difficulties in reading-based courses. As a 

result, e-learning environments, which use fixed LS design 

models, do not take into consideration the flexibility of the 

engagement modes of learners as well as cognitive  

needs [12]. 

Recent studies also tend to advocate the idea that learning 

preferences are not inherent characteristics but change over 

time and according to the context [7]. The way individuals 

process information is affected by factors like the type of task 

to be undertaken, the learning setting, and the topic being 

learnt. Unlike basing on single self-reported LS inventories, 

scholars recommend behavior-based modeling, which 

examines the interactions and engagement pattern of learners 

and evaluates their performance parameters to determine their 

learning preference [4, 5]. This world view is important 

especially to slow learners whose intellectual improvement 

can vary dynamically as the mode and the field of study create 

relevance [18]. 

To this extent, there is a move to applying the measurable 

and real-time behavioral measurement to promote 

adaptiveness in online teaching. Machine learning and 

educational data mining have advanced to the point where it 

is now possible to extract patterns of behavior within 

massively large datasets, and base instruction techniques 

around them based on data [32]. One benefit of this kind of 

systems is that, it is able to group learners dynamically in 

accordance with the immediate social interactions and 

outputs and can hence aid in the development of constructive, 

extensible and situation computing learning ecologies [5, 33]. 

Although there are a variety of traditional LS models used 

as frameworks on which digital pedagogy has been shaped 

such as the VARK, Kolb and FSLSM, moment-to-moment 

variation tends to be ignored when it comes to its application. 

In addition, most of these models are confirmed with self-

report measures but not center on behavioral ones. 

Remarkably, no comparative research exists on theoretically 

based profiles of learners against behaviorally based ones is 

available. Such a disparity indicates that data-driven solutions 

are needed to determine the match between the relationship 

between LS models and real engagement patterns-especially 

in large-scale e-learning ecosystems. 

III. METHODOLOGY 

In this research, the K-Means clustering algorithm is used 

to perform the analysis of the behavioral engagement and 
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academic performance data of the students to come up with 

different learning profiles [9]. The first one is to formulate a 

dynamic framework that can support individual and dynamic 

needs of learners, especially in an online learning context [5]. 

Five key steps include the methodological pipeline of data 

collection, data preprocessing, feature selection, clustering 

via K-Means++, and cluster validation based on the known 

evaluation criteria [30, 32]. The general workflow is shown 

in Fig. 1.  

Fig. 1. Clustering pipeline and modeling framework. 

Fig. 1 explains the procedure used to conduct the study. 

Initial data collection is performed, then comes the stage of 

pre-processing missing values, looking at outliers, and 

normalizing the data. Before performing the K-Means 

clustering, correlation analysis, RFE, and hyperparameter 

tuning are used for choosing the relevant features. Adaptive 

learning is recommended, and the technology gives students 

creative profiles and custom learning insights 

A. Data Collection and Description

The information employed was based on two publicly

available educational datasets sourced from Kaggle, both 

focusing on learning styles and digital engagement 

indicators [34, 35]. These datasets include variables such as 

student age, gender, academic level, study period, class 

attendance, resource usage, learning style preferences, and 

academic performance. Following preprocessing and 

integration, a consolidated dataset comprising 14,003 student 

records and 16 key behavioral features relevant to online 

learning was created [32, 33]. While detailed contextual 

metadata about the dataset’s institutional origin or geographic 

background is not explicitly documented, the combined data 

offers a comprehensive view of learner behavior in digital 

education environments, providing a solid foundation for 

behavior-based personalized learning system development. 

However, the limited information on the cultural and 

institutional contexts of these datasets may restrict the 

generalizability of the findings, underscoring the need for 

future research involving more diverse and well-documented 

datasets to validate and extend these results (Table 1). 

Table 1. Overview of student-related variables used for analysis 

Variable Type Description 

Age Numeric Student’s age in years 
Gender Categorical Gender (encoded as 1 = Male, 0 = Female) 

Learning Style Categorical Self-reported learning style (VARK/FSLSM) 

Motivation Categorical Motivation level (Low to Very High) 
Internet Binary Access to internet (1 = Yes, 0 = No) 

Resources Binary Access to learning resources 

Edu-Tech Binary Use of educational technology 
Extracurricular Binary Participation in extracurricular activities 

Online Courses Numeric Number of online courses completed 

Discussions Binary Participation in classroom discussions 
Study Hours Numeric Average weekly study hours 

Attendance Numeric (%) Percentage of classes attended 

Assignment Completion Numeric (%) Percentage of assignments completed 
Exam Score Numeric Final exam score 

Stress Level Categorical Self-reported stress level (Low to Very High) 

Final Grade Categorical Final academic grade (A, B, C, D) 

Table 2. Encoding of categorical variables for analysis 

Variable Original Values Encoded Values 

Gender Male / Female 1=Male, 0=Female 

Learning Style Visual, Auditory, Kinesthetic, Reading 1=Visual, 2=Auditory, etc. 
Motivation Low, Medium, High, Very High 0=Low→3=Very High 

Internet, Resources, Edu-Tech, Extracurricular, Discussions Yes / No 1=Yes, 0=No 

Stress Level Low, Medium, High, Very High 0=Low→3=Very High 
Final Grade A, B, C, D 0=A→3=D 

Categorical values were encoded numerically during 

preprocessing. Details provided in Table 2. 

B. Data Pre-Processing

Data preparation was done to ascertain the strength and

efficiency of the clustering process. The missing data was 

imputed in terms of mean imputation in the case of numerical 

attributes and mode imputation in the case of categorical 

features, thus maintaining the completeness of the dataset but 

not at the risk of statistical bias [33]. The Interquartile Range 

(IQR) method was applied to find outliers, and thus remove 

them effectively, so that the clusters were more separated, and 

then the corresponding outcomes of segmentation were 

reliable [32]. Also, 32 identical records were discovered and 

removed to ensure the integrity of the data and avoid the 

biased clustering tendency. 

Dichotomy data were encoded as may be needed to be 

processed by the K-Means algorithm. Categories (e.g., for 
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motivation and stress levels) were mapped to integer codes, 

and so were aspects with a binary value (e.g., having access 

to the internet). Gender was coded as 1 in case of male and 0 

in case of female, so that categorical variables can be used in 

the machine learning algorithm. Notably, all the values were 

encoded on a binary basis rather than ordinal, such as 1 and 

2, to discourage the artificial ranking or bias of the 

unsupervised learning process [36]. 

All the numerical variables were put through Min-Max 

normalization, where all features became [0, 1]. It was 

important since K-Means uses Euclidean distance, which is 

easily affected by the scale of the data. Consequently, work 

done on homework, the number of classes, and the hours 

spent studying became as similar as possible, facilitating 

clustering. 

C. Feature Selection 

We improved how well the clusters were grouped by using 

several feature selection methods [33]. Initially, Pearson’s 

correlation was applied to assess linear relationships among 

numerical variables, while Chi-square tests were used to 

evaluate associations between categorical features [27]. 

Features that exhibited high multicollinearity or contributed 

minimally to the clustering process were removed to reduce 

redundancy and noise in the data [34, 35]. 

To further enhance the relevance of the feature set, 

Recursive Feature Elimination (RFE) was employed to 

iteratively rank and retain the most discriminative attributes 

for distinguishing student clusters [36]. This was followed by 

a domain-specific validation phase, where the coauthors—

two senior educational technologists—reviewed the 

remaining variables. Their selection was guided by 

pedagogical relevance, alignment with adaptive learning 

frameworks, and prior empirical associations between 

learning styles, stress levels, engagement indicators, and 

academic performance [37]. 

D. Clustering Algorithm  

K-Means clustering algorithm was chosen to perform this 

experiment, taking into consideration its efficiency, 

scalability, and success in a range of previously reported data 

mining tasks in the field of education, where it is used to 

segment learners based on their behavioral patterns [32, 33]. 

Its mechanism makes use of the centroid and as a result it is 

highly interpretable and is imperative in developing relevant, 

contextual learner profiles in line with the behavior patterns 

and their conceived learning styles. K-Means scales to 

normalized and fairly high-dimensional data, and hence a 

good fit to the data that is going to be used in this study. 

However, compared to them, other algorithms like DBSCAN 

are sensitive to different densities, and they also face 

problems of global structures in clustering, and hierarchical 

clustering produces non-stable and non-scalable solutions 

when used on large datasets, as this type of clustering is 

computationally complex. 

To increase the performance of the clustering, the K-

Means++ initialization method was used, which helped to 

make the choice of initial centroids that was optimal as well 

as well distributed to increase both speed and accuracy of 

convergence and clustering [38]. 

Earlier studies published have proved that the K-Means 

clustering algorithm can be applied to the Learning 

Management System (LMS) context and thus the relevance 

in the current study [39]. The algorithm would recalculate 

cluster centroids with iterations until it has converged either 

by stabilizing the centroids or by reaching the maximum 

iterations. To find the best number of clusters, we used the 

Elbow Method which detects the position where extra 

clusters after a certain number of them would result in 

reduced intra-cluster variance [40]. The Silhouette coefficient 

was computed further to corroborate the goodness of the 

clustering pattern. This measure quantifies the degree of 

correspondence between each data point with its assigned 

cluster, as contrasted with adjacent, clusters and provides an 

idea of cluster cohesion and segregation [41]. The above 

validation methods were used before the downstream analysis 

was employed to ascertain that the generated clusters were 

not only meaningful but also statistically sound. 

E. Technical Implementation  

Python was used to run the computational process, 

including data manipulation, numerical analysis, clustering, 

and model validation, using well-established libraries such as 

Pandas, NumPy, and Scikit-learn [42–44]. Principal 

Component Analysis (PCA) was employed to reduce the 

feature space dimensionality and enhance the interpretability 

of the resulting clusters. PCA is a commonly used technique 

in educational data mining that enables dimensionality 

reduction while preserving the most significant variance in 

the dataset [44]. In this study, the first two principal 

components retained approximately 72% of the total variance, 

allowing a meaningful visual representation of the clustering 

output without major information loss. This step also 

improved clustering efficiency by reducing computational 

complexity. To determine the optimal number of clusters, the 

Elbow Method was applied by plotting the within-cluster sum 

of squares (WCSS) against different values of K. The 

inflection point observed at K=6 indicated the most 

appropriate trade-off between model complexity and 

performance. This selection was further supported by internal 

validation metrics. 

IV. RESULTS 

Findings by Cluster and Analysis. This section presents the 

results obtained from applying the K-Means clustering 

algorithm to the normalized and preprocessed dataset, 

comprising behavioral engagement records from 14,003 

students. The analysis identified six distinct learner clusters, 

each representing a unique behavioral engagement profile. 

To ensure the robustness and interpretability of the 

clustering solution, several internal validation measures were 

employed, including inertia (within-cluster sum of squares), 

the Silhouette Coefficient, and the Davies-Bouldin Index 

(DBI) [45, 46]. Inertia was used to assess the compactness of 

each cluster, reflecting the tightness of data points within the 

same group. 

The Silhouette Coefficient provided a quantitative measure 

of both cluster cohesion and separation, with values closer to 

1.0 indicating well-defined, non-overlapping clusters. The 

maximum silhouette score of 0.62 was observed at K=6, 

suggesting a strong internal structure and clear separation 

between behavioral profiles. Fig. 2 illustrates the variation in 

silhouette scores for different values of K (ranging from 2 to 
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10), with a clear peak at K=6, supporting the selection of this 

configuration as the most stable and interpretable. 

The Davies-Bouldin Index (DBI) also supported this 

conclusion, reaching a minimum value of 0.47 at K=6, which 

indicates minimal intra-cluster variance and high inter-cluster 

separation. This combination of a high silhouette score and a 

low DBI at K=6 demonstrates that the identified clusters are 

both internally cohesive and externally well-separated, 

providing a strong empirical foundation for subsequent 

analysis. 

Fig. 2. Silhouette analysis for optimal cluster selection. 

Silhouette coefficient as a function of the number of 

clusters (K) for K-Means clustering. The maximum silhouette 

score (0.62) at K=6 (dashed line) demonstrates strong intra-

cluster cohesion and inter-cluster separation, supporting the 

selection of six distinct learner profiles for further analysis 

(see Fig. 2). 

The silhouette analysis provides strong internal validation 

for the six-cluster solution. The clear maximum in the 

silhouette score, alongside supporting metrics such as the 

Davies-Bouldin Index, reinforces the stability and 

distinctiveness of the identified learner groups. These 

findings provide a solid empirical basis for subsequent 

profiling and analysis of each cluster. 

A trend analysis of the silhouette score across K values (2 

to 10) consistently indicated that K = 6 yields the most stable 

and interpretable structure. Accordingly, further analyses and 

interpretations in this study are based on the six-cluster 

solution. 

A. Tools Used for Clustering Evaluation

Inertia also refers to the Within-Cluster Sum of Squares.

For each data point, the Inertia Eq. (1) measures the distance 

from that point to its assigned cluster centroid. As compute a 

smaller value, the data is more tightly grouped. It can be 

determined by a formula as follows: 

  ⅈ𝑛𝑒𝑟𝑡ⅈ𝛼 = ∑ ∑ ‖𝑥𝑗 − 𝜇𝑖‖
2

𝜘𝑗∈𝐶𝑖

𝑘

𝑖=1

 (1) 

where: 

xj is a data point in cluster ci 

μi is the centroid of cluster ci 

k is the number of clusters 

B. Silhouette Coefficient

The Silhouette Coefficient measures how well a data point

fits within its cluster compared to other clusters. It is defined 

in Eq. (2) as: 

 𝑆(ⅈ) =
𝑏(𝑖)−𝑎(𝑖)

max(𝑎(𝑖),𝑏(𝑖))
 (2) 

where: 

a(i): average distance between i and all other points in the 

same cluster 

b(i): lowest average distance of i to all points in any other 

cluster 

Values close to 1 suggest well-clustered points, while 

values near 0 indicate overlapping clusters. 

C. Cluster Profiles

Each cluster distinctly represents a homogeneous group of

students sharing closely aligned behavioral and academic 

characteristics, allowing targeted and highly effective 

pedagogical interventions. 

1) Cluster 0: Strategic Self-Directed Achievers: 

These learners demonstrate consistently high study hours, 

robust class attendance, and moderate stress levels, 

reflecting strong self-regulation and intrinsic motivation. 

They embody mastery-oriented strategies and stand to 

benefit significantly from self-paced, enriched learning 

modules and access to advanced digital resources that 

foster deep learning. 

⚫ Average study hours: 20.08

⚫ Class attendance: 80.40%

⚫ Resource utilization: 1.10

⚫ Participation in extracurriculars: 0.58

⚫ Participation in discussions: 0.57

⚫ Stress level: 1.28

⚫ Educational technology use: 0.73

2) Cluster 1: High-Stress Underperformers: Despite

comparable study hours and attendance to top performers,

this group exhibits elevated stress coupled with

suboptimal academic outcomes, indicating possible

cognitive overload and ineffective coping mechanisms.

Tailored scaffolding, emotional support resources, and

adaptive pacing are critical to mitigate stress and unlock

their learning potential.

⚫ Average study hours: 19.74

⚫ Class attendance: 79.68%

⚫ Resource utilization: 1.10

⚫ Extracurriculars: 0.58

⚫ Discussions: 0.60

⚫ Stress level: 1.32

3) Cluster 2: Consistent but Plateaued Learners: Maintaining

high engagement and attendance, these students

experience a performance plateau, highlighting the need

for interventions that develop metacognitive skills and

introduce varied instructional approaches. Such strategies

will be essential to stimulate continuous academic growth.

⚫ Study hours: 20.07

⚫ Highest class attendance: 80.85%

⚫ Resource usage: 1.10

⚫ Discussions: 0.62

⚫ Stress level: 1.34

⚫ Tech use: 0.69

4) Cluster 3: Intensively Engaged Achievers: 

Characterized by the highest study hours and moderate 

stress, this resilient group thrives on challenging, 

problem-based learning experiences and benefits greatly 

from peer mentoring opportunities that deepen 
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understanding and sustain motivation. 

⚫ Study hours: 20.43 (highest among all clusters)

⚫ Attendance: 79.82%

⚫ Resources: 1.08

⚫ Discussions: 0.62

⚫ Stress level: 1.27

5) Cluster 4: Overextended Multitaskers: These learners

juggle numerous extracurricular and online commitments,

resulting in the highest stress levels and the lowest study

hours. Effective support through time management

training, workload balancing, and flexible deadlines is

vital to maintain sustainable engagement and prevent

burnout.

⚫ Study hours: 19.49 (lowest)

⚫ Attendance: 79.99%

⚫ Extracurriculars: 0.60

⚫ Online course participation: 10.28

⚫ Stress level: 1.35 (highest)

6) Cluster 5: Flexible but Inconsistent Performers:

Displaying adaptable learning behaviors paired with low

stress, this group’s inconsistent academic performance

suggests a need for adaptive learning systems offering

diversified content delivery and goal-setting tools, which

can help stabilize and enhance outcomes.

⚫ Study hours: 19.89

⚫ Attendance: 79.44%

⚫ Resource use: 1.11 (highest)

⚫ Stress level: 1.21 (lowest)

To enhance interpretability and practical application, each

cluster label is rigorously grounded in quantitative behavioral 

metrics—such as study hours, attendance, and stress—and 

directly linked to actionable pedagogical strategies. 

Complementary visualizations, including heatmaps with z-

scored feature means, distinctly characterize each cluster, 

ensuring that the categorization is both data-driven and 

deeply educationally meaningful.  

D. Cluster–Learning Style Alignment Analysis

To quantify the correspondence between the behaviorally

derived clusters and self-reported FSLSM types, we 

computed the Adjusted Rand Index (ARI) and Normalized 

Mutual Information (NMI) between the two label sets. 

Results showed a strong alignment (ARI = 0.87; NMI = 0.81), 

indicating that FSLSM categories capture many aspects of 

learner behavior, yet some variance remains unique to 

behavioral clustering. This supports the argument that 

behavioral clustering provides complementary insights 

beyond those offered by static LS models.  

E. Cluster Distribution

Measurement Results in Fig. 3 clearly show that clusters

are clearly divided according to the studied variables. It is 

possible to see in Fig. 4 that clusters have populations of 

different sizes and possess unique characteristics. 

Here, the six student groups identified by behavior and 

performance are shown on a chart made from the two leading 

principal components. Every cluster is clearly associated with 

a certain color, proving that learners with similar behaviors 

are grouped. 

Fig. 4 demonstrates how the students are spread across the 

six clusters and what percentage each group represents. The 

largest group, Cluster 5, points to a big percentage of students 

who have changed engagement habits and many different 

outcomes. The next clusters are 2 (Consistent but Plateaued 

Learners) and 4 (Overextended Multitaskers), where learners 

take part actively, but Overextended Multitaskers seem to feel 

more stressed and are involved in more activities outside 

school. There are similar numbers of students in groups 0 

(Strategic Self-Directed Achievers) and 3 (Intensively 

Engaged Achievers), which suggests a fair share of devoted 

learners. Even though Cluster 1 holds the least number of 

students, it needs the most specific teaching strategies. Since 

students are divided into many different clusters, effective 

learning programs should be designed for each type of student, 

as one profile doesn’t dominate. 

Fig. 3. Clustering results of students’ behavior. 

Fig. 4. Distribution of student clusters. 

Fig. 5. Heatmap of mean feature values across learner clusters. 

The heatmap in Fig. 5 provides a compact visual 

comparison of feature means across all clusters. Consistent 

high attendance rates are evident across clusters, with subtle 

variations in study hours and assignment completion. 

Clusters 2 and 3 stand out with the highest exam scores (86.9 
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and 85.6, respectively), aligning with their strong assignment 

completion rates. In contrast, Cluster 1 and Cluster 4 show 

comparatively lower exam scores (54.0 and 54.5) despite 

moderate study hours, suggesting that factors beyond time 

investment—such as study strategy or resource use—may 

influence performance. Stress levels remain generally low 

across clusters, although Clusters 2 and 3 report slightly 

higher levels, possibly reflecting greater academic effort. 

These patterns highlight the multidimensional nature of 

engagement and performance differences among learner 

groups. 

V. DISCUSSION 

A. Cluster Learner-Profiles and Implications 

The K-Means clustering was used to identify learner 

profiles in subgroups in terms of behavior engagement and 

academic performance, which is why diversified pedagogical 

approaches should be used. 

Cluster 0 was a high-achieving and low stress group of 

learners showing a high preference towards structured and 

self-directors learning environment. These students were 

extremely independent and in line in their performance, thus 

making them to be appropriate when offered advanced self-

paced learning modules and enriched digital materials. Their 

description coincides with previous studies of personalized 

learning scenery that is focused on independent learners [47]. 

Cluster 1, in its turn, represented learners with regular 

attendance and efforts, and low academic performance but 

high-level stress. It is possible that such a group needs a two-

pronged strategy, including a better instructional design and 

emotional and mental health management. Both their 

cognitive and well-being levels may improve through 

formative feedback loops, stress-counseled pacing, and 

scaffolded learning tasks [48]. 

Clusters 2 and 3 revealed students with high attendance and 

extended study time, yet only moderate academic success. 

These learners showed signs of motivation, but inefficiencies 

in learning strategies and stress management were evident. 

Implication and Discussion 

Individual measures on metacognitive skills development 

and time management assistance could be especially useful to 

Cluster 4, the Overextended Multitaskers, who also registered 

the highest level of stress. Such learners are also prone to 

having a cognitive overload caused by multitasking demands 

in scholarly and extra-scholarly spheres. In order to help 

address their requirements, flexible content delivery 

mechanisms and stress-sensitive pacing strategies that are 

designed to improve academic resilience should be included 

in adaptive learning systems [49, 50]. 

Cluster five, or Flexible but Inconsistent Performers, as 

they can be called, showed a reduced level of stress and 

flexible attitude but had irregular academic performances. 

Their dynamics of interaction imply that they prefer new 

experiences and content in various forms. The group is more 

likely to respond to adaptive platforms that automatically 

change the mode of delivery according to behavioral inputs 

and can work in line with their diverse preferences [51]. 

These behavioral findings also stress the necessity to base 

personalized learning system information on empirical data 

of engagement or rather than on static theories of Learning 

Style (LS). Several clusters identified similar needs of longer 

duration of tasks, decreased cognitive load, and non-

standardized pace, frequent aspects of traditional LS 

modelling. This illustrates the possibility of behavioral 

clustering that can be used in informing the feedback loops 

and adaptivity in real-time in intelligent tutoring  

systems [37, 52]. Behavioral segmentation, unlike self-

reported surveys, can be freely personalized in real time 

according to the context and is not subject to bias and 

outdated assumptions. 

While the high ARI/NMI scores might suggest strong 

equivalence between FSLSM and behavioral clustering, this 

interpretation is misleading. The overlap largely reflects 

stable cognitive-orientation traits (e.g., preference for visual 

vs. verbal information), but our behavioral model 

incorporates temporal, contextual, and affective indicators 

that FSLSM omits. This allows for real-time adaptation when 

learner behavior deviates from their nominal style — a 

flexibility critical for modern LMS-based environments. 

B. Practical Implementation Framework 

In an operational adaptive learning system, behavioral 

clustering can be implemented through real-time learner 

dashboards updated on a weekly basis. Intervention triggers 

may include: (1) deviation from typical cluster behavioral 

patterns by more than one standard deviation, (2) sustained 

high stress levels for two consecutive weeks, and (3) 

declining assessment performance despite high engagement. 

Instructors can receive automated recommendations—such 

as assigning targeted practice modules, initiating one-on-one 

check-ins, or adjusting pacing parameters—based on the 

learner’s current cluster assignment. This cycle of continuous 

monitoring, clustering, and intervention ensures that 

personalization remains responsive to evolving learner needs. 

C. Ethical and Practical Considerations 

Segmenting students by behavioral profiles carries 

potential risks related to profiling bias, misclassification, and 

reduced learner agency. Instructors and system designers 

must ensure data privacy, implement fairness checks in 

clustering algorithms, and maintain human oversight in 

adaptive interventions. Policies should be in place to allow 

learners to contest or adapt their assigned profiles. 

Furthermore, the use of unsupervised clustering for 

pedagogical decision-making must remain transparent and 

accountable. Learners’ profiles should not rigidly determine 

learning paths, and systems must remain adaptable to 

evolving learner behaviors and preferences. 

D. Restrictions and Future Work 

Despite the encouraging results, this study presents notable 

limitations. The use of open-source datasets may constrain 

the generalizability of findings, as they lack cultural and 

institutional diversity. Additionally, certain key features—

such as motivation and stress—were self-reported, 

introducing potential response biases. While internal 

validation metrics (inertia, Silhouette Coefficient, DBI) 

support the structural robustness of the clustering, they do not 

directly assess pedagogical impact. Future research should 

incorporate diverse, real-world datasets and pursue external 

validation using concrete learning outcomes. Moreover, 

considering the dynamic nature of learner behavior, 
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subsequent adaptive models should be capable of evolving 

over time while ensuring fairness, transparency, and ethical 

integrity in personalized interventions. 

VI. CONCLUSION 

This study employed unsupervised clustering of behavioral 

data to generate adaptive learner profiles within online 

educational environments. By applying the K-Means 

clustering algorithm to a large dataset of student interactions, 

six distinct learner types were identified—including Strategic 

Self-Directed Achievers, Overextended Multitaskers, and 

Struggling Learners. These profiles revealed nuanced 

insights into how students engage with digital platforms and 

highlighted the varying forms of support they require. 

Traditional learning style models, though historically 

influential, are increasingly critiqued for relying on self-

reported preferences that lack stability and context-awareness. 

In contrast, the behavioral approach adopted in this study 

captures real-time engagement and facilitates dynamic 

personalization, making it especially effective for 

underserved populations such as cognitively overloaded or 

slower-paced learners. 

K-Means clustering, when applied to educational data 

mining, offers substantial promise for the development of 

Intelligent Tutoring Systems (ITS) and adaptive learning 

environments. The study underlines that effective results 

depend on meticulous data preprocessing, careful feature 

engineering, and hyperparameter optimization, which 

collectively ensure that clustering outcomes are both 

interpretable and actionable. The implications for educational 

institutions and system designers are profound: interventions 

can be crafted to align with the needs of each learner profile. 

For instance, wellness-oriented modules may benefit high-

stress students, while learners with high activity but 

inconsistent focus may thrive under scaffolded content with 

clearly defined progression paths. 

Furthermore, the potential for real-time personalization is 

underscored through the idea of dynamically updated learner 

dashboards—tools that can adapt learner profiles as new 

behavioral data becomes available. Future research may 

enrich these models by incorporating psychological 

constructs such as grit, resilience, and self-regulation, and by 

examining how learner profiles evolve longitudinally. 

Comparing cluster assignments across diverse educational 

contexts could also reveal systemic factors that influence 

learner behavior and outcomes. 

Overall, this study contributes significantly to the field of 

learning analytics by demonstrating that unsupervised 

machine learning can uncover latent learner typologies. 

These findings not only strengthen theoretical frameworks in 

online learning but also provide a practical foundation for 

scalable, personalized educational technologies. As the 

demand for inclusive and flexible digital education continues 

to grow, behavioral clustering offers a path forward for 

achieving equity and effectiveness in adaptive learning 

systems. 
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