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Abstract—The integration of machine learning techniques
into the educational landscape has opened new avenues for
analyzing and improving learning experiences. This research
investigates the predictive capability of classification algorithms
in determining how external conditions affect student
preferences for online learning. By analyzing variables such as
internet Disruption, device availability, and psychological stress
during the COVID-19 pandemic, we developed several
classification models to uncover the patterns driving these
preferences. The study applied a range of supervised learning
algorithms—namely, random forest, logistic regression,
gradient boosting, support vector machines, k-nearest neighbors,
naive Bayes, and decision trees—to identify the most accurate
predictive approach. Among the evaluated classification
algorithms, K-Nearest Neighbors achieved the highest accuracy
(0.798) and F1-score (0.883), with strong recall (0.979). Support
Vector Machine obtained the highest recall (1.000) but had a
lower ROC-AUC (0.409). Logistic Regression, Naive Bayes,
Random Forest, and Gradient Boosting showed balanced
performance, with Fl-scores ranging from 0.844 to 0.860.
Decision Tree yielded the lowest accuracy (0.712) but
maintained competitive precision (0.824). Overall, K-Nearest
Neighbors and Support Vector Machine demonstrated superior
recall, while K-Nearest Neighbors provided the best overall
classification performance. To gain deeper interpretability of
feature contributions, we employed SHAP (SHapley Additive
exPlanations), which highlighted stress as the most influential
factor. The findings offer actionable insights into how non-
academic influences shape learning modality choices,
supporting data-driven strategies to adapt online education to
diverse student needs during crisis conditions and beyond.

Keywords—classification algorithms, virtual education,
learner decision-making, external influences, predictive
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1. INTRODUCTION

As machine learning and data analytics continue to
revolutionize numerous industries, the education sector is
also increasingly embracing these technologies in order to
boost student engagement and academic outcomes [1-3]. A
foundational step in improving educational systems involves
the accurate identification of influential variables that shape
learning effectiveness. Analytical modeling plays a key role
in uncovering such variables and informing strategic
interventions [4, 5].

Robust predictive algorithms and advanced data mining
techniques are essential to capturing subtle patterns within
complex educational datasets [6]. When applied effectively,
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these tools can extract significant behavioral insights, identify
hidden factors, and support the development of adaptive
learning environments [7]. Moreover, predictive modeling
can play a proactive role in early detection of students at risk
of wunderperforming, allowing for timely pedagogical
adjustments to support learning progression [8].

The outbreak of COVID-19 posed unprecedented global
challenges, triggering health emergencies, economic
instability, and significant disruptions to daily life [9, 10]. In
response, governments enforced lockdowns and social
distancing policies, which, while necessary for public health,
contributed to increased stress and social disruption [11]. The
educational domain was notably affected, with traditional
classroom instruction rapidly replaced by online learning
environments [12—14].

Although this transition posed multiple obstacles, it also
accelerated the adoption of web-based virtual learning
environments such as Coursera, and Khan Academy which
became central to remote learning [15, 16]. Still, the shift
highlighted critical limitations of virtual instruction and
emphasized the urgent need for more effective and inclusive
learning frameworks [17].

This study addresses these challenges by employing
various classification-based machine learning models to
investigate how external conditions—such as technology
access and psychological stress—affect students’ preferences
for online education. By analyzing these factors during the
pandemic, the research seeks to uncover actionable insights
that can improves the design and delivery of distance learning
systems [18, 19]. A variety of machine learning classification
techniques were utilized in this investigation to unravel the
complex interplay between diverse external variables that
shape students’ preferences for remote education. This
strategy allows for a nuanced analysis of the ways in which
elements such as psychological stress, ease of use of learning
platforms, and the ability to adapt to digital environments
collectively impact decision-making among learners.
Through this analytical lens, the study addresses existing
knowledge gaps and contributes practical insights aimed at
improving student support systems during crisis-driven
educational transitions.

Among the algorithms applied, both regression trees and
classification-based models offer distinct analytical
capabilities suited for different types of educational data.
Regression decision trees, for instance, are designed to
forecast continuous values by iteratively dividing data into
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subsets that minimize internal variability. A practical
application of this model might involve estimating the
number of weekly study hours a student devotes based on
demographic and infrastructural variables like age, internet
access, and academic level [20]. In contrast, classification
models are adept at handling categorical outcomes—such as
determining whether a student is likely to prefer online
learning or not. Logistic regression, a foundational
classification method, estimates class membership
probabilities via linear predictors. Ensemble methods such as
Random Forest and Gradient Boosting build on this by
integrating numerous decision trees to improve predictive
reliability and reduce overfitting. Meanwhile, Support Vector
Machines (SVM) operate by identifying the best separating
boundary between classes in high-dimensional space. K-
Nearest Neighbors (KNN) bases its classification decisions
on the proximity of data points to previously labeled samples,
and the Naive Bayes classifier offers a probabilistic approach
that assumes conditional independence between predictors
for faster computations. To facilitate this analysis, a
structured survey was conducted, gathering data on multiple
independent features, while student receptivity to online
learning served as the primary binary outcome variable—
categorized as either high or low. Regression models were
employed to examine continuous outcomes like time spent on
virtual study sessions, whereas classification models such as
SVM, Logistic Regression, and Random Forest were used to
identify factors contributing to categorical differences in
learning adaptability. This dual approach underscored the
complementary strengths of regression and classification
frameworks in capturing the multifaceted nature of student
learning behaviors.

The overarching goal of this study is to design and compare
predictive frameworks using various supervised learning
algorithms, with an emphasis on determining which model
offers the highest accuracy and interpretability. Furthermore,
the research explores how each external feature contributes to
model outputs, thereby offering deeper insight into how
extrinsic conditions influence learning preferences in
digitally mediated environments.

II. RESEARCH METHODOLOGY

To collect data on student preferences regarding Online
versus Onsite Learning (OL/OS), a structured questionnaire
was developed and distributed using Google Forms. This
platform enabled efficient data gathering, incorporating
various extrinsic factors influencing students’ learning mode
preferences. Once collected, the responses were exported in
CSV format and imported into a Google Colab environment
for in-depth analysis. Google Colab, a collaborative and
interactive coding platform, facilitated data preprocessing,
feature engineering, model training, and evaluation,
supporting the implementation of machine learning
algorithms tailored to binary classification tasks. This
methodological framework allowed for the identification of
critical predictors influencing students’ choices between
online and traditional classroom learning, offering strategic
insights for educational stakeholders.

The survey, conducted in February 2024, yielded a dataset
of 120 responses from undergraduate students. Each instance
comprised a binary target variable (OL/OS) and multiple
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independent attributes, namely Internet Disruption (ID),
Cognitive Demands (CD), Learning Platform (LP), Illness (I),
Related Illness (RI), Vaccination (V), Infection Severity (IS),
Environmental Sensitivity (ES), and Protective Adaptability
(PA). All responses were numerically encoded to facilitate
computational analysis. To remove scale-related biases and
enhance model stability, all features were normalized using
standard scaling, transforming them to have zero mean and
unit variance. Model training and evaluation were first
performed using a conventional 70/30 train—test split,
followed by 5-fold and 10-fold cross-validation for each
classification algorithm. The wuse of cross-validation
mitigated  overfitting and improved generalization
performance, which was particularly critical given the
relatively small sample size. we employed 5 and 10-fold
cross-validation, a widely accepted resampling method that
partitions the dataset into training and validation folds,
ensuring that all instances contribute to both training and
evaluation [21]. This approach provides more reliable
performance metrics than a single split, particularly for
limited datasets, by reducing variance in model
evaluation [22]. Cross-validation is especially valuable in
educational research, where collecting large student datasets
can be challenging, thus enhancing generalizability of
findings [23].

Data  preprocessing  steps  included  cleaning,
transformation, and feature scaling, followed by feature
selection tailored to the model requirements. The analysis
adopted a supervised learning approach, as the target variable
was known and binary in nature. A total of seven machine
learning classification algorithms were employed to construct
predictive models and evaluate their performance: Logistic
Regression, Random Forest, Gradient Boosting, Support
Vector Machine (SVM), K-Nearest Neighbors (KNN), Naive
Bayes, and Regression Trees. Each model was trained to learn
patterns from the feature set and predict students’ OL/OS
preference.

Logistic Regression was used to model the probability of
online learning preference based on combinations of input
features. Random Forest, an ensemble method, constructed
multiple decision trees and utilized majority voting to
enhance prediction accuracy. Gradient Boosting followed a
sequential learning approach, where successive models
corrected the errors of their predecessors using gradient
descent to optimize performance iteratively. SVM aimed to
identify the hyperplane that best separated the binary classes
with maximum margin, while KNN classified data points
based on the dominant class among their nearest neighbors.
Naive Bayes, grounded in Bayes’ theorem and the
assumption of feature independence, was applied for its
computational efficiency and robustness to noisy data.
Regression Trees segmented the dataset into homogenous
regions through recursive binary splits, enabling the capture
of non-linear patterns.

To enhance model explainability, SHAP (SHapley
Additive exPlanations) values were calculated. SHAP offers
a game-theoretic approach to interpret model outputs,
assigning importance scores to each feature by quantifying its
marginal contribution to the prediction. This facilitated a
transparent understanding of which factors most significantly
influenced students” preferences, thus aiding the
interpretation of complex model behavior.
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Model evaluation was performed using four key
performance metrics: accuracy, precision, recall, and F1-
score. Accuracy provided a general measure of correctness,
while precision evaluated the proportion of correct positive
predictions. Recall measured the ability to identify all actual
positive cases, and the F1-score served as a balanced metric
combining both precision and recall. The dataset was divided
into training and testing subsets, and each model was trained
on the training data and validated on the test set. Performance
metrics were computed using functions from the Scikit-learn
library, ensuring consistency and reliability across all
evaluations.

TP+TN

Al =
Y = TP Y FN + FP + TN

orecision — TP
recision = TP T FP
Recall = — =
= TP YN

Precision x Recall
F —measure =2 X —
Precision + Recall

The combined use of classification models, and SHAP
analysis enabled a comprehensive exploration of student
behavior in the context of learning modality selection. This
integrative methodology not only offered high predictive
performance but also supported interpretability, aligning with
the broader goal of generating actionable insights for
educational improvement. As highlighted in earlier studies
[24-28], the use of machine learning in education research
has proven to be effective in identifying key influencing
variables, and this study extends that capability with a focus
on simplicity, transparency, and practical relevance (Fig. 1).

| Data Pre-processing |

Accuracy
Precision
Recall
F-measure

Classifiers
1.Logistic
Regression
2.Random Forest
3.Support Vector
Machine
4.Gradient
Boosting
5.K-Nearest
Neighbors
6.Naive Bayes
7.Decision tree

Fig. 1. This diagram represents a machine learning pipeline for evaluating
online education adaptability. The dataset undergoes preprocessing,
followed by feature importance analysis using SHAP and classification using
various algorithms like Logistic Regression and Random Forest. The models
are evaluated using performance metrics such as accuracy, precision, recall,
and F-measure.

III. RESULTS

The F-Value feature offers a statistical measure derived
from the F-test, commonly used to evaluate the significance
of individual predictors in a model. This metric evaluates
whether there is a substantial difference in the averages across
two or more groups. In feature selection, the F-Value
measures how well each feature distinguishes between
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categories or accounts for variation in the data. A larger F-
Value suggests a more significant connection between the
features—namely Vaccination (V), Learning Platform (LP),
and Internet Disruption (ID)—and the dependent variable
(Online/Onsite, or ON/OS), thus implying greater predictive
power. This metric proves particularly valuable in identifying
influential predictors during model development, especially
in scenarios involving Analysis of Variance (ANOVA) and
regression analysis (Fig. 2).

Feature Importance Scores

Feature

o 2 a 6

score

8 10

Fig. 2. This bar chart illustrates the F-value scores used to assess the
importance of input variables in predicting online learning adaptability
during the COVID-19 pandemic. Vaccination (V) is identified as the most
influential factor, followed by Learning Platform (LP), Internet Disruption
(ID), and Cognitive Demands (CD), all of which significantly impact model
performance. In contrast, variables such as Infection Severity (IS),
Environmental Sensitivity (ES), Protective Adaptability (PA), and Illness (I)
show relatively low contribution to the predictive outcome.

Using a single train—test split (70/30), the Decision Tree
classifier —achieved the highest accuracy (0.583),
demonstrating relatively better predictive capability in this
evaluation setting. The Support Vector Machine (SVM)
obtained a perfect recall score (1.0), indicating its ability to
correctly identify all positive instances without false
negatives. Gradient Boosting achieved the highest precision
(0.550), reflecting its reduced false-positive rate.
Furthermore, the SVM attained the highest F1-score (0.703),
suggesting a strong balance between precision and recall and
positioning it as the most balanced model in this evaluation.
In contrast, the K-Nearest Neighbors (KNN) algorithm
recorded the lowest accuracy (0.458), though it maintained
moderate recall and F1-score performance. To further assess
model robustness and mitigate potential biases from a single
data split, all classifiers were subsequently evaluated using 5-
fold and 10-fold cross-validation.

These findings highlight the trade-offs involved in
selecting classifiers. While accuracy measures overall
correctness, it may obscure important performance nuances
in imbalanced datasets or cost-sensitive applications. For
example, although the SVM attained a high F1-score due to
its perfect recall, its relatively lower precision suggests an
increased risk of false positives. The Decision Tree, with its
higher accuracy, appears to be a solid choice but carries a
moderate risk of misclassification as indicated by its
precision. Random Forest, Gradient Boosting, and Naive
Bayes showed comparable performance across the majority
of measures, showcasing their adaptability. KNN, despite its
lower accuracy, retained a respectable recall rate, suggesting
utility in detecting relevant instances despite a higher
misclassification rate. Ultimately, classifier selection must be
guided by specific application goals and tolerance for
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different types of errors.

Table 1. Performance of seven supervised classification algorithms in
predicting student preferences for online learning using 10-fold cross-
validation. K-Nearest Neighbors achieved the highest accuracy and F1-score,
while Support Vector Machine showed perfect recall but lower probability
discrimination (ROC-AUC)

Classifier Accuracy Precision Recall Sf;;e lz%%-
Logistic Regression  0.757 0.781 0.958 0.859 0.561
Decision Tree 0.712 0.824 0.804 0.809  0.603
Random Forest 0.746 0.809 0.891 0.844  0.586
Gradient Boosting 0.747 0.807 0.892 0.844 0.586
ﬁ‘fgﬁgg“mr 0782 0782 1.000 0.877  0.409
K-Nearest Neighbors  0.798 0.807 0.979 0.883 0.517
Naive Bayes 0.764 0.799 0.934 0.860 0.575

To ensure robust and unbiased model evaluation, we
compared three performance estimation methods: a single
70/30 train-test split, 5-fold cross-validation, and 10-fold
cross-validation. The single train-test split, though commonly
used, may suffer from random sampling bias, especially with
smaller datasets. In contrast, cross-validation distributes the
data across multiple iterations, producing more stable and
reliable estimates of classifier performance. As expected,
both 5-fold and 10-fold cross-validation yielded higher and
more consistent performance metrics compared to the single
split. The 5-fold cross-validation results showed substantial
improvements in accuracy and Fl-score across nearly all
classifiers. For instance, Random Forest improved from 0.50
accuracy (split) to 0.722 (5-fold), while Naive Bayes
increased its Fl-score from 0.647 to 0.855. These gains
suggest that some models may have been underestimated
using a single train-test partition. The 10-fold validation,
while computationally more intensive, offered marginal yet
consistent boosts for several models. K-Nearest Neighbors,
in particular, benefited the most from increased folds,
reaching the highest F1-score of 0.883 and accuracy of 0.798
under 10-fold CV. While 10-fold cross-validation provides
slightly better average metrics, 5-fold also offers a reliable
and efficient evaluation standard, especially for small
datasets. Given the consistent trends across both cross-
validation strategies, we report the full 10-fold CV results in
Table 1 to highlight the best-performing models. For
transparency, we also compare outcomes from the train-test
split and 5-fold CV in this section. This comprehensive
reporting allows for a more nuanced understanding of
classifier behavior and demonstrates the robustness of the
findings across multiple evaluation techniques.

The ROC curves indicate that while all classifiers perform
slightly better than random guessing in distinguishing
between students who prefer online vs. onsite learning, their
probabilistic discrimination power is modest. Gradient
Boosting showed the highest average AUC (0.61 £ 0.13),
suggesting a limited but consistent ability to rank predictions.
The relatively large standard deviations in AUC scores,
particularly for Random Forest and SVM, highlight
variability in model performance across different data splits,
which can be attributed to the dataset’s small size and class
imbalance. These results emphasize the need for larger and
more balanced datasets in future research to improve
classification reliability and calibration (Fig. 3).
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ROC Curves for Classifiers (10-fold CV)
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Fig. 3. ROC curves of classification models evaluated using 10-fold cross-
validation. The curves plot the true positive rate (TPR) against the false
positive rate (FPR), with the diagonal line representing random guessing
(AUC =0.5). Gradient Boosting and K-Nearest Neighbors show the best area
under the curve (AUC), indicating moderate probabilistic discrimination.
Standard deviations reflect model variability across folds.

In a Random Forest model, feature importance is generally
determined by assessing how much a feature contributes to
reducing impurity, like Gini impurity or entropy, during the
data splitting process in the decision trees of the ensemble. A
greater reduction in impurity indicates a more impactful
feature. Visualizing feature importance helps identify which
features exert the greatest influence on predictions, offering
crucial insights for model refinement (Fig. 4).

Feature Importance

Feature

0.00 0.05 0.10 0.15

Importance
Fig. 4. This bar chart presents feature importance scores from the Random
Forest model in assessing online learning adaptability during COVID-19.
Vaccination (V), Cognitive Demands (CD), and Protective Adaptability (PA)
emerged as the top predictors, contributing significantly to the model’s
performance. Features like Infection Severity (IS) and Illness (I) showed the
least impact, indicating lower relevance in prediction.

0.20 0.25

Feature Importance

ES

Feature

0.15 0.20 0.25 030

Importance
Fig. 5. Feature importance scores from the Decision Tree model. This bar
chart illustrates feature importance scores from the Decision Tree model for
evaluating online learning adaptability during COVID-19. The most
influential factors were Cognitive Demands (CD), Vaccination (V), and
Protective Adaptability (PA). Less impactful variables included Infection
Sensitivity (ES), Internet Disruption (ID), Related Illness (RI), suggesting
minimal predictive power.
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Similarly, in a Decision Tree model, feature importance is
determined by assessing the reduction in variance or “node
purity” achieved through splits. A graphical representation of
feature importance highlights which variables contribute
most significantly to reducing model error, guiding feature
selection and improving model interpretability and accuracy
(Fig. 5).

The construction of a Random Forest involves generating
multiple Decision Trees, each trained on a random subset of
both the data and the features. This randomness helps

samples = 2
value =[1, 1]

mitigate overfitting and enhances generalization. The first
tree in the forest reflects the model’s initial attempt to learn
from the data, influenced by randomly selected subsets. The
final tree, built after extensive ensemble learning, represents
a more refined structure, having benefited from the
accumulated learning across trees. The contrast between
these trees illustrates the power of ensemble methods to
average out individual biases and enhance robustness
(Figs. 6 and 7).

CD<=05
gini = 0.488
samples = 17

value = [11.0, 15.0]

Fig. 6. To build the first tree in a Random Forest, a random subset of the training data is selected with replacement (bootstrap sampling), and at each node, a
random subset of features is chosen to determine the best split. This randomness introduces diversity among trees, enhancing the model’s overall robustness

and reducing overfitting.

ES <=05
gini = 0.42
samples = 13

/ value = [6, 141 \

Ve=10
gini = 0.444
samples = 2
value = [1, 2]

Ve=15
gini = 0.415
samples = 11
value = [5, 12]

PA<=20
gini = 0.444
samples = 3
value = [2. 1]

Ve=15
gini = 0.444
samples = 2
value =[1, 2]
s

PA <=20
gini = 0.42
samples = 13
value = [6, 14] N
Ve=15 <
gini = 0.49
samples = 4
value = [3, 4]
N
CD<=20 ES <=05
e - i< -
samples = 3 samples = 6
value = [3, 2] value = [3, 6]
rd N rd N

Fig. 7. The final tree in the Random Forest model is one of many decision trees trained on different random subsets of data and features. While each tree may
vary in structure and predictions, the final output of the Random Forest is based on the aggregated results—typically using majority voting (classification)—

from all trees including this last one.

A classification tree segments the data based on decisions
at internal nodes, using metrics such as Gini impurity to select
optimal splits. Each path from the root to a leaf node
represents a rule derived from the input features.

Classification trees are valued for their interpretability and
efficacy in modeling complex, non-linear relationships

(Fig. 8).
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Fig. 8. A decision tree is a machine learning model that splits data into subsets based on feature values, resulting in a tree-like structure where each leaf node
represents a classification outcome. It is easy to interpret and visualize the complex data. However (Fig. 7) random Forest differs from a decision tree by using
an ensemble of multiple decision trees, trained on random subsets of the data and features, improving accuracy and generalization while reducing overfitting.

SHAP (SHapley Additive exPlanations) is a powerful
method to explain individual predictions by assigning each
feature a contribution value based on cooperative game
theory. SHAP values quantify whether a feature has a positive
or negative effect on a model’s prediction and to what extent.
The SHAP summary plot presents a visual overview of

High

Feature value

feature impacts across all samples. It displays features on the
y-axis and SHAP values on the x-axis, where the color
denotes the feature’s actual value. In this study, variables
such as Vaccination (V) and Cognitive Demands (CD) were
identified as having significant effects on prediction
outcomes (Fig. 9).

) N N N

o

) N N N N

-1s  -lo 05 X ) 15
SHAP value (impact on model output) 1e-16

1 2 3 ] 5
mean(|SHAP value]) (average impact on model output magnitude) 1¢-17

Fig. 9. This image displays SHAP (SHapley Additive exPlanations) results: The left and middle plots show feature importance and their average impact on
model output, highlighting those features like Vaccination (V) and Cognitive Demands (CD) contribute most to prediction variation. The right side shows
force plots for individual predictions, illustrating how each feature pushes the prediction toward higher or lower values.

To improve interpretability, we present a SHAP summary
plot (left) and individual SHAP force plots (right), which
show how specific values (high stress, low internet access)
contribute to the final prediction. For instance, high
vaccination confidence generally pushes predictions toward
online preference, whereas internet disruption pushes
predictions toward onsite.

A survey conducted during the study revealed that 90
students preferred online learning as their primary mode of
education (Fig. 10). Feature importance analysis across
models indicated that vaccination status had a significant
influence on this preference. Most students favoring online
learning were vaccinated. However, students who did not
prefer online learning often cited unstable internet
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connectivity (Internet Disruption) as a major challenge.
These students also experienced obstacles such as lack of
internet access at home and familial responsibilities, which
discouraged participation in online learning.

These results emphasize the need to consider extrinsic
variables—particularly Internet Disruption and psychological
stress—when evaluating online learning environments.
While previous models often prioritized intrinsic learner
characteristics, this study demonstrates that external
conditions play a pivotal role in shaping learning preferences.
These insights can inform the development of technology
acceptance models and classroom management strategies
aimed at improving the online learning experience under
uncertain or challenging conditions.
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Fig. 10. This bar chart shows the distribution of student preferences between
online (1) and offline (0) learning modes. The majority of students (90) prefer
online learning, while a smaller group (25) prefers offline.

IV. DiscussioN

In this research, seven machine learning techniques —
Logistic Regression, Decision Trees, Random Forest,
Gradient Boosting, Naive Bayes, Support Vector Machines,
and K-Nearest Neighbors— implemented to build predictive
models for student adaptability to online learning. These
algorithms were chosen due to their demonstrated
effectiveness across diverse classification problems. We
evaluated each model using standard performance metrics:
accuracy, precision, recall, and F1-score [6].

Previous research on student performance has largely
focused on intrinsic factors. Nghe and colleagues [29]
compared Bayesian Networks and Decision Trees for
predicting academic outcomes, finding that Decision Trees
generally outperformed Bayesian Networks. Similarly,
Cortez and Silva [30] predicted secondary school grades
using classification models, again showing superior
performance from tree-based methods. Other researchers,
including Mayilvaganan and Kalpanadevi [31, 32], explored
similar models to predict outcomes such as academic
performance and student retention. Lykourentzou et al. [33]
extended this work by integrating data from Learning
Management Systems (LMS) to predict early dropout rates.

To ensure robust and unbiased performance assessment,
this study compared three evaluation strategies: a single
70/30 train-test split, 5-fold cross-validation, and 10-fold
cross-validation. The traditional train-test split, while
commonly used, may be sensitive to random variation—
especially in small datasets—and may not reliably reflect
real-world performance. Cross-validation, in contrast, divides
the data into multiple folds, allowing every data point to serve
as both training and test data across different iterations. This
provides a more stable and generalizable estimate of model
effectiveness. The results clearly demonstrated that cross-
validation produced consistently higher performance metrics
across all models compared to the single split. For example,
the accuracy of Random Forest increased from 0.50 (split) to
0.746 (10-fold CV), while K-Nearest Neighbors improved
from 0.458 to 0.798. These improvements indicate that train-
test splits may underestimate model capabilities due to class
imbalance or unlucky partitions, while cross-validation helps
mitigate this risk by providing a fairer distribution of classes
across training and testing sets. Among the classifiers tested,
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K-Nearest Neighbors emerged as the top performer under 10-
fold cross-validation, achieving the highest accuracy (0.798)
and Fl-score (0.883). Support Vector Machine also
performed strongly, particularly in terms of recall (1.000),
making it effective at identifying students who prefer online
learning. However, its relatively low precision and ROC-
AUC suggest a higher false positive rate and weaker
confidence calibration. Gradient Boosting and Random
Forest both demonstrated a balanced trade-off between
precision and recall, each attaining Fl-scores of 0.844,
making them suitable choices when model interpretability
and robustness are both valued. Naive Bayes, though based
on strong independence assumptions, showed competitive
performance, indicating that even simpler models can capture
meaningful patterns in student behavior when appropriately
tuned and evaluated. These results underscore the value of
using multiple metrics—accuracy, F1-score, and recall—to
assess classifier effectiveness comprehensively, particularly
when dealing with imbalanced or limited educational datasets.
ROC curve analysis was conducted to evaluate each model’s
ability to rank predictions based on confidence scores. The
area under the ROC curve (AUC) provides a measure of this
capability, with values closer to 1.0 indicating superior class
separation. In this study, AUC values for all models ranged
from 0.54 to 0.61, only modestly above the 0.50 baseline that
represents random guessing. Gradient Boosting achieved the
highest AUC (0.61 £ 0.13), followed by K-Nearest Neighbors
and Support Vector Machine (both at 0.59), but all models
exhibited relatively high standard deviation across folds. This
variability reflects the small sample size (n = 120) and the
binary nature of the classification task, which limits the
models’ probabilistic discrimination. Notably, while SVM
achieved perfect recall, its AUC was lower than expected,
suggesting that it produces confident predictions without
consistently ranking them well across true and false positives.
These findings indicate that although some models can
predict outcomes reliably, their ability to express calibrated
prediction probabilities remains limited—a point that should
be addressed in future work using larger, more diverse
datasets.

Although the AUC values in this study are relatively low
(ranging from 0.409 to 0.603), this does not invalidate the
applicability of the models. In small and imbalanced
educational datasets, AUC can underestimate model utility,
particularly when the primary goal is classification rather
than probability estimation [34]. Prior studies have shown
that models with modest AUC can still provide actionable
insights when recall, precision, or Fl-scores are strong,
especially in high-stakes decision-making contexts where
correctly identifying positive cases is critical [35, 36]. In this
research, metrics such as recall and Fl-score consistently
demonstrated high performance, underscoring that low AUC
values primarily reflect limitations in probabilistic
discrimination rather than outright ineffectiveness of the
classifiers. Therefore, while AUC highlights an area for
improvement, the findings remain meaningful for guiding
online learning strategies.

Classification, a supervised learning approach, trains
models on labeled data to predict classes of unseen
instances [37]. It involves two phases: training, where
patterns are learned from labeled data, and testing, where
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performance is evaluated using a confusion matrix of
true/false positives and negatives to derive metrics such as
accuracy, precision, recall, and Fl-score [38, 39]. The
COVID-19 pandemic accelerated the adoption of online
education, demanding greater digital literacy and adaptability
to online platforms [40]. This shift also created challenges for
instructors and learners, including complex workflows and
technological barriers [41]. Our study emphasizes how
pandemic-related stressors shaped students’ preferences for
online versus onsite learning.

While traditional models like the Technology Acceptance
Model (TAM) emphasize perceived usefulness and ease of
use [42], our results highlight the significant impact of
extrinsic stressors. Challenges such as internet instability,
computational limitations, infection severity, vaccination
status, and environmental sensitivity influence students’
preferences and learning behaviors. These findings align with
behavioral theories underscoring the role of external
conditions in shaping educational engagement [43].
Moreover, online learning success is closely tied to
infrastructure—particularly reliable internet access—and the
digital literacy of both students and instructors [44, 45].
Asynchronous learning offers flexibility, helping to reduce
stress from real-time participation and connectivity issues.
Additionally, game-based approaches, including serious
games and MMORPGs, have shown promise in alleviating
stress while enhancing motivation [46].

Online learning, especially in STEM fields, demands not
only technical resources but also well-designed pedagogical
frameworks that integrate computational tools with effective
instructional design [47—49]. Our study suggests that remote
learners face challenges not just in content acquisition, but
also in synthesizing and applying information in the absence
of traditional classroom interactions [50]. We examined
several extrinsic variables—Internet Disruption (ID),
Cognitive Demands (CD), Learning Platform (LP), Illness (I),
Related Illness (RI), Vaccination (V), Infection Severity (IS),
Environmental Sensitivity (ES), and Protective Adaptability
(PA)—to understand their impact on learning preferences.
These factors influence the outcome variable: Preference for
Online or Onsite Learning (OL/OS). According to TAM,
difficulties related to ID and CD directly affect perceived ease
of use. Meanwhile, health and environmental factors
contribute to psychological stress, influencing students’
adaptability and learning decisions.

To support effective online learning, robust models of
instruction, scheduling, and resource management are
essential [51]. Basic proficiency in multimedia tools and
digital platforms is critical for educators and learners to
ensure seamless delivery and engagement. Strategies such as
well-structured courses, visualization tools, and simulation
software help clarify complex concepts, improve student
confidence, and enhance learning outcomes [52]. From a
psychological perspective, motivation is crucial in helping
students overcome learning barriers. The concept of
constructive alignment—connecting Intended Learning
Outcomes (ILOs), Teaching-Learning Activities (TLAs), and
Assessment Tasks (ATs)—can greatly enhance student
motivation and provide clearer understanding [53, 54]. Our
findings also reinforce the value of structured guidance and
accessible educational tools for both teachers and
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learners [55]. Technology-Enhanced Learning (TEL) further
expands this perspective by integrating content design,
multimedia, instructional delivery, and iterative refinement
[56]. Guided by the cognitive theory of multimedia learning,
effective use of visual and auditory materials can enhance
comprehension by engaging multiple memory systems. Our
findings suggest that combining such tools with attention to
external stressors and learner preferences is essential for
building resilient and effective online education systems.

Recent advances in educational data science highlight the
evolving role of machine learning in modeling student
outcomes and preferences across diverse educational contexts.
Selvakumar et al. [57] applied machine learning classifiers to
primary and middle-school students’ modality preferences,
revealing K-Nearest Neighbors as most accurate in predicting
online learning choices. Brigato and Iocchi [58] demonstrated
that, under limited data conditions, simpler neural network
architectures, along with data augmentation, often
outperform complex deep learning models. In parallel,
Althnian et al. [59] explored the impact of dataset size within
medical classification tasks, identifying AdaBoost and Naive
Bayes as robust options when data availability is constrained,
underscoring dataset representativeness over sheer volum. Li
[60] introduced a model for analyzing shifts in student
learning preferences through educational big data, linking
cognitive development and preference dynamics over time.
In higher education, a Chilean case study used machine
learning to predict student dropout across academic years,
with Random Forest offering the strongest performance and
socioeconomic factors influencing retention [61]. A
systematic evaluation of learning algorithms on image
classification tasks further revealed that model performance
on small datasets is highly sensitive to algorithmic choice and
augmentation strategies [62, 63]. Kokol et al. [64] leveraged
synthetic knowledge synthesis to map research on machine
learning in small-sample scenarios, synthesizing evidence
from various domains to address challenges inherent in
limited data. Finally, in adaptive learning contexts,
personalized systems using educational big data have shown
promise in tailoring learning experiences dynamically,
though often require sophisticated modeling and feature
mapping [65].

Compared to recent work in educational data mining, this
study stands out by integrating pandemic-related external
stressors (e.g., vaccination status, infection severity,
psychological stress) with machine learning classification.
Furthermore, the use of SHAP enhances interpretability—
rarely applied in student preference modeling under crisis
conditions—positioning our study at the intersection of
explainable Al and educational technology research.

Limitations and Future Work: The limited dataset size (n =
120) constrains generalizability and may lead to overfitting.
Future research should include a more diverse and larger
student population across multiple institutions and regions.
The binary classification of learning preference could be
extended to multi-class or multi-label frameworks to better
capture nuanced preferences. Moreover, linking predictors to
actual academic outcomes (e.g., GPA) and conducting
longitudinal analyses could enrich understanding of temporal
learning behaviors.
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V. CONCLUSION

This research evaluated various machine learning
classification models using survey data collected to explore
online learning preferences during covid-19 pandemic. The
analysis focused on estimating how different factors
influence these preferences, identifying key external
variables that have the most significant impact. These
findings provide crucial insights into student behavior and
can be used to predict preferences and develop effective
methods for managing online education. Additionally, the
study revealed that the goals and design of the learning
system play a critical role in shaping student preferences,
emphasizing the need for educational strategies that are
closely aligned with students’ needs and expectations.

Although the findings are primarily based on data from a
specific region, they hold potential applicability in broader
contexts. However, variations in technological literacy and
internet access across regions may require contextual
adjustments. Educators and policymakers should therefore
consider local conditions when applying these insights
elsewhere. Overall, this research enhances the understanding
of the factors that influence student preferences in online
learning and lays the groundwork for developing targeted
educational interventions to improve the global online
learning experience.
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