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Abstract—The integration of machine learning techniques 

into the educational landscape has opened new avenues for 

analyzing and improving learning experiences. This research 

investigates the predictive capability of classification algorithms 

in determining how external conditions affect student 

preferences for online learning. By analyzing variables such as 

internet Disruption, device availability, and psychological stress 

during the COVID-19 pandemic, we developed several 

classification models to uncover the patterns driving these 

preferences. The study applied a range of supervised learning 

algorithms—namely, random forest, logistic regression, 

gradient boosting, support vector machines, k-nearest neighbors, 

naïve Bayes, and decision trees—to identify the most accurate 

predictive approach. Among the evaluated classification 

algorithms, K-Nearest Neighbors achieved the highest accuracy 

(0.798) and F1-score (0.883), with strong recall (0.979). Support 

Vector Machine obtained the highest recall (1.000) but had a 

lower ROC-AUC (0.409). Logistic Regression, Naive Bayes, 

Random Forest, and Gradient Boosting showed balanced 

performance, with F1-scores ranging from 0.844 to 0.860. 

Decision Tree yielded the lowest accuracy (0.712) but 

maintained competitive precision (0.824). Overall, K-Nearest 

Neighbors and Support Vector Machine demonstrated superior 

recall, while K-Nearest Neighbors provided the best overall 

classification performance. To gain deeper interpretability of 

feature contributions, we employed SHAP (SHapley Additive 

exPlanations), which highlighted stress as the most influential 

factor. The findings offer actionable insights into how non-

academic influences shape learning modality choices, 

supporting data-driven strategies to adapt online education to 

diverse student needs during crisis conditions and beyond. 
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I. INTRODUCTION 

As machine learning and data analytics continue to 

revolutionize numerous industries, the education sector is 

also increasingly embracing these technologies in order to 

boost student engagement and academic outcomes [1–3]. A 

foundational step in improving educational systems involves 

the accurate identification of influential variables that shape 

learning effectiveness. Analytical modeling plays a key role 

in uncovering such variables and informing strategic 

interventions [4, 5]. 

Robust predictive algorithms and advanced data mining 

techniques are essential to capturing subtle patterns within 

complex educational datasets [6]. When applied effectively, 

these tools can extract significant behavioral insights, identify 

hidden factors, and support the development of adaptive 

learning environments [7]. Moreover, predictive modeling 

can play a proactive role in early detection of students at risk 

of underperforming, allowing for timely pedagogical 

adjustments to support learning progression [8]. 

The outbreak of COVID-19 posed unprecedented global 

challenges, triggering health emergencies, economic 

instability, and significant disruptions to daily life [9, 10]. In 

response, governments enforced lockdowns and social 

distancing policies, which, while necessary for public health, 

contributed to increased stress and social disruption [11]. The 

educational domain was notably affected, with traditional 

classroom instruction rapidly replaced by online learning 

environments [12–14]. 

Although this transition posed multiple obstacles, it also 

accelerated the adoption of web-based virtual learning 

environments such as Coursera, and Khan Academy which 

became central to remote learning [15, 16]. Still, the shift 

highlighted critical limitations of virtual instruction and 

emphasized the urgent need for more effective and inclusive 

learning frameworks [17]. 

This study addresses these challenges by employing 

various classification-based machine learning models to 

investigate how external conditions—such as technology 

access and psychological stress—affect students’ preferences 

for online education. By analyzing these factors during the 

pandemic, the research seeks to uncover actionable insights 

that can improves the design and delivery of distance learning 

systems [18, 19]. A variety of machine learning classification 

techniques were utilized in this investigation to unravel the 

complex interplay between diverse external variables that 

shape students’ preferences for remote education. This 

strategy allows for a nuanced analysis of the ways in which 

elements such as psychological stress, ease of use of learning 

platforms, and the ability to adapt to digital environments 

collectively impact decision-making among learners. 

Through this analytical lens, the study addresses existing 

knowledge gaps and contributes practical insights aimed at 

improving student support systems during crisis-driven 

educational transitions. 

Among the algorithms applied, both regression trees and 

classification-based models offer distinct analytical 

capabilities suited for different types of educational data. 

Regression decision trees, for instance, are designed to 

forecast continuous values by iteratively dividing data into 
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subsets that minimize internal variability. A practical 

application of this model might involve estimating the 

number of weekly study hours a student devotes based on 

demographic and infrastructural variables like age, internet 

access, and academic level [20]. In contrast, classification 

models are adept at handling categorical outcomes—such as 

determining whether a student is likely to prefer online 

learning or not. Logistic regression, a foundational 

classification method, estimates class membership 

probabilities via linear predictors. Ensemble methods such as 

Random Forest and Gradient Boosting build on this by 

integrating numerous decision trees to improve predictive 

reliability and reduce overfitting. Meanwhile, Support Vector 

Machines (SVM) operate by identifying the best separating 

boundary between classes in high-dimensional space. K-

Nearest Neighbors (KNN) bases its classification decisions 

on the proximity of data points to previously labeled samples, 

and the Naïve Bayes classifier offers a probabilistic approach 

that assumes conditional independence between predictors 

for faster computations. To facilitate this analysis, a 

structured survey was conducted, gathering data on multiple 

independent features, while student receptivity to online 

learning served as the primary binary outcome variable—

categorized as either high or low. Regression models were 

employed to examine continuous outcomes like time spent on 

virtual study sessions, whereas classification models such as 

SVM, Logistic Regression, and Random Forest were used to 

identify factors contributing to categorical differences in 

learning adaptability. This dual approach underscored the 

complementary strengths of regression and classification 

frameworks in capturing the multifaceted nature of student 

learning behaviors. 

The overarching goal of this study is to design and compare 

predictive frameworks using various supervised learning 

algorithms, with an emphasis on determining which model 

offers the highest accuracy and interpretability. Furthermore, 

the research explores how each external feature contributes to 

model outputs, thereby offering deeper insight into how 

extrinsic conditions influence learning preferences in 

digitally mediated environments. 

II. RESEARCH METHODOLOGY 

To collect data on student preferences regarding Online 

versus Onsite Learning (OL/OS), a structured questionnaire 

was developed and distributed using Google Forms. This 

platform enabled efficient data gathering, incorporating 

various extrinsic factors influencing students’ learning mode 

preferences. Once collected, the responses were exported in 

CSV format and imported into a Google Colab environment 

for in-depth analysis. Google Colab, a collaborative and 

interactive coding platform, facilitated data preprocessing, 

feature engineering, model training, and evaluation, 

supporting the implementation of machine learning 

algorithms tailored to binary classification tasks. This 

methodological framework allowed for the identification of 

critical predictors influencing students’ choices between 

online and traditional classroom learning, offering strategic 

insights for educational stakeholders. 

The survey, conducted in February 2024, yielded a dataset 

of 120 responses from undergraduate students. Each instance 

comprised a binary target variable (OL/OS) and multiple 

independent attributes, namely Internet Disruption (ID), 

Cognitive Demands (CD), Learning Platform (LP), Illness (I), 

Related Illness (RI), Vaccination (V), Infection Severity (IS), 

Environmental Sensitivity (ES), and Protective Adaptability 

(PA). All responses were numerically encoded to facilitate 

computational analysis. To remove scale-related biases and 

enhance model stability, all features were normalized using 

standard scaling, transforming them to have zero mean and 

unit variance. Model training and evaluation were first 

performed using a conventional 70/30 train–test split, 

followed by 5-fold and 10-fold cross-validation for each 

classification algorithm. The use of cross-validation 

mitigated overfitting and improved generalization 

performance, which was particularly critical given the 

relatively small sample size. we employed 5 and 10-fold 

cross-validation, a widely accepted resampling method that 

partitions the dataset into training and validation folds, 

ensuring that all instances contribute to both training and 

evaluation [21]. This approach provides more reliable 

performance metrics than a single split, particularly for 

limited datasets, by reducing variance in model  

evaluation [22]. Cross-validation is especially valuable in 

educational research, where collecting large student datasets 

can be challenging, thus enhancing generalizability of 

findings [23]. 

Data preprocessing steps included cleaning, 

transformation, and feature scaling, followed by feature 

selection tailored to the model requirements. The analysis 

adopted a supervised learning approach, as the target variable 

was known and binary in nature. A total of seven machine 

learning classification algorithms were employed to construct 

predictive models and evaluate their performance: Logistic 

Regression, Random Forest, Gradient Boosting, Support 

Vector Machine (SVM), K-Nearest Neighbors (KNN), Naive 

Bayes, and Regression Trees. Each model was trained to learn 

patterns from the feature set and predict students’ OL/OS 

preference. 

Logistic Regression was used to model the probability of 

online learning preference based on combinations of input 

features. Random Forest, an ensemble method, constructed 

multiple decision trees and utilized majority voting to 

enhance prediction accuracy. Gradient Boosting followed a 

sequential learning approach, where successive models 

corrected the errors of their predecessors using gradient 

descent to optimize performance iteratively. SVM aimed to 

identify the hyperplane that best separated the binary classes 

with maximum margin, while KNN classified data points 

based on the dominant class among their nearest neighbors. 

Naive Bayes, grounded in Bayes’ theorem and the 

assumption of feature independence, was applied for its 

computational efficiency and robustness to noisy data. 

Regression Trees segmented the dataset into homogenous 

regions through recursive binary splits, enabling the capture 

of non-linear patterns. 

To enhance model explainability, SHAP (SHapley 

Additive exPlanations) values were calculated. SHAP offers 

a game-theoretic approach to interpret model outputs, 

assigning importance scores to each feature by quantifying its 

marginal contribution to the prediction. This facilitated a 

transparent understanding of which factors most significantly 

influenced students’ preferences, thus aiding the 

interpretation of complex model behavior. 
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Model evaluation was performed using four key 

performance metrics: accuracy, precision, recall, and F1-

score. Accuracy provided a general measure of correctness, 

while precision evaluated the proportion of correct positive 

predictions. Recall measured the ability to identify all actual 

positive cases, and the F1-score served as a balanced metric 

combining both precision and recall. The dataset was divided 

into training and testing subsets, and each model was trained 

on the training data and validated on the test set. Performance 

metrics were computed using functions from the Scikit-learn 

library, ensuring consistency and reliability across all 

evaluations. 

The combined use of classification models, and SHAP 

analysis enabled a comprehensive exploration of student 

behavior in the context of learning modality selection. This 

integrative methodology not only offered high predictive 

performance but also supported interpretability, aligning with 

the broader goal of generating actionable insights for 

educational improvement. As highlighted in earlier studies 

[24–28], the use of machine learning in education research 

has proven to be effective in identifying key influencing 

variables, and this study extends that capability with a focus 

on simplicity, transparency, and practical relevance (Fig. 1). 

Fig. 1. This diagram represents a machine learning pipeline for evaluating 

online education adaptability. The dataset undergoes preprocessing, 

followed by feature importance analysis using SHAP and classification using 

various algorithms like Logistic Regression and Random Forest. The models 
are evaluated using performance metrics such as accuracy, precision, recall, 

and F-measure. 

III. RESULTS

The F-Value feature offers a statistical measure derived 

from the F-test, commonly used to evaluate the significance 

of individual predictors in a model. This metric evaluates 

whether there is a substantial difference in the averages across 

two or more groups. In feature selection, the F-Value 

measures how well each feature distinguishes between 

categories or accounts for variation in the data. A larger F-

Value suggests a more significant connection between the 

features—namely Vaccination (V), Learning Platform (LP), 

and Internet Disruption (ID)—and the dependent variable 

(Online/Onsite, or ON/OS), thus implying greater predictive 

power. This metric proves particularly valuable in identifying 

influential predictors during model development, especially 

in scenarios involving Analysis of Variance (ANOVA) and 

regression analysis (Fig. 2). 

Fig. 2. This bar chart illustrates the F-value scores used to assess the 

importance of input variables in predicting online learning adaptability 

during the COVID-19 pandemic. Vaccination (V) is identified as the most 
influential factor, followed by Learning Platform (LP), Internet Disruption 

(ID), and Cognitive Demands (CD), all of which significantly impact model 

performance. In contrast, variables such as Infection Severity (IS), 
Environmental Sensitivity (ES), Protective Adaptability (PA), and Illness (I) 

show relatively low contribution to the predictive outcome. 

Using a single train–test split (70/30), the Decision Tree 

classifier achieved the highest accuracy (0.583), 

demonstrating relatively better predictive capability in this 

evaluation setting. The Support Vector Machine (SVM) 

obtained a perfect recall score (1.0), indicating its ability to 

correctly identify all positive instances without false 

negatives. Gradient Boosting achieved the highest precision 

(0.550), reflecting its reduced false-positive rate. 

Furthermore, the SVM attained the highest F1-score (0.703), 

suggesting a strong balance between precision and recall and 

positioning it as the most balanced model in this evaluation. 

In contrast, the K-Nearest Neighbors (KNN) algorithm 

recorded the lowest accuracy (0.458), though it maintained 

moderate recall and F1-score performance. To further assess 

model robustness and mitigate potential biases from a single 

data split, all classifiers were subsequently evaluated using 5-

fold and 10-fold cross-validation. 

These findings highlight the trade-offs involved in 

selecting classifiers. While accuracy measures overall 

correctness, it may obscure important performance nuances 

in imbalanced datasets or cost-sensitive applications. For 

example, although the SVM attained a high F1-score due to 

its perfect recall, its relatively lower precision suggests an 

increased risk of false positives. The Decision Tree, with its 

higher accuracy, appears to be a solid choice but carries a 

moderate risk of misclassification as indicated by its 

precision. Random Forest, Gradient Boosting, and Naive 

Bayes showed comparable performance across the majority 

of measures, showcasing their adaptability. KNN, despite its 

lower accuracy, retained a respectable recall rate, suggesting 

utility in detecting relevant instances despite a higher 

misclassification rate. Ultimately, classifier selection must be 

guided by specific application goals and tolerance for 
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different types of errors. 

Table 1. Performance of seven supervised classification algorithms in 

predicting student preferences for online learning using 10-fold cross-

validation. K-Nearest Neighbors achieved the highest accuracy and F1-score, 
while Support Vector Machine showed perfect recall but lower probability 

discrimination (ROC-AUC) 

Classifier Accuracy Precision Recall 
F1-

Score 

ROC-

AUC 

Logistic Regression 0.757 0.781 0.958 0.859 0.561 

Decision Tree 0.712 0.824 0.804 0.809 0.603 

Random Forest 0.746 0.809 0.891 0.844 0.586 

Gradient Boosting 0.747 0.807 0.892 0.844 0.586 

Support Vector 
Machine 

0.782 0.782 1.000 0.877 0.409 

K-Nearest Neighbors 0.798 0.807 0.979 0.883 0.517 

Naive Bayes 0.764 0.799 0.934 0.860 0.575 

To ensure robust and unbiased model evaluation, we 

compared three performance estimation methods: a single 

70/30 train-test split, 5-fold cross-validation, and 10-fold 

cross-validation. The single train-test split, though commonly 

used, may suffer from random sampling bias, especially with 

smaller datasets. In contrast, cross-validation distributes the 

data across multiple iterations, producing more stable and 

reliable estimates of classifier performance. As expected, 

both 5-fold and 10-fold cross-validation yielded higher and 

more consistent performance metrics compared to the single 

split. The 5-fold cross-validation results showed substantial 

improvements in accuracy and F1-score across nearly all 

classifiers. For instance, Random Forest improved from 0.50 

accuracy (split) to 0.722 (5-fold), while Naive Bayes 

increased its F1-score from 0.647 to 0.855. These gains 

suggest that some models may have been underestimated 

using a single train-test partition. The 10-fold validation, 

while computationally more intensive, offered marginal yet 

consistent boosts for several models. K-Nearest Neighbors, 

in particular, benefited the most from increased folds, 

reaching the highest F1-score of 0.883 and accuracy of 0.798 

under 10-fold CV. While 10-fold cross-validation provides 

slightly better average metrics, 5-fold also offers a reliable 

and efficient evaluation standard, especially for small 

datasets. Given the consistent trends across both cross-

validation strategies, we report the full 10-fold CV results in 

Table 1 to highlight the best-performing models. For 

transparency, we also compare outcomes from the train-test 

split and 5-fold CV in this section. This comprehensive 

reporting allows for a more nuanced understanding of 

classifier behavior and demonstrates the robustness of the 

findings across multiple evaluation techniques. 

The ROC curves indicate that while all classifiers perform 

slightly better than random guessing in distinguishing 

between students who prefer online vs. onsite learning, their 

probabilistic discrimination power is modest. Gradient 

Boosting showed the highest average AUC (0.61 ± 0.13), 

suggesting a limited but consistent ability to rank predictions. 

The relatively large standard deviations in AUC scores, 

particularly for Random Forest and SVM, highlight 

variability in model performance across different data splits, 

which can be attributed to the dataset’s small size and class 

imbalance. These results emphasize the need for larger and 

more balanced datasets in future research to improve 

classification reliability and calibration (Fig. 3). 

Fig. 3. ROC curves of classification models evaluated using 10-fold cross-

validation. The curves plot the true positive rate (TPR) against the false 

positive rate (FPR), with the diagonal line representing random guessing 
(AUC = 0.5). Gradient Boosting and K-Nearest Neighbors show the best area 

under the curve (AUC), indicating moderate probabilistic discrimination. 

Standard deviations reflect model variability across folds. 

In a Random Forest model, feature importance is generally 

determined by assessing how much a feature contributes to 

reducing impurity, like Gini impurity or entropy, during the 

data splitting process in the decision trees of the ensemble. A 

greater reduction in impurity indicates a more impactful 

feature. Visualizing feature importance helps identify which 

features exert the greatest influence on predictions, offering 

crucial insights for model refinement (Fig. 4). 

Fig. 4. This bar chart presents feature importance scores from the Random 

Forest model in assessing online learning adaptability during COVID-19. 
Vaccination (V), Cognitive Demands (CD), and Protective Adaptability (PA) 

emerged as the top predictors, contributing significantly to the model’s 

performance. Features like Infection Severity (IS) and Illness (I) showed the 
least impact, indicating lower relevance in prediction. 

Fig. 5. Feature importance scores from the Decision Tree model. This bar 

chart illustrates feature importance scores from the Decision Tree model for 

evaluating online learning adaptability during COVID-19. The most 
influential factors were Cognitive Demands (CD), Vaccination (V), and 

Protective Adaptability (PA). Less impactful variables included Infection 

Sensitivity (ES), Internet Disruption (ID), Related Illness (RI), suggesting 
minimal predictive power. 
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Similarly, in a Decision Tree model, feature importance is 

determined by assessing the reduction in variance or “node 

purity” achieved through splits. A graphical representation of 

feature importance highlights which variables contribute 

most significantly to reducing model error, guiding feature 

selection and improving model interpretability and accuracy 

(Fig. 5). 

The construction of a Random Forest involves generating 

multiple Decision Trees, each trained on a random subset of 

both the data and the features. This randomness helps 

mitigate overfitting and enhances generalization. The first 

tree in the forest reflects the model’s initial attempt to learn 

from the data, influenced by randomly selected subsets. The 

final tree, built after extensive ensemble learning, represents 

a more refined structure, having benefited from the 

accumulated learning across trees. The contrast between 

these trees illustrates the power of ensemble methods to 

average out individual biases and enhance robustness 

(Figs. 6 and 7). 

Fig. 6. To build the first tree in a Random Forest, a random subset of the training data is selected with replacement (bootstrap sampling), and at each node, a 

random subset of features is chosen to determine the best split. This randomness introduces diversity among trees, enhancing the model’s overall robustness 
and reducing overfitting. 

Fig. 7. The final tree in the Random Forest model is one of many decision trees trained on different random subsets of data and features. While each tree may 
vary in structure and predictions, the final output of the Random Forest is based on the aggregated results—typically using majority voting (classification)—

from all trees including this last one. 

A classification tree segments the data based on decisions 

at internal nodes, using metrics such as Gini impurity to select 

optimal splits. Each path from the root to a leaf node 

represents a rule derived from the input features. 

Classification trees are valued for their interpretability and 

efficacy in modeling complex, non-linear relationships 

(Fig. 8). 
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Fig. 8. A decision tree is a machine learning model that splits data into subsets based on feature values, resulting in a tree-like structure where each leaf node 
represents a classification outcome. It is easy to interpret and visualize the complex data. However (Fig. 7) random Forest differs from a decision tree by using 

an ensemble of multiple decision trees, trained on random subsets of the data and features, improving accuracy and generalization while reducing overfitting. 

SHAP (SHapley Additive exPlanations) is a powerful 

method to explain individual predictions by assigning each 

feature a contribution value based on cooperative game 

theory. SHAP values quantify whether a feature has a positive 

or negative effect on a model’s prediction and to what extent. 

The SHAP summary plot presents a visual overview of 

feature impacts across all samples. It displays features on the 

y-axis and SHAP values on the x-axis, where the color

denotes the feature’s actual value. In this study, variables

such as Vaccination (V) and Cognitive Demands (CD) were

identified as having significant effects on prediction

outcomes (Fig. 9).

Fig. 9. This image displays SHAP (SHapley Additive exPlanations) results: The left and middle plots show feature importance and their average impact on 

model output, highlighting those features like Vaccination (V) and Cognitive Demands (CD) contribute most to prediction variation. The right side shows 

force plots for individual predictions, illustrating how each feature pushes the prediction toward higher or lower values. 

To improve interpretability, we present a SHAP summary 

plot (left) and individual SHAP force plots (right), which 

show how specific values (high stress, low internet access) 

contribute to the final prediction. For instance, high 

vaccination confidence generally pushes predictions toward 

online preference, whereas internet disruption pushes 

predictions toward onsite. 

A survey conducted during the study revealed that 90 

students preferred online learning as their primary mode of 

education (Fig. 10). Feature importance analysis across 

models indicated that vaccination status had a significant 

influence on this preference. Most students favoring online 

learning were vaccinated. However, students who did not 

prefer online learning often cited unstable internet 

connectivity (Internet Disruption) as a major challenge. 

These students also experienced obstacles such as lack of 

internet access at home and familial responsibilities, which 

discouraged participation in online learning. 

These results emphasize the need to consider extrinsic 

variables—particularly Internet Disruption and psychological 

stress—when evaluating online learning environments. 

While previous models often prioritized intrinsic learner 

characteristics, this study demonstrates that external 

conditions play a pivotal role in shaping learning preferences. 

These insights can inform the development of technology 

acceptance models and classroom management strategies 

aimed at improving the online learning experience under 

uncertain or challenging conditions. 
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Fig. 10. This bar chart shows the distribution of student preferences between 

online (1) and offline (0) learning modes. The majority of students (90) prefer 
online learning, while a smaller group (25) prefers offline. 

IV. DISCUSSION

In this research, seven machine learning techniques —

Logistic Regression, Decision Trees, Random Forest, 

Gradient Boosting, Naive Bayes, Support Vector Machines, 

and K-Nearest Neighbors— implemented to build predictive 

models for student adaptability to online learning. These 

algorithms were chosen due to their demonstrated 

effectiveness across diverse classification problems. We 

evaluated each model using standard performance metrics: 

accuracy, precision, recall, and F1-score [6]. 

Previous research on student performance has largely 

focused on intrinsic factors. Nghe and colleagues [29] 

compared Bayesian Networks and Decision Trees for 

predicting academic outcomes, finding that Decision Trees 

generally outperformed Bayesian Networks. Similarly, 

Cortez and Silva [30] predicted secondary school grades 

using classification models, again showing superior 

performance from tree-based methods. Other researchers, 

including Mayilvaganan and Kalpanadevi [31, 32], explored 

similar models to predict outcomes such as academic 

performance and student retention. Lykourentzou et al. [33] 

extended this work by integrating data from Learning 

Management Systems (LMS) to predict early dropout rates. 

To ensure robust and unbiased performance assessment, 

this study compared three evaluation strategies: a single 

70/30 train-test split, 5-fold cross-validation, and 10-fold 

cross-validation. The traditional train-test split, while 

commonly used, may be sensitive to random variation—

especially in small datasets—and may not reliably reflect 

real-world performance. Cross-validation, in contrast, divides 

the data into multiple folds, allowing every data point to serve 

as both training and test data across different iterations. This 

provides a more stable and generalizable estimate of model 

effectiveness. The results clearly demonstrated that cross-

validation produced consistently higher performance metrics 

across all models compared to the single split. For example, 

the accuracy of Random Forest increased from 0.50 (split) to 

0.746 (10-fold CV), while K-Nearest Neighbors improved 

from 0.458 to 0.798. These improvements indicate that train-

test splits may underestimate model capabilities due to class 

imbalance or unlucky partitions, while cross-validation helps 

mitigate this risk by providing a fairer distribution of classes 

across training and testing sets. Among the classifiers tested, 

K-Nearest Neighbors emerged as the top performer under 10-

fold cross-validation, achieving the highest accuracy (0.798)

and F1-score (0.883). Support Vector Machine also

performed strongly, particularly in terms of recall (1.000),

making it effective at identifying students who prefer online

learning. However, its relatively low precision and ROC-

AUC suggest a higher false positive rate and weaker

confidence calibration. Gradient Boosting and Random

Forest both demonstrated a balanced trade-off between

precision and recall, each attaining F1-scores of 0.844,

making them suitable choices when model interpretability

and robustness are both valued. Naive Bayes, though based

on strong independence assumptions, showed competitive

performance, indicating that even simpler models can capture

meaningful patterns in student behavior when appropriately

tuned and evaluated. These results underscore the value of

using multiple metrics—accuracy, F1-score, and recall—to

assess classifier effectiveness comprehensively, particularly

when dealing with imbalanced or limited educational datasets.

ROC curve analysis was conducted to evaluate each model’s

ability to rank predictions based on confidence scores. The

area under the ROC curve (AUC) provides a measure of this

capability, with values closer to 1.0 indicating superior class

separation. In this study, AUC values for all models ranged

from 0.54 to 0.61, only modestly above the 0.50 baseline that

represents random guessing. Gradient Boosting achieved the

highest AUC (0.61 ± 0.13), followed by K-Nearest Neighbors

and Support Vector Machine (both at 0.59), but all models

exhibited relatively high standard deviation across folds. This

variability reflects the small sample size (n = 120) and the

binary nature of the classification task, which limits the

models’ probabilistic discrimination. Notably, while SVM

achieved perfect recall, its AUC was lower than expected,

suggesting that it produces confident predictions without

consistently ranking them well across true and false positives.

These findings indicate that although some models can

predict outcomes reliably, their ability to express calibrated

prediction probabilities remains limited—a point that should

be addressed in future work using larger, more diverse

datasets.

Although the AUC values in this study are relatively low 

(ranging from 0.409 to 0.603), this does not invalidate the 

applicability of the models. In small and imbalanced 

educational datasets, AUC can underestimate model utility, 

particularly when the primary goal is classification rather 

than probability estimation [34]. Prior studies have shown 

that models with modest AUC can still provide actionable 

insights when recall, precision, or F1-scores are strong, 

especially in high-stakes decision-making contexts where 

correctly identifying positive cases is critical [35, 36]. In this 

research, metrics such as recall and F1-score consistently 

demonstrated high performance, underscoring that low AUC 

values primarily reflect limitations in probabilistic 

discrimination rather than outright ineffectiveness of the 

classifiers. Therefore, while AUC highlights an area for 

improvement, the findings remain meaningful for guiding 

online learning strategies. 

Classification, a supervised learning approach, trains 

models on labeled data to predict classes of unseen 

instances [37]. It involves two phases: training, where 

patterns are learned from labeled data, and testing, where 
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performance is evaluated using a confusion matrix of 

true/false positives and negatives to derive metrics such as 

accuracy, precision, recall, and F1-score [38, 39]. The 

COVID-19 pandemic accelerated the adoption of online 

education, demanding greater digital literacy and adaptability 

to online platforms [40]. This shift also created challenges for 

instructors and learners, including complex workflows and 

technological barriers [41]. Our study emphasizes how 

pandemic-related stressors shaped students’ preferences for 

online versus onsite learning. 

While traditional models like the Technology Acceptance 

Model (TAM) emphasize perceived usefulness and ease of 

use [42], our results highlight the significant impact of 

extrinsic stressors. Challenges such as internet instability, 

computational limitations, infection severity, vaccination 

status, and environmental sensitivity influence students’ 

preferences and learning behaviors. These findings align with 

behavioral theories underscoring the role of external 

conditions in shaping educational engagement [43]. 

Moreover, online learning success is closely tied to 

infrastructure—particularly reliable internet access—and the 

digital literacy of both students and instructors [44, 45]. 

Asynchronous learning offers flexibility, helping to reduce 

stress from real-time participation and connectivity issues. 

Additionally, game-based approaches, including serious 

games and MMORPGs, have shown promise in alleviating 

stress while enhancing motivation [46]. 

Online learning, especially in STEM fields, demands not 

only technical resources but also well-designed pedagogical 

frameworks that integrate computational tools with effective 

instructional design [47–49]. Our study suggests that remote 

learners face challenges not just in content acquisition, but 

also in synthesizing and applying information in the absence 

of traditional classroom interactions [50]. We examined 

several extrinsic variables—Internet Disruption (ID), 

Cognitive Demands (CD), Learning Platform (LP), Illness (I), 

Related Illness (RI), Vaccination (V), Infection Severity (IS), 

Environmental Sensitivity (ES), and Protective Adaptability 

(PA)—to understand their impact on learning preferences. 

These factors influence the outcome variable: Preference for 

Online or Onsite Learning (OL/OS). According to TAM, 

difficulties related to ID and CD directly affect perceived ease 

of use. Meanwhile, health and environmental factors 

contribute to psychological stress, influencing students’ 

adaptability and learning decisions. 

To support effective online learning, robust models of 

instruction, scheduling, and resource management are 

essential [51]. Basic proficiency in multimedia tools and 

digital platforms is critical for educators and learners to 

ensure seamless delivery and engagement. Strategies such as 

well-structured courses, visualization tools, and simulation 

software help clarify complex concepts, improve student 

confidence, and enhance learning outcomes [52]. From a 

psychological perspective, motivation is crucial in helping 

students overcome learning barriers. The concept of 

constructive alignment—connecting Intended Learning 

Outcomes (ILOs), Teaching-Learning Activities (TLAs), and 

Assessment Tasks (ATs)—can greatly enhance student 

motivation and provide clearer understanding [53, 54]. Our 

findings also reinforce the value of structured guidance and 

accessible educational tools for both teachers and  

learners [55]. Technology-Enhanced Learning (TEL) further 

expands this perspective by integrating content design, 

multimedia, instructional delivery, and iterative refinement 

[56]. Guided by the cognitive theory of multimedia learning, 

effective use of visual and auditory materials can enhance 

comprehension by engaging multiple memory systems. Our 

findings suggest that combining such tools with attention to 

external stressors and learner preferences is essential for 

building resilient and effective online education systems. 

Recent advances in educational data science highlight the 

evolving role of machine learning in modeling student 

outcomes and preferences across diverse educational contexts. 

Selvakumar et al. [57] applied machine learning classifiers to 

primary and middle-school students’ modality preferences, 

revealing K-Nearest Neighbors as most accurate in predicting 

online learning choices. Brigato and Iocchi [58] demonstrated 

that, under limited data conditions, simpler neural network 

architectures, along with data augmentation, often 

outperform complex deep learning models. In parallel, 

Althnian et al. [59] explored the impact of dataset size within 

medical classification tasks, identifying AdaBoost and Naive 

Bayes as robust options when data availability is constrained, 

underscoring dataset representativeness over sheer volum. Li 

[60] introduced a model for analyzing shifts in student 

learning preferences through educational big data, linking 

cognitive development and preference dynamics over time. 

In higher education, a Chilean case study used machine 

learning to predict student dropout across academic years, 

with Random Forest offering the strongest performance and 

socioeconomic factors influencing retention [61]. A 

systematic evaluation of learning algorithms on image 

classification tasks further revealed that model performance 

on small datasets is highly sensitive to algorithmic choice and 

augmentation strategies [62, 63]. Kokol et al. [64] leveraged 

synthetic knowledge synthesis to map research on machine 

learning in small-sample scenarios, synthesizing evidence 

from various domains to address challenges inherent in 

limited data. Finally, in adaptive learning contexts, 

personalized systems using educational big data have shown 

promise in tailoring learning experiences dynamically, 

though often require sophisticated modeling and feature 

mapping [65]. 

Compared to recent work in educational data mining, this 

study stands out by integrating pandemic-related external 

stressors (e.g., vaccination status, infection severity, 

psychological stress) with machine learning classification. 

Furthermore, the use of SHAP enhances interpretability—

rarely applied in student preference modeling under crisis 

conditions—positioning our study at the intersection of 

explainable AI and educational technology research. 

Limitations and Future Work: The limited dataset size (n = 

120) constrains generalizability and may lead to overfitting. 

Future research should include a more diverse and larger 

student population across multiple institutions and regions. 

The binary classification of learning preference could be 

extended to multi-class or multi-label frameworks to better 

capture nuanced preferences. Moreover, linking predictors to 

actual academic outcomes (e.g., GPA) and conducting 

longitudinal analyses could enrich understanding of temporal 

learning behaviors.  
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V. CONCLUSION 

This research evaluated various machine learning 

classification models using survey data collected to explore 

online learning preferences during covid-19 pandemic. The 

analysis focused on estimating how different factors 

influence these preferences, identifying key external 

variables that have the most significant impact. These 

findings provide crucial insights into student behavior and 

can be used to predict preferences and develop effective 

methods for managing online education. Additionally, the 

study revealed that the goals and design of the learning 

system play a critical role in shaping student preferences, 

emphasizing the need for educational strategies that are 

closely aligned with students’ needs and expectations. 

Although the findings are primarily based on data from a 

specific region, they hold potential applicability in broader 

contexts. However, variations in technological literacy and 

internet access across regions may require contextual 

adjustments. Educators and policymakers should therefore 

consider local conditions when applying these insights 

elsewhere. Overall, this research enhances the understanding 

of the factors that influence student preferences in online 

learning and lays the groundwork for developing targeted 

educational interventions to improve the global online 

learning experience. 
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