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Abstract—This study aims to examine the influence of
self-efficacy, engagement, motivation, and computational
thinking skills on the utilization of Markerless Augmented
Reality (MAR) and Global Positioning System (GPS)
technologies in higher education. Technology enhances learning
by expanding access and promoting equity among diverse
student populations. In this context, MAR and GPS are
employed to support more interactive and contextualized
instruction, thereby stimulating student engagement and
motivation. The study surveyed every one of the 128
undergraduates enrolled in the Informatics and Computer
Technology Education program to understand their
perceptions of incorporating technology into their coursework.
Adopting a mixed-methods approach, the research combined
quantitative and qualitative analyses through techniques such
as Partial Least Squares Structural Equation Modeling
(PLS-SEM) and Importance-Performance Map Analysis
(IPMA). The analysis demonstrated that students’ self-efficacy
is a key predictor of their computational thinking abilities,
perceived usefulness and ease of use of technology, and their
overall attitudes toward digital tools. Additionally, high levels of
engagement and motivation were found to be essential for
successfully using these technologies in educational activities.
Together, the findings emphasize the value of enhancing
self-efficacy by employing accessible Mobile Augmented Reality
(MAR) and GPS applications to support learning, which can
enhance student engagement, support the achievement of
academic goals, and strengthen computational thinking skills.

Keywords—Markerless augmented reality, students’
engagement, motivation, self-efficacy, computational thinking
skill

I. INTRODUCTION

Technological  innovations have driven  major
transformations in learning systems and methods, opening up
opportunities for students from diverse backgrounds to
access equitable educational experiences [1-3]. Although
technology has significantly changed instruction and the use
of educational resources, gaps in technology utilization
remain evident among students across different academic
disciplines and socioeconomic statuses [4, 5]. In this context,
technologies such as Markerless Augmented Reality (MAR)
and Global Positioning System (GPS) tracking offer
solutions for creating interactive, contextualized, and
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collaborative learning media. These technologies enable
students to engage more deeply in their learning experiences
and simulate real-world scenarios that support better
understanding and practical application.

In technology-enhanced learning, students’ confidence in
using digital tools plays a crucial role in shaping their level of
engagement and learning outcomes. This aligns with

Bandura’s self-efficacy theory, which explains that
individuals’ belief in their ability to complete tasks
influences their motivation, active participation, and

academic achievement. Students who feel capable of
operating technologies such as MAR and GPS are more
likely to engage enthusiastically in learning activities and
demonstrate improved performance.

On the other hand, the effectiveness of technology in
supporting learning is also influenced by how information is
presented. Cognitive Load Theory, introduced by Sweller,
emphasizes the importance of managing learners’ cognitive
load to avoid overwhelming their mental processing capacity.
When technology is designed to be intuitive and contextually
relevant—such as in the use of MAR and GPS—information
can be processed more efficiently, enabling students to
understand concepts more deeply without experiencing
cognitive overload. This approach fosters a more focused,
relevant, and meaningful learning experience.

Through the MAR and GPS technologies’ existing
approaches, student engagement, conceptual understanding,
and real-world application skills can be significantly
enhanced. Implementing MAR and GPS in learning media
represents an effective, innovative step because it combines
visual, spatial, and interactive elements to create a richer,
more meaningful learning experience. This technology
benefits diverse educational fields by enabling more
authentic, adaptive, and situational learning. MAR and GPS
hold great potential for improving student learning by
delivering experiences that feel more real, engaging, and
relevant [6-8]. These technologies effectively support
student involvement in the learning process, even when faced
with limitations of space, time, or resources. Learning
becomes far more interactive and contextualized when MAR-
and GPS-based media can simulate complex real-world
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scenarios [9]. Merging interactive capabilities with
location-aware features plays a pivotal role in strengthening
students’ understanding of the subject matter, thereby
fostering richer, contextually relevant and more impactful
educational experiences.

Furthermore, MAR and GPS can be leveraged to boost the
effectiveness of experiential learning programs by
sharpening students’ practical and collaborative skills across
various disciplines. They also help students bridge theory and
practice in real-world contexts—critical for solidifying
conceptual understanding and developing applicable
competencies. As such, MAR and GPS serve as valuable
tools in education, engineering, tourism, and related fields,
offering an innovative framework for integrating
location-based learning and real-world interaction.

MAR and GPS-based tools can likewise be harnessed to
cultivate computational thinking by embedding learning
within authentic, real-world contexts [10, 11]. These
technologies enhance students’ proficiency and disposition
toward computational thinking—abilities that are essential
for creative problem solving and high achievement in
technology-intensive  professional  settings. Cognitive
improvements in location-based learning can be facilitated
through the integration of MAR and GPS [12]. To better
prepare students for twenty-first-century challenges, it is
essential to understand the complex interplay among critical
thinking skills, technology adaptation, and contextual
interaction [13, 14]. MAR and GPS effectively foster the
development of both critical and creative thinking by

providing authentic, location-based learning experiences [15].

They offer an objective, contextualized, and comprehensive
instructional approach, rendering them valuable across both
academic and industry settings.

Consequently, the study formulates several research
questions, chief among them: In what ways does integrating
Markerless Augmented Reality (MAR) and Global
Positioning System (GPS) technologies influence students’
engagement levels and the depth of their conceptual
understanding? And in what ways can this technology-driven
engagement influence students’ critical thinking abilities and
computational thinking skills? These questions will be
synthesized into a conceptual model designed to inform and
enrich instructors’ teaching strategies, enabling them to
create more interactive, contextualized, and
application-oriented learning experiences. Fig. 1 illustrates
the proposed pathways that were examined in this study.

H1 Engagement

Computational

Self-efficacy Thinking Skill

H5

H2

Motivation

Fig. 1. Hypothesis development.
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Drawing on the conceptual framework in Fig. 1, this study
examines the following hypothesis:
1) HI1: Self-efficacy serves as a significant antecedent to
student engagement. Evidence suggests that learners with
stronger academic self-efficacy display higher levels of
engagement in their studies [16].
H2: Self-efficacy positively influences students’
motivation. Basileo et al. [17] demonstrated, that
self-efficacy exhibits a strong, statistically significant
relationship with both autonomous and controlled forms
of academic motivation.
H3: Self-efficacy supports the development of
computational thinking abilities. Research shows a strong
positive correlation between learners’ self-efficacy
beliefs and their performance on computational thinking
tasks; in other words, greater confidence in one’s learning
capacity is associated with stronger computational
thinking skills [18].
H4: Student engagement significantly predicts
computational thinking skill. In an “unplugged” coding
activity, Li et al. [19] confirmed that engagement
variables (cognitive, emotional, behavioral) serve as
strong predictors of students’ computational thinking
performance.
H5: Engagement is associated with increased motivation.
Empirical studies show that high levels of student
engagement are closely associated with learners’
motivation to learn [20].
H6: Motivation acts as a significant predictor of
computational thinking proficiency. For instance, Kaur
and Chalal [21] observed in their study of primary school
students learning Scratch programming that higher levels
of motivation consistently forecasted improvements in
computational thinking. In other words, learners who are
more motivated tend to make greater gains in their
computational thinking skills.

2)

3)

4)

5)

6)

II. LITERATURE REVIEW

A. Self-Efficacy

Self-efficacy describes the connection between an
individual’s belief in their own competence and the
proficiency with which they execute a particular task [22-24].
A student’s belief in their own talents has a substantial impact
on their will to learn, which is why efficacy is so important in
the classroom, ultimately leading to successful academic
outcomes. Direct experience and the subsequent modification
of that experience are central to the experiential learning
paradigm [25]. Self-efficacy serves as the driving force
behind motivation. Confidence in one’s own abilities
profoundly influences motivation and academic achievement,
underscoring the centrality of self-efficacy throughout the
educational journey [26].

Self-efficacy develops through several pathways, with
prior experiences—often termed mastery
experiences—serving as the most influential. Other
contributors include verbal encouragement from others,
learning through observation, and the influence of different
emotional and social states [27]. In discussing self-efficacy,
two separate kinds of achievement goals are brought up. Two
types of these objectives are performance achievement goals
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and mastery achievement goals [28].

In contrast, those with performance objectives aim to
evade negative outcomes by showcasing their competency in
the subject matter [29]. In essence, individuals with mastery
goals are generally more inclined to seek solutions and
embrace challenges within their area of focus [30], while
those aiming for performance objectives often place a
premium on providing enough proof to lessen the impact of
unfavorable results [31]. Examining how people adopt digital
tools and strengthen their confidence in using them offers
valuable insights for this literature review [32]. It is
beneficial to examine the impacts of markerless augmented
reality and GPS, evaluate their implications, and explore
approaches for determining best practices in future
deployments.

B. Engagement

The notion of engagement and its effect on learning is
crucial for comprehending the significance of student
involvement in higher education [33]. Engagement can be
classified into three distinct categories [34]. Academic and
social engagements fall under behavioral engagement, while
emotional and cognitive components include goals for
motivation, self-regulation of learning to understand and
master difficult concepts and abilities, metacognition, the
execution of strategies for learning, strategic thinking, and
studying. Attitudes, passions, and principles are associated
with positive and negative interactions [35].

Using strategies that cater to each student’s unique
learning style is considered to improve the learning process in
higher education [36]. Engagement among students plays a
significant role in influencing retention rates. However, there
exists a discrepancy between research and what is perceived
as challenges in implementing feasible solutions to address
this discrepancy [37]. This involves concentrating on the
behaviors of students and faculty, the outcomes that are
sought, and the comparable results among institutions to
assist higher education administration in formulating
effective strategies for implementation and achieving
favorable results [38]. In contrast, students who engage in
active learning actively seek ways to interact with others
about the material at hand [39]. These outcomes are
supported by discussion, critical reasoning, collaboration,
and meaningful learning experiences. Empirical studies
indicate that students who play an active role in their
education typically display greater intrinsic motivation,
higher engagement, enhanced self-esteem, and an increased
sense of competence [40].

C. Motivation

Finding markers of learning performance that take
motivation into consideration is vital. Research indicates that
learners’ motivation is a strong determinant of their academic
achievement [41]. Motivation can be understood as the
psychological framework that enables a person to initiate a
task and persist until its completion [42]. The drive to learn,
enhanced by recognizing the value of the material, plays a
crucial role and influences an individual’s learning
process [43]. Social interaction, amusement, social standing,
affectionate socialising, relaxation, portability, instant
gratification, acquisition, and efficient use of time are some
of the fundamental incentives that drive the technologies we
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use today. Due to the social nature of the situations in which
students learn in higher education, the concepts of
community, collaboration, and interaction must permeate all
aspects of educational practice [44-46]. Building close
relationships with students is essential for improving their
motivation, academic motivation, and achievement [47].

D. Computational Thinking Skill

Computational thinking leverages concepts from
computing to enhance individuals’ abilities in
problem-solving, critical reasoning and creative thought [48].
The ability to “think like a machine” and tackle complex
problems is a vital twenty-first—century competency [49].
Computational thinking encompasses a wide range of
problem-solving strategies applicable to many disciplines
and situations, not limited to programming or coding [50].
Accordingly, numerous educational institutions have
incorporated computational thinking into their curricula to
ready students for emerging career paths and ongoing
technological change.

Users’ belief that computational tools simplify problem
solving and enhance their CT skills can be understood as
perceived value, which in turn influences their readiness to
adopt and use CT platforms and tools [51]. Likewise,
perceived ease of use describes a person’s subjective
assessment of how simple and convenient a computational
thinking tool is to operate. People tend to gravitate toward
technologies they find intuitive, and these perceptions
strongly influence their willingness to engage with such
tools [52]. Fundamentally, the aim of using these tools and
platforms is to develop one’s computational thinking skills.
This purpose acts as a primary motivator for individuals to
adopt computational thinking technologies, thereby
enhancing their proficiency in the field.

The evaluation process for using Markerless Augmented
Reality (MAR) and Global Positioning System (GPS)
technology begins with defining clear learning objectives,
followed by identifying the components involved in the
location-based, interactive learning experience. This strategy
mirrors the decomposition and abstraction stages of
computational thinking: by breaking complex problems into
smaller, manageable units, students can better grasp how the
interconnected components operate in real-world contexts.

A synthesis of the reviewed literature suggests that
self-efficacy plays a foundational role in influencing
students’ engagement and motivation, particularly within
technology-integrated learning environments. Students with
higher self-efficacy tend to demonstrate greater perseverance
and confidence in navigating digital learning tools, which
positively affects their motivational drive. Engagement and
motivation, in turn, act as complementary forces that promote
the acquisition of computational thinking (CT) skills. When
students are both motivated and actively engaged, they are
more likely to approach CT-related tasks with deeper
cognitive investment and problem-solving abilities. These
four constructs are conceptually interconnected and form an
integrated framework that determines how effectively
students utilize and benefit from emerging educational
technologies such as Markerless Augmented Reality (MAR)
and Global Positioning System (GPS).

In MAR- and GPS-based learning, solutions are rendered
more concrete and relevant to everyday scenarios, and



International Journal of Information and Education Technology, Vol. 16, No. 2, 2026

instructional plans are continuously evaluated during their
design phase [53]. This mirrors the generalization stage of
computational thinking, in which broadly applicable
solutions are formulated and tested across multiple situations.
Leveraging MAR and GPS to address complex, context-rich
learning challenges is particularly effective because these
technologies merge visual and spatial data to create
immersive, application-driven experiences—an essential
aspect of developing students’ computational thinking skills.
By integrating information from diverse sources (e.g.,
geographic coordinates, interactive visual overlays), MAR
and GPS deliver a holistic learning environment.

III. MATERIALS AND METHODS

A. Design of the Study

To gain a holistic examination of how the variables under
investigation interact, the present research utilises a
mixed-methodology that synthesises quantitative
measurements with qualitative insights. This dual strategy
affords a richer, more nuanced understanding of the complex
relationships being studied. Prior to data collection,
participants had prior exposure to the MAR and GPS
technologies through a custom Android-based Augmented
Reality application. The population consisted of all students
in the 2020-2021 cohort of the Computer and Informatics
Engineering Education program a public university in
Indonesia and all 128 students (from classes A, B, and C)
were included, i.e. a census of the cohort [54] were surveyed
using a six-point Likert scale via Google Forms. In this study,
a census of the cohort approach was employed, meaning that
data were collected from the entire population of students
within a specific academic group [55]. All individuals
enrolled in the targeted cohort—specifically, 128
undergraduate students from the Informatics and Computer
Technology Education program—were invited to participate.
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The site scan procedure is designed to enrich students’
learning  experiences and deepen their theoretical
understanding by integrating hands-on  elements,
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Fig. 2. Learning media development with unity.

Using this approach allows the study to capture data from the
entire target population, thus removing sampling bias and
yielding a thorough depiction of participants’ characteristics,
perceptions, and experiences with technology integration in
learning. By canvassing the entire cohort, the research also
facilitates more accurate generalizations about how these
students engage with educational technologies.

An innovative learning media has been developed by the
research team through the use of MAR technology and GPS.
During this phase of development, the Unity platform served
as the primary foundation for integrating these technological
features. The learning application was developed using Unity
and integrated with advanced Application Programming
Interfaces (APIs) such as Niantic Lightship, Wayfarer, and
Geospatial Browser, enabling the incorporation of interactive
and geolocation-based learning components. This technology
enables students to navigate and explore the campus
environment while participating in engaging and immersive
learning experiences, as illustrated in Fig. 2.

Once all 3D elements were successfully developed and the
API was seamlessly integrated with the Niantic Lightship, the
subsequent stage involved scanning six designated locations
within the campus environment. The selected points were
deliberately identified as key sites for students to engage with
Augmented Reality (AR)-enhanced learning beyond the
traditional classroom setting. Each of these locations is
crafted to enable students to engage with a variety of
interactive games and puzzles, aimed at improving their
collaborative abilities in wunderstanding and applying
computer networking concepts. Furthermore, the six
locations function as distinct learning points while being
integrally linked through a seamless location-based learning
system. Students are required to collaborate effectively to
complete tasks at each designated location, culminating in a
set of practice questions designed to assess their
understanding as shown from Fig. 3.

collaboration and problem solving—key components of
computer  networking  education. = Moreover, this
implementation marks a notable advance in the use of
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markerless augmented reality and GPS technologies to create
more interactive, dynamic location-based learning
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After the location scanning process was completed, the
research team continued with testing the quality of learning
media using whitebox and blackbox testing methods.
Whitebox testing was conducted to ensure the validity of
internal logic and program code flow, while blackbox testing
focused on verifying external functionality without
examining the internal structure of the system. The results of
these two testing methods show that the MAR and GPS
technology-based learning media developed has met the
technical feasibility criteria.
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Fig. 4. Finished learning media.

This development is designed to cultivate a learning
environment that is more dynamic and engaging than

conventional classroom instruction. By incorporating
augmented reality and GPS technologies, it expands
opportunities for outdoor learning, yielding richer

educational experiences and increased student engagement.
This technology is anticipated to enhance students’
conceptual understanding while also motivating them to
engage with the material independently by interacting

experiences. The finished learning media resulting from this
implementation is presented in Fig. 4.
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Fig. 3. GPS scan results obtained from six specific locations within the campus area.

directly with their environment. The advancement of this
media represents progress in technology-driven education,
aligning with the global movement towards increasingly
personalized, interactive, and location-aware learning
experiences.

B. Sample

All 128 students were invited to complete the study
instrument, and every participant provided a complete
response. Consequently, the analysis included the entire
cohort of 128 students. Given the small class size, the
researchers adopted a census (saturated sampling) approach,
gathering data from every student to ensure
representativeness and enhance the reliability of the findings.
Throughout data collection, the researchers maintained
participant confidentiality and used the data solely for
research purposes in line with ethical standards.

By recruiting only participants who had previously used
the application, the study ensured that the data collected were
directly pertinent to its central focus: students’ perceptions of
the application’s impact. This approach is considered more
reliable because the sample consists of individuals who have
actually used the technology under investigation. Although
participation was voluntary—open to anyone willing to
complete the instrument—this method may slightly reduce
the generalizability of the findings to populations beyond
those who chose to participate.

C. Instrument

The research employed a survey as its principal
data-collection instrument. Most of the measurement items
were adapted from earlier studies to maintain relevance and
comparability. The questionnaire served as the primary
means of identifying the variables aligned with the study’s
objectives and was designed to accurately capture data on
four key constructs: self-efficacy [56], engagement [57],
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motivation [58], and computational thinking skills [59]. The
measurement items used in this study is presented in Table 1.

Each questionnaire item was scored on a six-point
Likert-type scale, and the instrument comprised 17 questions
spanning the four constructs of interest. The six-point scale
deliberately omits a neutral midpoint, prompting respondents
to lean toward agreement or disagreement. This design helps
reduce central tendency bias and yields more decisive
responses, which is crucial for accurately -capturing
perceptions and attitudes toward technology use. Factor

loadings for each item were calculated using SmartPLS to
evaluate the measurement model’s precision. Convergent
validity was assessed via the Average Variance Extracted
(AVE) based on standardized loadings, while discriminant
validity was evaluated using the Heterotrait-Monotrait
(HTMT) ratio. Finally, internal consistency reliability for
each construct was verified through Cronbach’s Alpha and
Composite Reliability, ensuring the robustness of the
measurement scales.

Table 1. The test instruments

Variable

Instruments

1 can complete the activities I get in a lab class

If I went to a place, I could figure out what is being shown about topics in

Self-Efficacy

I am often able to help my classmates with activities in the laboratory or in recitation.

I get a sinking feeling when I think of trying to tackle difficult from activities problems.

I actively participate in classroom discussions when using MAR and GPS technology.

I show a high level of interest when using technology-based learning media.

Engagement

1 enjoy the learning process when it involves MAR and GPS technology.

1 feel enthusiastic about using MAR and GPS technology for learning.

1 frequently interact with peers or instructors when engaging with MAR and GPS technology in learning activities.

I am motivated to study more when using MAR and GPS technology.

I feel driven to complete tasks that involve using this technology.

Motivation

I find the learning process more engaging with the use of technology.

1 feel confident when facing new challenges through technology-based learning.

I can break down complex problems into smaller, manageable parts.

Computational

I am able to identify patterns within problems to find solutions.

Thinking Skill

I can develop logical step-by-step procedures to solve problems.

1 can use technology to help solve problems in a systematic way.

The analysis relied on Partial Least Squares Structural
Equation Modeling (PLS-SEM), supplemented by
Importance—Performance Map Analysis (IPMA), to evaluate
the relationships among the model’s constructs. IPMA goes
beyond assessing path coefficients by also considering the
average scores of latent variables, offering a more
comprehensive view of how each predictor contributes to the
desired outcomes.

D. Data Collection

Referring to Burns and Grove [60], it is crucial in reporting
research findings to include the research context, participant
characteristics, study scope, as well as data collection and
analysis procedures. Additionally, a description of the
research sample must also be provided. In this research, every
engineering faculty student who was administered the
questionnaire participated by fully completing and
submitting the survey, ensuring complete response coverage
from the target population. Participation was carried out
through the completion of an online form accompanied by a
survey link. Only respondents who accurately completed the
questionnaire were included in the data tabulation process.

E. Data Validation

To conduct the SEM-PLS analysis, this study utilized
SmartPLS version 3. The Partial Least Squares (PLS) method
offers distinct advantages over traditional Ordinary Least
Squares (OLS) regression by effectively managing common
challenges such as limited sample sizes, missing data,
deviations from normality, and multicollinearity. SmartPLS
was employed to ensure precise measurement modeling and
structural robustness. The analysis adhered to the two-step
approach outlined by Anderson and Gerbing [61], which
involves sequential assessment of the measurement model
followed by evaluation of the structural model. In the initial

phase, the measurement model was evaluated to ensure the
suitability of both the constructs and the data collection
procedures. Convergent validity was assessed by examining
the Average Variance Extracted (AVE) and the standardized
factor loadings of each item. Discriminant validity was
determined using the heterotrait-monotrait (HTMT) ratio.
Additionally, the internal consistency of each construct was
confirmed through the calculation of Cronbach’s Alpha and
Composite Reliability (CR) coefficients.

In the second phase, the structural model was evaluated by
testing the hypothesized relationships among the constructs
using a bootstrapping procedure to determine their statistical
significance. Table 2 presents the factor loadings for all
measurement items, each of which exceeds the 0.60 threshold
recommended by Hair ef al. [62], thus reinforcing the validity
of the construct measurements and confirming the robustness
and appropriateness of the overall measurement model for
further structural analysis.

Table 2. Outer loadings

Variable Item Quter Loading
SE1 0.840
SE2 0.880
Self-Efficacy SE3 0791
SE4 0.827
ENI1 0.806
Engagement EN2 0.826
EN3 0.852
EN4 0.841
MTI 0.843
. MT2 0.837
Motivation MT3 0.830
MT4 0.758
CTS1 0.736
. L . CTS2 0.834
Computational Thinking Skill CTS3 0841
CTS4 0.784

335

Table 2 displays the outer loadings, representing the
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degree to which each indicator reliably measures its
associated construct within the context of this study. In this
case, reliability denotes the consistency. By employing an
appropriate measurement model, this questionnaire can
produce stable results under the same conditions and with
similar participant profiles. Such consistency is crucial to
ensure that conclusions drawn about the respondents can be
generalized. Reliability testing confirms that the survey is
well-constructed, especially in the context of higher
education. Low reliability suggests that specific items fail to
consistently capture the underlying construct, highlighting
the potential need for revising the instrument or eliminating
underperforming indicators. In the context of higher
education research, maintaining methodological rigor is
essential—especially when working with large respondent
groups—as the findings carry significant weight for
decision-makers, including institutional leaders and
policymakers.

To determine the components for PLS bootstrapping, this
study followed a widely recognized procedure commonly
applied in Structural Equation Modeling (SEM). This method
relies on repeated resampling techniques to estimate the
stability and significance of model parameters. To evaluate
the measurement quality of each construct, several key
indicators were utilized, including standardized factor
loadings, composite reliability, Cronbach’s alpha, and
Average Variance Extracted (AVE). These metrics were
assessed in accordance with the methodological standards set
forth by Hair et al. [63], As shown in Table 3, all values for
composite reliability and Cronbach’s alpha surpass the
commonly accepted threshold of 0.70, indicating strong
internal consistency across the measured constructs. This
confirms that each latent construct’s factor loadings satisfy
the AVE standard (minimum 0.50) and that each construct’s
AVE value is greater than 0.60.

Table 3. Cronbach’s alpha, composite reliability, average variance extracted

Variable Cronbach Alpha Composite Reliability AVE > 0.5
Self-Efficacy 0.855 0.902 0.698
Engagement 0.890 0.919 0.695

Motivation 0.836 0.890 0.669
Computational
Thinking Skill 0.811 0.876 0.640

Each construct in this study achieved an Average Variance
Extracted (AVE) above 0.50. According to Hair et al. [63],
the minimum acceptable AVE is 0.50, and all scores in
Table 3 meet this criterion: Self-Efficacy at 0.698,
Engagement at 0.695, Motivation at 0.669, and
Computational Thinking Skill at 0.640. The Cronbach’s
alpha scores for each construct demonstrate strong internal
reliability, with values of 0.855 for Self-Efficacy, 0.890 for
Engagement, 0.836 for Motivation, and 0.811 for
Computational Thinking Skill. In addition, Composite
Reliability values ranged from 0.876 to 0.919, further
reinforcing the internal consistency of the measurement
instrument. Discriminant validity was evaluated through the
Heterotrait-Monotrait (HTMT) ratio of correlations, and all
values were found to be below the recommended threshold of
0.90, as outlined by Hair et al. [63], thereby confirming clear
distinction among the constructs. The detailed results of the
HTMT analysis are presented in Table 4.

Validity testing was performed to confirm that the
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measurement model developed in SmartPLS effectively
captures the relationships between latent constructs and their
corresponding indicators, thereby improving the accuracy
and relevance of the study’s results. An instrument with
strong validity ensures that students’ experiences,
perceptions, and behaviors are represented with fidelity,
providing a sound foundation for meaningful interpretation
and generalization. This testing is essential to ensure that the
survey questions genuinely measure the intended research
objectives. Without validity testing, there is a heightened risk
of measuring irrelevant factors, which could lead to
inaccurate conclusions about the target population.

Table 4. Heterotrait-Monotrait (HTMT) ratio of correlations

Variable CTS EN MT SE
CTS - R R -
EN 0.867 - - -
MT 0.641 0.699 - -
SE 0.851 0.832 0.594 -

Validity focuses on the accuracy of measuring the intended
constructs, while reliability ensures the consistency of latent
variable measurement. By rigorously applying tests for
validity and reliability, researchers ensure that the data
collected from students is both accurate and dependable. This
process is essential for reinforcing the credibility of the
study’s findings. In the realm of higher education research,
generating valid and reliable evidence forms the cornerstone
for making well-founded conclusions and informing
data-driven decisions that can shape educational policy and
practice.

Following the confirmation of the instrument’s validity
and reliability, additional analysis was performed to assess
the explanatory strength of the structural model by examining
the R*> (R Square) values. The R? statistic reflects the
proportion of variance in the dependent variables that can be
accounted for by the independent variables in the mode [63].
The results of this analysis are presented in Table 5.

Table 5. Results of the R Square analysis

Variable R Square
Computational Thinking Skill 0.619
Engagement 0.529
Motivation 0.383

As presented in Table 5, the R? value for Computational
Thinking Skill is 0.619, indicating that the independent
variables in the model account for 61.9% of its variance. For
Engagement, the R? is 0.529, signifying that 52.9% of the
variation in student engagement is explained by its associated
predictors. Meanwhile, the R? for Motivation stands at 0.383,
reflecting that 38.3% of the variance in student motivation
can be attributed to the independent variables included in the
model. Collectively, these R? values suggest that the
structural model demonstrates moderate to substantial
explanatory power in accounting for the variance in the core
dependent constructs.

Overall, the measurement model demonstrated satisfactory
levels of validity and reliability, while the structural model
exhibited adequate explanatory power based on the R Square
values. These results validate the model’s effectiveness in
representing the interrelationships among self-efficacy,
engagement, motivation, and computational thinking skills.
This provides a robust empirical basis for conducting
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hypothesis testing and offers a solid framework for
interpreting the study’s findings with greater confidence.

F. Data Analysis

This study utilized SmartPLS version 3 as the primary
analytical tool. Traditional Ordinary Least Squares (OLS)
regression is often limited by issues such as small sample
sizes, non-normal data distributions, missing values, and
multicollinearity. To overcome these limitations, the study
adopted the Partial Least Squares (PLS) approach, which is
better suited for complex models and exploratory research
contexts. The wvalidation process commenced with an
evaluation of the measurement model, following the
procedural guidelines outlined by Anderson and
Gerbing [61], ensuring a systematic assessment of construct
reliability and validity before proceeding to structural model
analysis. Subsequently, a bootstrapping procedure with 5,000
samples was conducted to test the strength of the
relationships between constructs. The bootstrapping analysis
for hypothesis testing was carried out using SmartPLS.

Additionally, the study incorporated
Importance-Performance Map Analysis (IPMA) to assess the
relative effectiveness of each construct within the model.
This technique adds practical depth to the Partial Least
Squares Structural Equation Modeling (PLS-SEM) results by
simultaneously evaluating both the importance (impact) and
performance (average scores) of the constructs.
Consequently, the analysis highlights which constructs are
critical in influencing outcomes yet underperforming,
thereby guiding targeted interventions and improvements in
future implementations.

IV. RESULT AND DISCUSSION

The results of the SmartPLS analysis, detailed in Table 4
and illustrated in Fig. 5, summarize the path coefficients for
all proposed hypotheses. Regarding Hypothesis 1, the
analysis reveals that self-efficacy exerts a strong, positive,
and statistically significant influence on student engagement
(B = 0.727, p = 0.000). This indicates that learners who
possess greater confidence in their capabilities are more
likely to actively participate in the learning process. This
finding aligns with Zhao er al. [64], who reported that
students with elevated self-efficacy levels tend to be more
engaged in technology-mediated learning environments.
Consistent results were also observed in the work of Zhao
and Cao [65], which demonstrated that self-efficacy is a
significant predictor of behavioral engagement in online
learning contexts.

The analysis of Hypothesis 2 reveals that self-efficacy has
a positive and statistically significant impact on student
motivation (8 = 0.155, p = 0.000). This suggests that learners
who exhibit greater confidence in their academic abilities are
more likely to demonstrate heightened motivation toward
their studies. This result aligns with the findings of
Lin et al. [66], who reported that academic self-efficacy
serves as a significant predictor of learning motivation,
particularly within blended learning environments. Similarly,
Hayat et al. [67] emphasized that self-efficacy influences
motivation by enhancing students'’ metacognitive
self-regulation and affective processes, leading to greater
learning persistence. Moreover, recent research by Alhadabi

and Karpinski [68] affirm that self-efficacy is a robust
predictor of both intrinsic motivation and academic
engagement, particularly within technology-mediated
learning environments. Their findings highlight the pivotal
role of self-belief in fostering deeper motivation and
sustained involvement in digitally enhanced educational
settings.

Engag

0.727 (0.000) 0.430 (0.000)

[+

0.354 (0.000)
0.497 (0.000)

Self-Efficacy X
Computational

Thinking Skill

0.155 (0.000) 0.088 (0.004)

Motivation

Fig. 5. Hypothesis path.

The analysis of Hypothesis 3 demonstrates that
self-efficacy exerts a positive and statistically significant
influence on students’ computational thinking skills, with a
path coefficient of f = 0.354 and p = 0.000. This suggests that
students who exhibit greater confidence in their abilities are
more likely to perform well in tasks requiring computational
thinking. This outcome aligns with the findings of
Kvassayova et al. [69], who observed that students with high
self-efficacy in programming tasks show marked
improvements in their computational thinking performance.

The results for Hypothesis 4 indicate that student
engagement has a positive and statistically significant effect
on computational thinking skills, with a path coefficient of
= 0.430 and p = 0.000. This finding suggests that active
involvement in the learning process contributes meaningfully
to the development of computational thinking abilities. It is in
line with the study by Li et al. [70], which demonstrated that
engagement—particularly when supported by Markerless
Augmented Reality (MAR) and GPS technologies—can
significantly enhance computational thinking. These
technologies promote interactive, context-rich learning
environments that facilitate deeper comprehension and more
effective application of computational concepts.

Furthermore, the analysis of Hypothesis 5 reveals that
engagement exerts a positive and statistically significant
impact on motivation, with a path coefficient of f#=0.497 and
p = 0.000. This result suggests that students who actively
participate in the learning process—particularly when
facilitated by MAR and GPS technologies—tend to exhibit
higher levels of motivation. The immersive and contextually
rich learning environments enabled by these technologies
foster greater enthusiasm and drive among students,
encouraging them to engage more deeply with the learning
content.

Moreover, Hypothesis 6 demonstrates that motivation
contributes positively and meaningfully to the development
of computational thinking skills, as reflected by a path

337



International Journal of Information and Education Technology, Vol. 16, No. 2, 2026

coefficient of # = 0.088 and a significance level of p = 0.002.
This finding indicates that students with higher levels of
motivation are more likely to enhance their computational
thinking abilities, highlighting the important role of
motivational factors in fostering cognitive skill development.
Motivated students are more active in applying
computational concepts, which ultimately improves their
ability to solve problems logically and systematically. These
findings are consistent with Glmils et al [71], who
demonstrated that motivated students are more likely to
develop computational thinking competencies through
increased effort and persistence in problem-solving tasks.
Although the effect size (f = 0.088) is relatively small, it
remains statistically significant, suggesting that while
motivation contributes to computational thinking skills, its
practical impact is more modest compared to other factors
such as self-efficacy and engagement. This may imply that
motivation alone may not strongly drive computational
thinking development unless supported by other variables,
such as confidence in using technology or active participation
in learning activities. = Therefore, strategies that
simultaneously address students’ motivation and engagement
behaviors are likely to yield greater effectiveness in fostering
the development of computational thinking skills.

Self-efficacy emerged as a significant determinant of
students’ motivation, engagement, and computational
thinking skills. The results indicate that learners with
elevated self-efficacy are more inclined to participate
actively in the learning process due to their heightened
motivation. Their confidence in handling technological tools
positively shapes their perception of usability, which
subsequently enhances their level of engagement. As
students become more engaged, they interact more frequently
and meaningfully with technology, thereby facilitating
deeper comprehension of complex concepts within
computational thinking instruction.

The study further demonstrated that motivation serves as a
key driver in fostering students’ engagement with
technology-enhanced learning environments. Learners who
exhibit high levels of motivation are more inclined to take an
active role in educational activities and to adopt technology
as a meaningful tool in their learning process. This finding is
consistent with prior research, which suggests that strong
motivational factors contribute to greater engagement,
ultimately supporting the advancement of computational
thinking skills. Students who are intrinsically motivated to
explore and apply technology in their learning are more likely
to attain superior outcomes in cultivating their computational
thinking competencies.

In addition, elevated levels of student engagement are
strongly associated with enhanced computational thinking
skills.  Learners = who  actively  participate  in
technology-integrated  educational activities tend to
demonstrate greater proficiency in applying computational
thinking to address problem-solving tasks. Frequent
interaction with digital tools, combined with the use of more
effective learning strategies, contributes to the development
of students’ critical reasoning and analytical capabilities.
Therefore, student engagement not only boosts motivation
but also enriches their computational thinking skills.

Overall, the findings of this study highlight the pivotal role

338

of self-efficacy, motivation, and engagement in fostering
students’ computational thinking skills. Accordingly, it is
essential for educational institutions and instructors to
implement instructional strategies and design learning
environments that actively cultivate students’ confidence in
their abilities, stimulate intrinsic motivation, and promote
sustained engagement with technology. Such efforts are key
to enhancing students’ capacity to develop and apply
computational thinking in diverse learning contexts.

This study further underscores the influential role of
self-efficacy in shaping students’ perceptions of technology
use, particularly within the domain of computational thinking.
The findings indicate that students with higher levels of
self-efficacy are more inclined to perceive technology as a
valuable asset in their learning journey, which, in turn, fosters
greater engagement and more frequent use of technological
tools. This aligns with prior research showing that individual
confidence significantly affects how learners assess the
utility of technology in educational settings. In essence,
students who believe in their technological competence are
more receptive to adopting and integrating digital tools into
their learning, thereby supporting the development of their
computational thinking skills.

Moreover, this study reinforces the strong connection
between motivation and the development of computational
thinking skills. The findings reveal that students’ intrinsic
motivation to engage with technology significantly enhances
their capacity for logical reasoning and complex
problem-solving—core elements of computational thinking.
When learners are genuinely motivated, they are more likely
to adopt technology as a tool to support and deepen their
cognitive skills, particularly in problem-solving contexts.
This supports the view that intrinsic motivation, shaped in
part by self-efficacy, plays a crucial role in enhancing
students’ comprehension and application of
technology-integrated learning concepts. Additionally, the
study confirms that engagement exerts a significant influence
on the advancement of computational thinking. Students who
participated more actively in technology-driven learning
environments—particularly through the integration of AR
and GPS tools in network systems programming—exhibited
stronger computational thinking capabilities, highlighting the
importance of immersive and interactive learning
experiences. This engagement is closely related to the
intuitive and user-friendly nature of the technology, which
helps students interact more deeply with the learning material.
Technological tools that are specifically designed to enhance
student engagement can play a vital role in facilitating the
comprehension of abstract concepts. At the same time, they
support the development of critical and systematic thinking
skills, enabling students to approach problems with greater
analytical depth and structured reasoning. The results of the
hypothesis testing are summarized in Table 6.

In conclusion, the results of this study underscore the
critical need to cultivate a learning environment that actively
promotes  students’  self-efficacy, motivation, and
engagement in the use of technology. Such an environment is
particularly essential in technology-rich educational settings,
where these factors collectively contribute to the effective
development of computational thinking skills. Supporting
these psychological and behavioral dimensions can
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significantly enhance students’ ability to engage
meaningfully with complex technological content.
Educational institutions and technology developers should
focus on designing accessible, intuitive, and student-centered
technologies to improve student engagement and learning
outcomes.

Table 6. Hypothesis result

Hypothesis B p T-values  Result
HI. Self-Efficacy — 0727 0.000 36.182  Supported
Engagement
H2. Self-Efficacy —
Motivation 0.155 0.000 3.835  Supported
H3. Self-Efficacy —
Computational Thinking Skilt 02>+ 00008871 Supported
H4. Engagement —
Computational Thinking Skill 0430 0.000 1099 Supported
HS5. Engagement — Motivation 0.497 0.000 13.09 Supported
H6. Motivation —
Computational Thinking Skill 04300002 3.069  Supported
The PLS-SEM analysis, combined with
Importance—Performance Map Analysis (IPMA), was

employed to investigate the influence of self-efficacy,
engagement, motivation, and computational thinking skills
on students’ use of technology in learning environments.
While PLS-SEM assesses the strength and significance of
relationships among constructs, IPMA adds a practical
dimension by identifying which variables are most important

yet underperforming, thereby guiding targeted improvements.

Table 7 presents the standardized total effects, representing
the importance of each construct, alongside the standardized
latent variable scores, which indicate their respective
performance levels.

Table 7. Importance-Performance Map Analysis (IPMA) result

Variable g“(l)llil:lll)(lillt;tlsol?iillll Performance Impo;'zt;;:: t()Total

Self-Efficacy 0.713 76.028
SE1 0.209 73.855

SE2 0.234 75.249 0.713
SE3 0.195 80.727
SE4 0.214 74.602
Engagement 0.474 72.041
EN1 0.109 68.003

EN2 0.112 72.585 0.474
EN3 0.116 71.738
EN4 0.112 75.324
Motivation 0.088 67.309
MTI 0.031 72.062

MT2 0.029 72.56 0.088
MT3 0.024 63.446
MT4 0.024 56.449

In the IPMA, performance scores are reported on a
standardized scale from 0 to 100, with higher values
representing  stronger perceived performance of the
respective constructs. This scale facilitates the identification
of areas where improvements are needed by highlighting
constructs that are highly important yet exhibit relatively
lower performance levels [72]. Table 7 presents the total
effects and corresponding performance scores for the key
variables examined in the study—namely, self-efficacy,
engagement, and motivation—and their influence on the
development of computational thinking skills. These values
provide insight into both the relative importance and
perceived effectiveness of each construct, enabling a more
nuanced interpretation of their roles within the
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technology-integrated learning context. The results of the
IPMA provide further insight into the factors influencing
computational thinking skills within technology-enhanced
learning environments. The findings highlight that
self-efficacy exerts the strongest influence on the
development of computational thinking skills among the
variables examined [73]. This underscores the pivotal role of
students’ confidence in their own abilities as a foundation for
enhancing their capacity to think logically, solve problems,
and engage effectively with technology-based learning
environments (total effect = 0.713; performance = 76.028),
confirming its pivotal role in students’ learning outcomes.
Among the self-efficacy sub-indicators, SE3 (confidence in
operating technological tools) demonstrated the highest
performance score (80.727), while SE1 (confidence in
understanding and applying basic technological concepts)
showed the lowest (73.855). The relatively lower
performance in SE1 suggests that some students still
experience  difficulties in  mastering fundamental
technological knowledge, which could potentially hinder
their computational thinking development. This finding is
consistent with previous research that underscores the critical
role of self-efficacy in promoting cognitive engagement and
enhancing students’ problem-solving capabilities [74, 75].
Elevated self-belief has been shown to empower learners to
approach complex tasks with greater persistence and strategic
thinking, both of which are essential for developing
computational thinking skills.

To improve SE1, several instructional strategies should be
considered. Scaffolding techniques, including step-by-step
guided instruction, allow learners to build confidence
gradually while advancing through increasingly complex
computational tasks [75]. Furthermore, integrating
real-world problem-based learning can contextualize abstract
concepts, thereby enhancing both comprehension and
confidence. Peer mentoring and collaborative learning
activities may foster supportive social interactions that

strengthen students’  self-efficacy through vicarious
experiences and shared problem-solving [76]. In addition,
formative assessments with immediate, constructive

feedback can guide students in recognizing their strengths
and areas for improvement, contributing positively to
self-regulated learning. Moreover, the use of Augmented
Reality (AR) and GPS-based technologies, as applied in this
study, can be further optimized to deliver adaptive,
interactive tutorials that reinforce students’ understanding of
foundational technological concepts.

In terms of engagement, the IPMA results reveal a
moderate but significant total effect (0.474; performance =
72.041). Sub-indicator EN4 (enthusiasm in using technology
for learning) scored the highest (75.324), while EN1 (active
participation in class discussions) recorded the lowest
performance (68.003). The relatively low score in ENI
suggests that students may benefit from pedagogical models
that encourage more active and participatory learning
environments. The flipped classroom model, along with
problem-based and team-based learning approaches, has
been shown to increase engagement by promoting student
autonomy and peer interaction [77]. Gamification and
interactive learning systems may also enhance engagement
by increasing motivation, persistence, and collaborative
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behaviors (EN2 and EN3) [78].

Motivation, while exhibiting the weakest total effect on
computational thinking skills (0.088; performance = 67.309),
remains a critical factor to address. Notably, MT4
(confidence in facing new technological challenges) recorded
the lowest performance score (56.449), indicating that many
students experience anxiety or lack confidence when
confronted with unfamiliar tasks—a pattern consistent with
prior findings on self-confidence and growth mindset [79].
Several external factors may explain the low MT4
performance, including complex course design, limited
instructional support, and inadequate access to user-friendly
technologies. These factors can heighten anxiety when
encountering new technological demands. To mitigate this,
instructional designs should provide sufficient scaffolding,
technical support, and intuitive learning technologies to
foster confidence and reduce anxiety. Moreover, targeted
interventions such as resilience training, counseling, and
explicit coping strategies may help strengthen MT4. Aligning
learning materials with students’ interests and career
aspirations can enhance intrinsic motivation (MT1, MT2),
while short-term goal setting, positive reinforcement, and
gamified rewards may further sustain engagement and
persistence.

Overall, the IPMA results suggest that while self-efficacy
remains the most influential factor, targeted improvements in
both engagement and motivation sub-indicators—especially
SE1, ENI1, and MT4—are essential for optimizing
computational thinking skill development. A holistic,
student-centered instructional approach that integrates
scaffolding, interactive technology, real-world problem
solving, peer collaboration, and motivation-enhancing
strategies can serve as a comprehensive framework for
improving computational thinking skills in
technology-mediated learning contexts.

IPMA are used to examine how self-efficacy, engagement,
motivation, and computational thinking skills influence the

use of technology in learning. Table 7 displays the
importance and performance metrics for each construct, as
derived from the IPMA results. These values offer a
comprehensive view of which constructs are most influential
in predicting outcomes and how effectively each is currently
performing, thereby guiding priorities for instructional
improvement and strategic intervention Importance values
were calculated using standardized total effects, while
performance values were obtained from rescaled latent
variable scores on a 0—100 scale.

Then, Importance values reflect the total -effects
(standardized) of each construct on computational thinking
skills, while performance values represent the rescaled latent
variable scores (0—100 scale) obtained from SmartPLS.
These results provide strategic insight for prioritizing
interventions: efforts should continue to maintain high
self-efficacy, while greater attention should be devoted to
enhancing engagement and especially motivation to optimize
students’ computational thinking development.

Fig. 6 illustrates the Importance-Performance Map, with
indicators plotted based on their standardized total effects.
The X-axis reflects the importance of each construct,
measured by its total effect on the outcome variable, while
the Y-axis indicates performance levels, presented on a
standardized scale from 0 to 100. This visual representation
helps identify high-impact constructs that may require
targeted improvement to enhance overall learning outcomes.
Quadrant divisions reflect combinations of high/low
importance and high/low performance, helping to prioritize
improvement areas. Fig. 6 shows that self-efficacy is the most
critical and highest-performing construct in supporting
computational thinking skills, with a standardized total effect
of approximately 0.71 and a performance score near 78.
Engagement falls in the middle—its effect is substantial
(=0.47) but its performance (=72) leaves room for
improvement—while motivation exhibits the weakest
influence (= 0.09) and the lowest performance (= 67).

Importance-Performance Map
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Fig. 6. Importance-Performance Map indicators standardized total effects.
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Fig. 7. Importance-Performance Map constructs standardized total effects.

Fig. 7 Importance-Performance Map constructs
standardized total effects. Constructs are positioned across
quadrants based on their total effects (importance) and
performance levels. Self-efficacy constructs cluster in the
high-importance/high-performance quadrant, while
motivation constructs, particularly MT4, fall in the
low-performance quadrant. Based on the Fig. 7 breaks down
the performance of each latent indicator: all four self-efficacy
indicators (SE1-SE4) occupy the top-right quadrant,
confirming students’ confidence as both consistent and
important; the engagement indicators (ENI1-EN5) are
scattered in the mid-range area, signaling a need to boost their
performance to match their relevance; and the motivation
indicators (MT1-MT4) cluster in the Dbottom-left
quadrant—especially MT4 with a performance score of
around 56—indicating that motivational aspects require more
intensive intervention to contribute optimally to the
development of computational thinking skills.

The findings of this study demonstrate that self-efficacy
plays a pivotal role in shaping students’ computational
thinking skills, emphasizing the critical need to cultivate
confidence in the use of technology. Learners who possess
greater confidence in their technological capabilities are
more inclined to incorporate digital tools into their

educational  activities, thereby strengthening their
computational thinking. This underscores the value of
pedagogical strategies that actively promote

self-efficacy—such as targeted training programs, hands-on
workshops, or mentorship initiatives focused on building
technical proficiency. Enhancing students’ belief in their
ability to use technology effectively not only empowers them
to engage more fully with learning tools but also facilitates
deeper cognitive development in computational thinking.
However, it is essential to recognize that while
self-efficacy significantly influences students’ computational
thinking, its effectiveness can be further amplified when
paired with a strong perception of technology’s usefulness.
Even students with high levels of confidence may
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underutilize digital tools if they do not clearly perceive their
educational value. Therefore, it is imperative for educators to
integrate technologies that are not only user-friendly and
accessible but also clearly aligned with academic goals and
learning outcomes. By explicitly demonstrating the practical
benefits of technology within instructional settings, educators
can enhance students’ perceived usefulness of these tools.
This, in turn, supports the development of more robust
computational thinking skills and fosters deeper engagement
with the learning process.

The IPMA results indicate that the development of
computational thinking skills is predominantly influenced by
self-efficacy and engagement, while motivation plays a
comparatively lesser role. Students’ belief in their
technological competence, coupled with their active
participation in learning experiences supported by MAR and
GPS technologies, are identified as the most impactful

contributors. Based on these insights, educational
interventions should prioritize enhancing self-efficacy
through  focused training programs, user-friendly

technological interfaces, and hands-on practice with digital
tools. Simultaneously, learning activities should be designed
to promote engagement by incorporating collaborative,
context-rich tasks that make technology use meaningful and
immersive. Given motivation’s lower performance,
educators should additionally highlight the tangible benefits
of MAR and GPS technologies—such as real-world
problem-solving advantages and quick, successful
experiences—to build intrinsic interest and maximize the
impact on students’ computational thinking development.
This likely reflects the relatively limited influence exerted by
perceived usefulness.

Overall, the advancement of self-efficacy, the perception
of technology’s wusefulness, and the cultivation of
computational thinking skills should be understood as
mutually reinforcing components within the learning process.
Educational interventions that address all three elements in a
coordinated manner have the potential to significantly elevate
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student engagement, promote more effective and meaningful
use of technology, and lead to improved academic
performance. As a result, educational institutions and
decision-makers in the education sector must prioritize the
development of integrated strategies that embed these
interconnected elements into all technology-supported
learning programs. Such holistic approaches are vital to
maximizing the educational benefits of digital tools and

fostering deeper, more meaningful student learning
experiences.

In summary, this study’s findings highlight that
self-efficacy, engagement, and motivation function

collectively to support the development of students’
computational thinking skills within technology-enhanced
learning environments. Self-efficacy plays a pivotal role,
exerting both direct and indirect effects—students who are
confident in their technological capabilities are more inclined
to participate actively in learning tasks and maintain high
levels of motivation. Engagement serves as a mediating
factor, bridging self-efficacy and computational thinking by
fostering sustained involvement and deeper cognitive
interaction with the learning content. Motivation, although
contributing with a smaller effect size, reinforces students’
persistence and willingness to apply computational concepts.
The integrated interaction among these constructs
emphasizes the importance of fostering not only cognitive
competence but also affective and behavioral factors to
optimize computational thinking outcomes.

Building on these insights, the following practical
recommendations may help optimize the development of
computational thinking by addressing the specific needs
identified in self-efficacy, engagement, and motivation. To
strengthen self-efficacy, learning designs should include
scaffolded instruction, real-world problem-solving tasks, and
continuous formative feedback to build students’ confidence
in handling technological challenges. Instructors should
promote active engagement through collaborative learning,
gamification elements, and interactive technologies that
facilitate student-centered exploration. Moreover, targeted
interventions such as resilience training, counseling, and
goal-setting activities may help enhance motivation,
particularly in addressing low-performing sub-indicators
such as MT4. For technology developers, designing intuitive
and user-friendly applications that reduce cognitive load can
further support students’ confidence and motivation, leading
to improved computational thinking development.

While this study offers valuable insights into the interplay
between self-efficacy, engagement, motivation, and
computational thinking within technology-enhanced learning
environments, several limitations warrant consideration. First,
reliance on self-reported data introduces the possibility of
bias stemming from students’ subjective perceptions, which
may not fully reflect actual behaviors or competencies.
Second, the research was conducted within a single academic
cohort from a specific program, potentially limiting the
applicability of the findings to broader educational contexts
or different fields of study. Third, the cross-sectional design
of the study constrains the ability to draw causal conclusions
about the relationships among variables. To address these
limitations, future studies should consider employing
longitudinal or experimental methodologies to track changes
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over time and provide stronger evidence of causal
relationships. Additionally, further studies may explore how
instructional design elements, cultural differences, or
technological accessibility affect these relationships in
diverse educational contexts.

V. CONCLUSION

This study highlights the interconnected roles of
self-efficacy, engagement, motivation, and computational
thinking in optimizing the use of Markerless Augmented
Reality (MAR) and GPS technologies in higher education.
Students with stronger self-efficacy are more likely to engage
with and benefit from technology-enhanced learning, while
engagement and motivation serve as key pathways for
developing computational thinking skills. Instead of treating
these constructs as separate entities, the findings suggest a
dynamic relationship in which confidence, curiosity, and
sustained interaction with technology reinforce one another.
These psychological and behavioral factors collectively
support deeper learning and stronger academic outcomes.

To support this, educational institutions should focus on
cultivating students’ confidence and motivation by
integrating intuitive, meaningful, and enjoyable learning
experiences. When students perceive MAR and GPS as
useful and accessible, their willingness to explore and apply
technology in real-world problem-solving
increases—thereby strengthening computational thinking
and improving learning achievement.

Enhancing students’ belief in their own abilities can lead to
increased motivation, which subsequently promotes more
active engagement with MAR and GPS technologies.
Consistent interaction with these tools contributes to the
advancement of computational thinking abilities and
supports the broader integration of technology into the
learning process. When educational technologies are
designed to be intuitive and engaging, their frequent use
becomes more likely, thereby improving learners’ capacity
for analytical and problem-solving tasks. Additionally, when
students recognize the practical value of such technologies, it
further reinforces their computational thinking development
and contributes to improved academic outcomes.
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