
Abstract—This study aims to examine the influence of 
self-efficacy, engagement, motivation, and computational 
thinking skills on the utilization of Markerless Augmented 
Reality (MAR) and Global Positioning System (GPS) 
technologies in higher education. Technology enhances learning 
by expanding access and promoting equity among diverse 
student populations. In this context, MAR and GPS are 
employed to support more interactive and contextualized 
instruction, thereby stimulating student engagement and 
motivation. The study surveyed every one of the 128 
undergraduates enrolled in the Informatics and Computer 
Technology Education program to understand their 
perceptions of incorporating technology into their coursework. 
Adopting a mixed-methods approach, the research combined 
quantitative and qualitative analyses through techniques such 
as Partial Least Squares Structural Equation Modeling 
(PLS-SEM) and Importance-Performance Map Analysis 
(IPMA). The analysis demonstrated that students’ self‑efficacy 
is a key predictor of their computational thinking abilities, 
perceived usefulness and ease of use of technology, and their 
overall attitudes toward digital tools. Additionally, high levels of 
engagement and motivation were found to be essential for 
successfully using these technologies in educational activities. 
Together, the findings emphasize the value of enhancing 
self‑efficacy by employing accessible Mobile Augmented Reality 
(MAR) and GPS applications to support learning, which can 
enhance student engagement, support the achievement of 
academic goals, and strengthen computational thinking skills. 

Keywords—Markerless augmented reality, students’ 
engagement, motivation, self-efficacy, computational thinking 
skill 

I. INTRODUCTION 

Technological innovations have driven major 
transformations in learning systems and methods, opening up 
opportunities for students from diverse backgrounds to 
access equitable educational experiences [1–3]. Although 
technology has significantly changed instruction and the use 
of educational resources, gaps in technology utilization 
remain evident among students across different academic 
disciplines and socioeconomic statuses [4, 5]. In this context, 
technologies such as Markerless Augmented Reality (MAR) 
and Global Positioning System (GPS) tracking offer 
solutions for creating interactive, contextualized, and 

collaborative learning media. These technologies enable 
students to engage more deeply in their learning experiences 
and simulate real-world scenarios that support better 
understanding and practical application. 

In technology-enhanced learning, students’ confidence in 
using digital tools plays a crucial role in shaping their level of 
engagement and learning outcomes. This aligns with 
Bandura’s self-efficacy theory, which explains that 
individuals’ belief in their ability to complete tasks 
influences their motivation, active participation, and 
academic achievement. Students who feel capable of 
operating technologies such as MAR and GPS are more 
likely to engage enthusiastically in learning activities and 
demonstrate improved performance. 

On the other hand, the effectiveness of technology in 
supporting learning is also influenced by how information is 
presented. Cognitive Load Theory, introduced by Sweller, 
emphasizes the importance of managing learners’ cognitive 
load to avoid overwhelming their mental processing capacity. 
When technology is designed to be intuitive and contextually 
relevant—such as in the use of MAR and GPS—information 
can be processed more efficiently, enabling students to 
understand concepts more deeply without experiencing 
cognitive overload. This approach fosters a more focused, 
relevant, and meaningful learning experience. 

Through the MAR and GPS technologies’ existing 
approaches, student engagement, conceptual understanding, 
and real-world application skills can be significantly 
enhanced. Implementing MAR and GPS in learning media 
represents an effective, innovative step because it combines 
visual, spatial, and interactive elements to create a richer, 
more meaningful learning experience. This technology 
benefits diverse educational fields by enabling more 
authentic, adaptive, and situational learning. MAR and GPS 
hold great potential for improving student learning by 
delivering experiences that feel more real, engaging, and 
relevant [6–8]. These technologies effectively support 
student involvement in the learning process, even when faced 
with limitations of space, time, or resources. Learning 
becomes far more interactive and contextualized when MAR- 
and GPS-based media can simulate complex real-world 
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scenarios [9]. Merging interactive capabilities with 
location-aware features plays a pivotal role in strengthening 
students’ understanding of the subject matter, thereby 
fostering richer, contextually relevant and more impactful 
educational experiences. 

Furthermore, MAR and GPS can be leveraged to boost the 
effectiveness of experiential learning programs by 
sharpening students’ practical and collaborative skills across 
various disciplines. They also help students bridge theory and 
practice in real-world contexts—critical for solidifying 
conceptual understanding and developing applicable 
competencies. As such, MAR and GPS serve as valuable 
tools in education, engineering, tourism, and related fields, 
offering an innovative framework for integrating 
location-based learning and real-world interaction. 

MAR and GPS-based tools can likewise be harnessed to 
cultivate computational thinking by embedding learning 
within authentic, real-world contexts [10, 11]. These 
technologies enhance students’ proficiency and disposition 
toward computational thinking—abilities that are essential 
for creative problem solving and high achievement in 
technology-intensive professional settings. Cognitive 
improvements in location-based learning can be facilitated 
through the integration of MAR and GPS [12]. To better 
prepare students for twenty-first-century challenges, it is 
essential to understand the complex interplay among critical 
thinking skills, technology adaptation, and contextual 
interaction [13, 14]. MAR and GPS effectively foster the 
development of both critical and creative thinking by 
providing authentic, location-based learning experiences [15]. 
They offer an objective, contextualized, and comprehensive 
instructional approach, rendering them valuable across both 
academic and industry settings. 

Consequently, the study formulates several research 
questions, chief among them: In what ways does integrating 
Markerless Augmented Reality (MAR) and Global 
Positioning System (GPS) technologies influence students’ 
engagement levels and the depth of their conceptual 
understanding? And in what ways can this technology-driven 
engagement influence students’ critical thinking abilities and 
computational thinking skills? These questions will be 
synthesized into a conceptual model designed to inform and 
enrich instructors’ teaching strategies, enabling them to 
create more interactive, contextualized, and 
application-oriented learning experiences. Fig. 1 illustrates 
the proposed pathways that were examined in this study. 

Fig. 1. Hypothesis development. 

Drawing on the conceptual framework in Fig. 1, this study 
examines the following hypothesis: 
1) H1: Self‑efficacy serves as a significant antecedent to

student engagement. Evidence suggests that learners with
stronger academic self‑efficacy display higher levels of
engagement in their studies [16].

2) H2: Self‑efficacy positively influences students’
motivation. Basileo et al. [17] demonstrated, that
self‑efficacy exhibits a strong, statistically significant
relationship with both autonomous and controlled forms
of academic motivation.

3) H3: Self‑efficacy supports the development of
computational thinking abilities. Research shows a strong
positive correlation between learners’ self‑efficacy
beliefs and their performance on computational thinking
tasks; in other words, greater confidence in one’s learning
capacity is associated with stronger computational
thinking skills [18].

4) H4: Student engagement significantly predicts
computational thinking skill. In an “unplugged” coding
activity, Li et al. [19] confirmed that engagement
variables (cognitive, emotional, behavioral) serve as
strong predictors of students’ computational thinking
performance.

5) H5: Engagement is associated with increased motivation.
Empirical studies show that high levels of student
engagement are closely associated with learners’
motivation to learn [20].

6) H6: Motivation acts as a significant predictor of
computational thinking proficiency. For instance, Kaur
and Chalal [21] observed in their study of primary school
students learning Scratch programming that higher levels
of motivation consistently forecasted improvements in
computational thinking. In other words, learners who are
more motivated tend to make greater gains in their
computational thinking skills.

II. LITERATURE REVIEW

A. Self-Efficacy

Self‑efficacy describes the connection between an
individual’s belief in their own competence and the 
proficiency with which they execute a particular task [22–24]. 
A student’s belief in their own talents has a substantial impact 
on their will to learn, which is why efficacy is so important in 
the classroom, ultimately leading to successful academic 
outcomes. Direct experience and the subsequent modification 
of that experience are central to the experiential learning 
paradigm [25]. Self-efficacy serves as the driving force 
behind motivation. Confidence in one’s own abilities 
profoundly influences motivation and academic achievement, 
underscoring the centrality of self‑efficacy throughout the 
educational journey [26].  

Self‑efficacy develops through several pathways, with 
prior experiences—often termed mastery 
experiences—serving as the most influential. Other 
contributors include verbal encouragement from others, 
learning through observation, and the influence of different 
emotional and social states [27]. In discussing self-efficacy, 
two separate kinds of achievement goals are brought up. Two 
types of these objectives are performance achievement goals 
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and mastery achievement goals [28].  
In contrast, those with performance objectives aim to 

evade negative outcomes by showcasing their competency in 
the subject matter [29]. In essence, individuals with mastery 
goals are generally more inclined to seek solutions and 
embrace challenges within their area of focus [30], while 
those aiming for performance objectives often place a 
premium on providing enough proof to lessen the impact of 
unfavorable results [31]. Examining how people adopt digital 
tools and strengthen their confidence in using them offers 
valuable insights for this literature review [32]. It is 
beneficial to examine the impacts of markerless augmented 
reality and GPS, evaluate their implications, and explore 
approaches for determining best practices in future 
deployments. 

B. Engagement 

The notion of engagement and its effect on learning is 
crucial for comprehending the significance of student 
involvement in higher education [33]. Engagement can be 
classified into three distinct categories [34]. Academic and 
social engagements fall under behavioral engagement, while 
emotional and cognitive components include goals for 
motivation, self-regulation of learning to understand and 
master difficult concepts and abilities, metacognition, the 
execution of strategies for learning, strategic thinking, and 
studying. Attitudes, passions, and principles are associated 
with positive and negative interactions [35].  

use today. Due to the social nature of the situations in which 
students learn in higher education, the concepts of 
community, collaboration, and interaction must permeate all 
aspects of educational practice [44–46]. Building close 
relationships with students is essential for improving their 
motivation, academic motivation, and achievement [47]. 

D. Computational Thinking Skill 

Computational thinking leverages concepts from 
computing to enhance individuals’ abilities in 
problem‑solving, critical reasoning and creative thought [48]. 
The ability to “think like a machine” and tackle complex 
problems is a vital twenty-first–century competency [49]. 
Computational thinking encompasses a wide range of 
problem‑solving strategies applicable to many disciplines 
and situations, not limited to programming or coding [50]. 
Accordingly, numerous educational institutions have 
incorporated computational thinking into their curricula to 
ready students for emerging career paths and ongoing 
technological change. 

Users’ belief that computational tools simplify problem 
solving and enhance their CT skills can be understood as 
perceived value, which in turn influences their readiness to 
adopt and use CT platforms and tools [51]. Likewise, 
perceived ease of use describes a person’s subjective 
assessment of how simple and convenient a computational 
thinking tool is to operate. People tend to gravitate toward 
technologies they find intuitive, and these perceptions 
strongly influence their willingness to engage with such 
tools  [52]. Fundamentally, the aim of using these tools and 
platforms is to develop one’s computational thinking skills. 
This purpose acts as a primary motivator for individuals to 
adopt computational thinking technologies, thereby 
enhancing their proficiency in the field. 

The evaluation process for using Markerless Augmented 
Reality (MAR) and Global Positioning System (GPS) 
technology begins with defining clear learning objectives, 
followed by identifying the components involved in the 
location-based, interactive learning experience. This strategy 
mirrors the decomposition and abstraction stages of 
computational thinking: by breaking complex problems into 
smaller, manageable units, students can better grasp how the 
interconnected components operate in real‑world contexts. 

A synthesis of the reviewed literature suggests that 
self-efficacy plays a foundational role in influencing 
students’ engagement and motivation, particularly within 
technology-integrated learning environments. Students with 
higher self-efficacy tend to demonstrate greater perseverance 
and confidence in navigating digital learning tools, which 
positively affects their motivational drive. Engagement and 
motivation, in turn, act as complementary forces that promote 
the acquisition of computational thinking (CT) skills. When 
students are both motivated and actively engaged, they are 
more likely to approach CT-related tasks with deeper 
cognitive investment and problem-solving abilities. These 
four constructs are conceptually interconnected and form an 
integrated framework that determines how effectively 
students utilize and benefit from emerging educational 
technologies such as Markerless Augmented Reality (MAR) 
and Global Positioning System (GPS). 

In MAR- and GPS-based learning, solutions are rendered 
more concrete and relevant to everyday scenarios, and 
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Using strategies that cater to each student’s unique 

learning style is considered to improve the learning process in 

higher education [36]. Engagement among students plays a 

significant role in influencing retention rates. However, there 

exists a discrepancy between research and what is perceived 

as challenges in implementing feasible solutions to address 

this discrepancy [37]. This involves concentrating on the 

behaviors of students and faculty, the outcomes that are 

sought, and the comparable results among institutions to 

assist higher education administration in formulating 

effective strategies for implementation and achieving 

favorable results [38]. In contrast, students who engage in 

active learning actively seek ways to interact with others 

about the material at hand [39]. These outcomes are 

supported by discussion, critical reasoning, collaboration, 

and meaningful learning experiences. Empirical studies 

indicate that students who play an active role in their 

education typically display greater intrinsic motivation, 

higher engagement, enhanced self‑esteem, and an increased 

sense of competence [40].

C. Motivation

Finding markers of learning performance that take 

motivation into consideration is vital. Research indicates that 

learners’ motivation is a strong determinant of their academic 

achievement [41]. Motivation can be understood as the 

psychological framework that enables a person to initiate a 

task and persist until its completion [42]. The drive to learn, 

enhanced by recognizing the value of the material, plays a 

crucial role and influences an individual’s learning 

process [43]. Social interaction, amusement, social standing, 

affectionate socialising, relaxation, portability, instant 

gratification, acquisition, and efficient use of time are some 

of the fundamental incentives that drive the technologies we 



  

instructional plans are continuously evaluated during their 
design phase [53]. This mirrors the generalization stage of 
computational thinking, in which broadly applicable 
solutions are formulated and tested across multiple situations. 
Leveraging MAR and GPS to address complex, context-rich 
learning challenges is particularly effective because these 
technologies merge visual and spatial data to create 
immersive, application-driven experiences—an essential 
aspect of developing students’ computational thinking skills. 
By integrating information from diverse sources (e.g., 
geographic coordinates, interactive visual overlays), MAR 
and GPS deliver a holistic learning environment.  

III. MATERIALS AND METHODS 

A. Design of the Study 

To gain a holistic examination of how the variables under 
investigation interact, the present research utilises a 
mixed‑methodology that synthesises quantitative 
measurements with qualitative insights. This dual strategy 
affords a richer, more nuanced understanding of the complex 
relationships being studied. Prior to data collection, 
participants had prior exposure to the MAR and GPS 
technologies through a custom Android-based Augmented 
Reality application. The population consisted of all students 
in the 2020–2021 cohort of the Computer and Informatics 
Engineering Education program a public university in 
Indonesia and all 128 students (from classes A, B, and C) 
were included, i.e. a census of the cohort [54] were surveyed 
using a six-point Likert scale via Google Forms. In this study, 
a census of the cohort approach was employed, meaning that 
data were collected from the entire population of students 
within a specific academic group [55]. All individuals 
enrolled in the targeted cohort—specifically, 128 
undergraduate students from the Informatics and Computer 
Technology Education program—were invited to participate. 

Using this approach allows the study to capture data from the 
entire target population, thus removing sampling bias and 
yielding a thorough depiction of participants’ characteristics, 
perceptions, and experiences with technology integration in 
learning. By canvassing the entire cohort, the research also 
facilitates more accurate generalizations about how these 
students engage with educational technologies.  

An innovative learning media has been developed by the 
research team through the use of MAR technology and GPS. 
During this phase of development, the Unity platform served 
as the primary foundation for integrating these technological 
features. The learning application was developed using Unity 
and integrated with advanced Application Programming 
Interfaces (APIs) such as Niantic Lightship, Wayfarer, and 
Geospatial Browser, enabling the incorporation of interactive 
and geolocation-based learning components. This technology 
enables students to navigate and explore the campus 
environment while participating in engaging and immersive 
learning experiences, as illustrated in Fig. 2. 

Once all 3D elements were successfully developed and the 
API was seamlessly integrated with the Niantic Lightship, the 
subsequent stage involved scanning six designated locations 
within the campus environment. The selected points were 
deliberately identified as key sites for students to engage with 
Augmented Reality (AR)-enhanced learning beyond the 
traditional classroom setting. Each of these locations is 
crafted to enable students to engage with a variety of 
interactive games and puzzles, aimed at improving their 
collaborative abilities in understanding and applying 
computer networking concepts. Furthermore, the six 
locations function as distinct learning points while being 
integrally linked through a seamless location-based learning 
system. Students are required to collaborate effectively to 
complete tasks at each designated location, culminating in a 
set of practice questions designed to assess their 
understanding as shown from Fig. 3.  

 

 
Fig. 2. Learning media development with unity. 

 
The site scan procedure is designed to enrich students’ 

learning experiences and deepen their theoretical 
understanding by integrating hands‑on elements, 

collaboration and problem solving—key components of 
computer networking education. Moreover, this 
implementation marks a notable advance in the use of 
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markerless augmented reality and GPS technologies to create 
more interactive, dynamic location‑based learning 

experiences. The finished learning media resulting from this 
implementation is presented in Fig. 4. 

 

 
Fig. 3. GPS scan results obtained from six specific locations within the campus area. 

 
After the location scanning process was completed, the 

research team continued with testing the quality of learning 
media using whitebox and blackbox testing methods. 
Whitebox testing was conducted to ensure the validity of 
internal logic and program code flow, while blackbox testing 
focused on verifying external functionality without 
examining the internal structure of the system. The results of 
these two testing methods show that the MAR and GPS 
technology-based learning media developed has met the 
technical feasibility criteria. 

 

 
Fig. 4. Finished learning media. 

 
This development is designed to cultivate a learning 

environment that is more dynamic and engaging than 
conventional classroom instruction. By incorporating 
augmented reality and GPS technologies, it expands 
opportunities for outdoor learning, yielding richer 
educational experiences and increased student engagement. 
This technology is anticipated to enhance students’ 
conceptual understanding while also motivating them to 
engage with the material independently by interacting 

directly with their environment. The advancement of this 
media represents progress in technology-driven education, 
aligning with the global movement towards increasingly 
personalized, interactive, and location-aware learning 
experiences. 

B. Sample 

All 128 students were invited to complete the study 
instrument, and every participant provided a complete 
response. Consequently, the analysis included the entire 
cohort of 128 students. Given the small class size, the 
researchers adopted a census (saturated sampling) approach, 
gathering data from every student to ensure 
representativeness and enhance the reliability of the findings. 
Throughout data collection, the researchers maintained 
participant confidentiality and used the data solely for 
research purposes in line with ethical standards. 

By recruiting only participants who had previously used 
the application, the study ensured that the data collected were 
directly pertinent to its central focus: students’ perceptions of 
the application’s impact. This approach is considered more 
reliable because the sample consists of individuals who have 
actually used the technology under investigation. Although 
participation was voluntary—open to anyone willing to 
complete the instrument—this method may slightly reduce 
the generalizability of the findings to populations beyond 
those who chose to participate. 

C. Instrument 

The research employed a survey as its principal 
data‑collection instrument. Most of the measurement items 
were adapted from earlier studies to maintain relevance and 
comparability. The questionnaire served as the primary 
means of identifying the variables aligned with the study’s 
objectives and was designed to accurately capture data on 
four key constructs: self-efficacy [56], engagement [57], 
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motivation [58], and computational thinking skills [59]. The 
measurement items used in this study is presented in Table 1. 

Each questionnaire item was scored on a six‑point 
Likert‑type scale, and the instrument comprised 17 questions 
spanning the four constructs of interest. The six‑point scale 
deliberately omits a neutral midpoint, prompting respondents 
to lean toward agreement or disagreement. This design helps 
reduce central tendency bias and yields more decisive 
responses, which is crucial for accurately capturing 
perceptions and attitudes toward technology use. Factor 

loadings for each item were calculated using SmartPLS to 
evaluate the measurement model’s precision. Convergent 
validity was assessed via the Average Variance Extracted 
(AVE) based on standardized loadings, while discriminant 
validity was evaluated using the Heterotrait–Monotrait 
(HTMT) ratio. Finally, internal consistency reliability for 
each construct was verified through Cronbach’s Alpha and 
Composite Reliability, ensuring the robustness of the 
measurement scales. 

Table 1. The test instruments 
Variable Instruments 

Self-Efficacy 

I can complete the activities I get in a lab class 
If I went to a place, I could figure out what is being shown about topics in 

I am often able to help my classmates with activities in the laboratory or in recitation. 
I get a sinking feeling when I think of trying to tackle difficult from activities problems. 

Engagement 

I actively participate in classroom discussions when using MAR and GPS technology. 
I show a high level of interest when using technology-based learning media. 

I enjoy the learning process when it involves MAR and GPS technology. 
I feel enthusiastic about using MAR and GPS technology for learning. 

I frequently interact with peers or instructors when engaging with MAR and GPS technology in learning activities. 

Motivation 

I am motivated to study more when using MAR and GPS technology. 
I feel driven to complete tasks that involve using this technology. 

I find the learning process more engaging with the use of technology. 
I feel confident when facing new challenges through technology-based learning. 

Computational 
Thinking Skill 

I can break down complex problems into smaller, manageable parts. 
I am able to identify patterns within problems to find solutions. 
I can develop logical step-by-step procedures to solve problems. 
I can use technology to help solve problems in a systematic way. 

 
The analysis relied on Partial Least Squares Structural 

Equation Modeling (PLS‑SEM), supplemented by 
Importance–Performance Map Analysis (IPMA), to evaluate 
the relationships among the model’s constructs. IPMA goes 
beyond assessing path coefficients by also considering the 
average scores of latent variables, offering a more 
comprehensive view of how each predictor contributes to the 
desired outcomes. 

D. Data Collection 

Referring to Burns and Grove [60], it is crucial in reporting 
research findings to include the research context, participant 
characteristics, study scope, as well as data collection and 
analysis procedures. Additionally, a description of the 
research sample must also be provided. In this research, every 
engineering faculty student who was administered the 
questionnaire participated by fully completing and 
submitting the survey, ensuring complete response coverage 
from the target population. Participation was carried out 
through the completion of an online form accompanied by a 
survey link. Only respondents who accurately completed the 
questionnaire were included in the data tabulation process. 

E. Data Validation 

To conduct the SEM–PLS analysis, this study utilized 
SmartPLS version 3. The Partial Least Squares (PLS) method 
offers distinct advantages over traditional Ordinary Least 
Squares (OLS) regression by effectively managing common 
challenges such as limited sample sizes, missing data, 
deviations from normality, and multicollinearity. SmartPLS 
was employed to ensure precise measurement modeling and 
structural robustness. The analysis adhered to the two-step 
approach outlined by Anderson and Gerbing [61], which 
involves sequential assessment of the measurement model 
followed by evaluation of the structural model. In the initial 

phase, the measurement model was evaluated to ensure the 
suitability of both the constructs and the data collection 
procedures. Convergent validity was assessed by examining 
the Average Variance Extracted (AVE) and the standardized 
factor loadings of each item. Discriminant validity was 
determined using the heterotrait–monotrait (HTMT) ratio. 
Additionally, the internal consistency of each construct was 
confirmed through the calculation of Cronbach’s Alpha and 
Composite Reliability (CR) coefficients.   

In the second phase, the structural model was evaluated by 
testing the hypothesized relationships among the constructs 
using a bootstrapping procedure to determine their statistical 
significance. Table 2 presents the factor loadings for all 
measurement items, each of which exceeds the 0.60 threshold 
recommended by Hair et al. [62], thus reinforcing the validity 
of the construct measurements and confirming the robustness 
and appropriateness of the overall measurement model for 
further structural analysis. 

 
Table 2. Outer loadings 

Variable Item Outer Loading 

Self-Efficacy 

SE1 0.840 
SE2 0.880 
SE3 0.791 
SE4 0.827 

Engagement 

EN1 0.806 
EN2 0.826 
EN3 0.852 
EN4 0.841 

Motivation 

MT1 0.843 
MT2 0.837 
MT3 0.830 
MT4 0.758 

Computational Thinking Skill 

CTS1 0.736 
CTS2 0.834 
CTS3 0.841 
CTS4 0.784 

 
Table 2 displays the outer loadings, representing the 
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degree to which each indicator reliably measures its 
associated construct within the context of this study. In this 
case, reliability denotes the consistency. By employing an 
appropriate measurement model, this questionnaire can 
produce stable results under the same conditions and with 
similar participant profiles. Such consistency is crucial to 
ensure that conclusions drawn about the respondents can be 
generalized. Reliability testing confirms that the survey is 
well-constructed, especially in the context of higher 
education. Low reliability suggests that specific items fail to 
consistently capture the underlying construct, highlighting 
the potential need for revising the instrument or eliminating 
underperforming indicators. In the context of higher 
education research, maintaining methodological rigor is 
essential—especially when working with large respondent 
groups—as the findings carry significant weight for 
decision-makers, including institutional leaders and 
policymakers. 

To determine the components for PLS bootstrapping, this 
study followed a widely recognized procedure commonly 
applied in Structural Equation Modeling (SEM). This method 
relies on repeated resampling techniques to estimate the 
stability and significance of model parameters. To evaluate 
the measurement quality of each construct, several key 
indicators were utilized, including standardized factor 
loadings, composite reliability, Cronbach’s alpha, and 
Average Variance Extracted (AVE). These metrics were 
assessed in accordance with the methodological standards set 
forth by Hair et al. [63], As shown in Table 3, all values for 
composite reliability and Cronbach’s alpha surpass the 
commonly accepted threshold of 0.70, indicating strong 
internal consistency across the measured constructs. This 
confirms that each latent construct’s factor loadings satisfy 
the AVE standard (minimum 0.50) and that each construct’s 
AVE value is greater than 0.60. 

 
Table 3. Cronbach’s alpha, composite reliability, average variance extracted 

Variable Cronbach Alpha Composite Reliability AVE > 0.5 
Self-Efficacy 0.855 0.902 0.698 
Engagement 0.890 0.919 0.695 
Motivation 0.836 0.890 0.669 

Computational 
Thinking Skill 

0.811 0.876 0.640 

 
Each construct in this study achieved an Average Variance 

Extracted (AVE) above 0.50. According to Hair et al. [63], 
the minimum acceptable AVE is 0.50, and all scores in 
Table  3 meet this criterion: Self-Efficacy at 0.698, 
Engagement at 0.695, Motivation at 0.669, and 
Computational Thinking Skill at 0.640. The Cronbach’s 
alpha scores for each construct demonstrate strong internal 
reliability, with values of 0.855 for Self-Efficacy, 0.890 for 
Engagement, 0.836 for Motivation, and 0.811 for 
Computational Thinking Skill. In addition, Composite 
Reliability values ranged from 0.876 to 0.919, further 
reinforcing the internal consistency of the measurement 
instrument. Discriminant validity was evaluated through the 
Heterotrait–Monotrait (HTMT) ratio of correlations, and all 
values were found to be below the recommended threshold of 
0.90, as outlined by Hair et al. [63], thereby confirming clear 
distinction among the constructs. The detailed results of the 
HTMT analysis are presented in Table 4. 

Validity testing was performed to confirm that the 

measurement model developed in SmartPLS effectively 
captures the relationships between latent constructs and their 
corresponding indicators, thereby improving the accuracy 
and relevance of the study’s results. An instrument with 
strong validity ensures that students’ experiences, 
perceptions, and behaviors are represented with fidelity, 
providing a sound foundation for meaningful interpretation 
and generalization. This testing is essential to ensure that the 
survey questions genuinely measure the intended research 
objectives. Without validity testing, there is a heightened risk 
of measuring irrelevant factors, which could lead to 
inaccurate conclusions about the target population. 

 
Table 4. Heterotrait-Monotrait (HTMT) ratio of correlations  

Variable CTS EN MT SE 
CTS - - - - 
EN 0.867 - - - 
MT 0.641 0.699 - - 
SE 0.851 0.832 0.594 - 

 
Validity focuses on the accuracy of measuring the intended 

constructs, while reliability ensures the consistency of latent 
variable measurement. By rigorously applying tests for 
validity and reliability, researchers ensure that the data 
collected from students is both accurate and dependable. This 
process is essential for reinforcing the credibility of the 
study’s findings. In the realm of higher education research, 
generating valid and reliable evidence forms the cornerstone 
for making well-founded conclusions and informing 
data-driven decisions that can shape educational policy and 
practice. 

Following the confirmation of the instrument’s validity 
and reliability, additional analysis was performed to assess 
the explanatory strength of the structural model by examining 
the R2 (R Square) values. The R2 statistic reflects the 
proportion of variance in the dependent variables that can be 
accounted for by the independent variables in the mode [63]. 
The results of this analysis are presented in Table 5. 

 
Table 5. Results of the R Square analysis 

Variable R Square 
Computational Thinking Skill 0.619 

Engagement 0.529 
Motivation 0.383 

 
As presented in Table 5, the R2 value for Computational 

Thinking Skill is 0.619, indicating that the independent 
variables in the model account for 61.9% of its variance. For 
Engagement, the R2 is 0.529, signifying that 52.9% of the 
variation in student engagement is explained by its associated 
predictors. Meanwhile, the R2 for Motivation stands at 0.383, 
reflecting that 38.3% of the variance in student motivation 
can be attributed to the independent variables included in the 
model. Collectively, these R2 values suggest that the 
structural model demonstrates moderate to substantial 
explanatory power in accounting for the variance in the core 
dependent constructs. 

Overall, the measurement model demonstrated satisfactory 
levels of validity and reliability, while the structural model 
exhibited adequate explanatory power based on the R Square 
values. These results validate the model’s effectiveness in 
representing the interrelationships among self-efficacy, 
engagement, motivation, and computational thinking skills. 
This provides a robust empirical basis for conducting 
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hypothesis testing and offers a solid framework for 
interpreting the study’s findings with greater confidence. 

F. Data Analysis

This study utilized SmartPLS version 3 as the primary
analytical tool. Traditional Ordinary Least Squares (OLS) 
regression is often limited by issues such as small sample 
sizes, non-normal data distributions, missing values, and 
multicollinearity. To overcome these limitations, the study 
adopted the Partial Least Squares (PLS) approach, which is 
better suited for complex models and exploratory research 
contexts. The validation process commenced with an 
evaluation of the measurement model, following the 
procedural guidelines outlined by Anderson and 
Gerbing  [61], ensuring a systematic assessment of construct 
reliability and validity before proceeding to structural model 
analysis. Subsequently, a bootstrapping procedure with 5,000 
samples was conducted to test the strength of the 
relationships between constructs. The bootstrapping analysis 
for hypothesis testing was carried out using SmartPLS. 

Additionally, the study incorporated 
Importance-Performance Map Analysis (IPMA) to assess the 
relative effectiveness of each construct within the model. 
This technique adds practical depth to the Partial Least 
Squares Structural Equation Modeling (PLS-SEM) results by 
simultaneously evaluating both the importance (impact) and 
performance (average scores) of the constructs. 
Consequently, the analysis highlights which constructs are 
critical in influencing outcomes yet underperforming, 
thereby guiding targeted interventions and improvements in 
future implementations. 

IV. RESULT AND DISCUSSION

The results of the SmartPLS analysis, detailed in Table 4 
and illustrated in Fig. 5, summarize the path coefficients for 
all proposed hypotheses. Regarding Hypothesis 1, the 
analysis reveals that self-efficacy exerts a strong, positive, 
and statistically significant influence on student engagement 
(β = 0.727, ρ = 0.000). This indicates that learners who 
possess greater confidence in their capabilities are more 
likely to actively participate in the learning process. This 
finding aligns with Zhao et al. [64], who reported that 
students with elevated self-efficacy levels tend to be more 
engaged in technology-mediated learning environments. 
Consistent results were also observed in the work of Zhao 
and Cao [65], which demonstrated that self-efficacy is a 
significant predictor of behavioral engagement in online 
learning contexts.  

The analysis of Hypothesis 2 reveals that self-efficacy has 
a positive and statistically significant impact on student 
motivation (β = 0.155, ρ = 0.000). This suggests that learners 
who exhibit greater confidence in their academic abilities are 
more likely to demonstrate heightened motivation toward 
their studies. This result aligns with the findings of 
Lin et al. [66], who reported that academic self-efficacy 
serves as a significant predictor of learning motivation, 
particularly within blended learning environments. Similarly, 

and Karpinski [68] affirm that self-efficacy is a robust 
predictor of both intrinsic motivation and academic 
engagement, particularly within technology-mediated 
learning environments. Their findings highlight the pivotal 
role of self-belief in fostering deeper motivation and 
sustained involvement in digitally enhanced educational 
settings. 

Fig. 5. Hypothesis path. 

The analysis of Hypothesis 3 demonstrates that 
self-efficacy exerts a positive and statistically significant 
influence on students’ computational thinking skills, with a 
path coefficient of β = 0.354 and ρ = 0.000. This suggests that 
students who exhibit greater confidence in their abilities are 
more likely to perform well in tasks requiring computational 
thinking. This outcome aligns with the findings of 
Kvaššayová et al. [69], who observed that students with high 
self-efficacy in programming tasks show marked 
improvements in their computational thinking performance.  

The results for Hypothesis 4 indicate that student 
engagement has a positive and statistically significant effect 
on computational thinking skills, with a path coefficient of β 
= 0.430 and ρ = 0.000. This finding suggests that active 
involvement in the learning process contributes meaningfully 
to the development of computational thinking abilities. It is in 
line with the study by Li et al. [70], which demonstrated that 
engagement—particularly when supported by Markerless 
Augmented Reality (MAR) and GPS technologies—can 
significantly enhance computational thinking. These 
technologies promote interactive, context-rich learning 
environments that facilitate deeper comprehension and more 
effective application of computational concepts. 

Furthermore, the analysis of Hypothesis 5 reveals that 
engagement exerts a positive and statistically significant 
impact on motivation, with a path coefficient of β = 0.497 and 
ρ = 0.000. This result suggests that students who actively 
participate in the learning process—particularly when 
facilitated by MAR and GPS technologies—tend to exhibit 
higher levels of motivation. The immersive and contextually 
rich learning environments enabled by these technologies 
foster greater enthusiasm and drive among students, 
encouraging them to engage more deeply with the learning 
content.  

Moreover, Hypothesis 6 demonstrates that motivation 
contributes positively and meaningfully to the development 
of computational thinking skills, as reflected by a path 
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Hayat et al. [67] emphasized that self-efficacy influences 

motivation by enhancing students' metacognitive 

self-regulation and affective processes, leading to greater 

learning persistence. Moreover, recent research by Alhadabi 



  

coefficient of β = 0.088 and a significance level of ρ = 0.002. 
This finding indicates that students with higher levels of 
motivation are more likely to enhance their computational 
thinking abilities, highlighting the important role of 
motivational factors in fostering cognitive skill development. 
Motivated students are more active in applying 
computational concepts, which ultimately improves their 
ability to solve problems logically and systematically. These 
findings are consistent with Gümüş et al. [71], who 
demonstrated that motivated students are more likely to 
develop computational thinking competencies through 
increased effort and persistence in problem-solving tasks. 
Although the effect size (β = 0.088) is relatively small, it 
remains statistically significant, suggesting that while 
motivation contributes to computational thinking skills, its 
practical impact is more modest compared to other factors 
such as self-efficacy and engagement. This may imply that 
motivation alone may not strongly drive computational 
thinking development unless supported by other variables, 
such as confidence in using technology or active participation 
in learning activities. Therefore, strategies that 
simultaneously address students’ motivation and engagement 
behaviors are likely to yield greater effectiveness in fostering 
the development of computational thinking skills. 

Self-efficacy emerged as a significant determinant of 
students’ motivation, engagement, and computational 
thinking skills. The results indicate that learners with 
elevated self-efficacy are more inclined to participate 
actively in the learning process due to their heightened 
motivation. Their confidence in handling technological tools 
positively shapes their perception of usability, which 
subsequently enhances their level of engagement. As 
students become more engaged, they interact more frequently 
and meaningfully with technology, thereby facilitating 
deeper comprehension of complex concepts within 
computational thinking instruction. 

The study further demonstrated that motivation serves as a 
key driver in fostering students’ engagement with 
technology-enhanced learning environments. Learners who 
exhibit high levels of motivation are more inclined to take an 
active role in educational activities and to adopt technology 
as a meaningful tool in their learning process. This finding is 
consistent with prior research, which suggests that strong 
motivational factors contribute to greater engagement, 
ultimately supporting the advancement of computational 
thinking skills. Students who are intrinsically motivated to 
explore and apply technology in their learning are more likely 
to attain superior outcomes in cultivating their computational 
thinking competencies. 

In addition, elevated levels of student engagement are 
strongly associated with enhanced computational thinking 
skills. Learners who actively participate in 
technology-integrated educational activities tend to 
demonstrate greater proficiency in applying computational 
thinking to address problem-solving tasks. Frequent 
interaction with digital tools, combined with the use of more 
effective learning strategies, contributes to the development 
of students’ critical reasoning and analytical capabilities. 
Therefore, student engagement not only boosts motivation 
but also enriches their computational thinking skills. 

Overall, the findings of this study highlight the pivotal role 

of self-efficacy, motivation, and engagement in fostering 
students’ computational thinking skills. Accordingly, it is 
essential for educational institutions and instructors to 
implement instructional strategies and design learning 
environments that actively cultivate students’ confidence in 
their abilities, stimulate intrinsic motivation, and promote 
sustained engagement with technology. Such efforts are key 

technology-integrated learning concepts. Additionally, the 
study confirms that engagement exerts a significant influence 
on the advancement of computational thinking. Students who 
participated more actively in technology-driven learning 
environments—particularly through the integration of AR 
and GPS tools in network systems programming—exhibited 
stronger computational thinking capabilities, highlighting the 
importance of immersive and interactive learning 
experiences. This engagement is closely related to the 
intuitive and user-friendly nature of the technology, which 
helps students interact more deeply with the learning material. 
Technological tools that are specifically designed to enhance 
student engagement can play a vital role in facilitating the 
comprehension of abstract concepts. At the same time, they 
support the development of critical and systematic thinking 
skills, enabling students to approach problems with greater 
analytical depth and structured reasoning. The results of the 
hypothesis testing are summarized in Table 6. 

In conclusion, the results of this study underscore the 
critical need to cultivate a learning environment that actively 
promotes students’ self-efficacy, motivation, and 
engagement in the use of technology. Such an environment is 
particularly essential in technology-rich educational settings, 
where these factors collectively contribute to the effective 
development of computational thinking skills. Supporting 
these psychological and behavioral dimensions can 
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to enhancing students’ capacity to develop and apply 

computational thinking in diverse learning contexts.

This study further underscores the influential role of 

self-efficacy in shaping students’ perceptions of technology 

use, particularly within the domain of computational thinking. 

The findings indicate that students with higher levels of 

self-efficacy are more inclined to perceive technology as a 

valuable asset in their learning journey, which, in turn, fosters 

greater engagement and more frequent use of technological 

tools. This aligns with prior research showing that individual 

confidence significantly affects how learners assess the 

utility of technology in educational settings. In essence, 

students who believe in their technological competence are 

more receptive to adopting and integrating digital tools into 

their learning, thereby supporting the development of their 

computational thinking skills.

Moreover, this study reinforces the strong connection 

between motivation and the development of computational 

thinking skills. The findings reveal that students’ intrinsic 

motivation to engage with technology significantly enhances 

their capacity for logical reasoning and complex 

problem-solving—core elements of computational thinking. 

When learners are genuinely motivated, they are more likely 

to adopt technology as a tool to support and deepen their 

cognitive skills, particularly in problem-solving contexts. 

This supports the view that intrinsic motivation, shaped in 

part by self-efficacy, plays a crucial role in enhancing 

students’ comprehension and application of 



  

significantly enhance students’ ability to engage 
meaningfully with complex technological content. 
Educational institutions and technology developers should 
focus on designing accessible, intuitive, and student-centered 
technologies to improve student engagement and learning 
outcomes. 

 
Table 6. Hypothesis result 

Hypothesis β ρ T-values Result 
H1. Self-Efficacy → 

Engagement 
0.727 0.000 36.182 Supported 

H2. Self-Efficacy → 
Motivation 

0.155 0.000 3.835 Supported 

H3. Self-Efficacy → 
Computational Thinking Skill 

0.354 0.000 8.871 Supported 

H4. Engagement → 
Computational Thinking Skill 

0.430 0.000 10.99 Supported 

H5. Engagement → Motivation 0.497 0.000 13.09 Supported 
H6. Motivation → 

Computational Thinking Skill 
0.430 0.002 3.069 Supported 

 
The PLS-SEM analysis, combined with 

Importance–Performance Map Analysis (IPMA), was 
employed to investigate the influence of self-efficacy, 
engagement, motivation, and computational thinking skills 
on students’ use of technology in learning environments. 
While PLS-SEM assesses the strength and significance of 
relationships among constructs, IPMA adds a practical 
dimension by identifying which variables are most important 
yet underperforming, thereby guiding targeted improvements. 
Table 7 presents the standardized total effects, representing 
the importance of each construct, alongside the standardized 
latent variable scores, which indicate their respective 
performance levels. 

 
Table 7. Importance-Performance Map Analysis (IPMA) result 

Variable 
Computational 
Thinking Skill 

Performance 
Important (Total 

Effect) 
Self-Efficacy 0.713 76.028 

0.713 
SE1 0.209 73.855 
SE2 0.234 75.249 
SE3 0.195 80.727 
SE4 0.214 74.602 

Engagement 0.474 72.041 

0.474 
EN1 0.109 68.003 
EN2 0.112 72.585 
EN3 0.116 71.738 
EN4 0.112 75.324 

Motivation 0.088 67.309 

0.088 
MT1 0.031 72.062 
MT2 0.029 72.56 
MT3 0.024 63.446 
MT4 0.024 56.449 

 
In the IPMA, performance scores are reported on a 

standardized scale from 0 to 100, with higher values 
representing stronger perceived performance of the 
respective constructs. This scale facilitates the identification 
of areas where improvements are needed by highlighting 
constructs that are highly important yet exhibit relatively 
lower performance levels [72]. Table 7 presents the total 
effects and corresponding performance scores for the key 
variables examined in the study—namely, self-efficacy, 
engagement, and motivation—and their influence on the 
development of computational thinking skills. These values 
provide insight into both the relative importance and 
perceived effectiveness of each construct, enabling a more 
nuanced interpretation of their roles within the 

technology-integrated learning context. The results of the 
IPMA provide further insight into the factors influencing 
computational thinking skills within technology-enhanced 
learning environments. The findings highlight that 
self-efficacy exerts the strongest influence on the 
development of computational thinking skills among the 
variables examined [73]. This underscores the pivotal role of 
students’ confidence in their own abilities as a foundation for 
enhancing their capacity to think logically, solve problems, 
and engage effectively with technology-based learning 
environments (total effect = 0.713; performance = 76.028), 
confirming its pivotal role in students’ learning outcomes. 
Among the self-efficacy sub-indicators, SE3 (confidence in 
operating technological tools) demonstrated the highest 
performance score (80.727), while SE1 (confidence in 
understanding and applying basic technological concepts) 
showed the lowest (73.855). The relatively lower 
performance in SE1 suggests that some students still 
experience difficulties in mastering fundamental 
technological knowledge, which could potentially hinder 
their computational thinking development. This finding is 
consistent with previous research that underscores the critical 
role of self-efficacy in promoting cognitive engagement and 
enhancing students’ problem-solving capabilities [74, 75]. 
Elevated self-belief has been shown to empower learners to 
approach complex tasks with greater persistence and strategic 
thinking, both of which are essential for developing 
computational thinking skills. 

To improve SE1, several instructional strategies should be 
considered. Scaffolding techniques, including step-by-step 
guided instruction, allow learners to build confidence 
gradually while advancing through increasingly complex 
computational tasks [75]. Furthermore, integrating 
real-world problem-based learning can contextualize abstract 
concepts, thereby enhancing both comprehension and 
confidence. Peer mentoring and collaborative learning 
activities may foster supportive social interactions that 
strengthen students’ self-efficacy through vicarious 
experiences and shared problem-solving [76]. In addition, 
formative assessments with immediate, constructive 
feedback can guide students in recognizing their strengths 
and areas for improvement, contributing positively to 
self-regulated learning. Moreover, the use of Augmented 
Reality (AR) and GPS-based technologies, as applied in this 
study, can be further optimized to deliver adaptive, 
interactive tutorials that reinforce students’ understanding of 
foundational technological concepts. 

In terms of engagement, the IPMA results reveal a 
moderate but significant total effect (0.474; performance = 
72.041). Sub-indicator EN4 (enthusiasm in using technology 
for learning) scored the highest (75.324), while EN1 (active 
participation in class discussions) recorded the lowest 
performance (68.003). The relatively low score in EN1 
suggests that students may benefit from pedagogical models 
that encourage more active and participatory learning 
environments. The flipped classroom model, along with 
problem-based and team-based learning approaches, has 
been shown to increase engagement by promoting student 
autonomy and peer interaction [77]. Gamification and 
interactive learning systems may also enhance engagement 
by increasing motivation, persistence, and collaborative 
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behaviors (EN2 and EN3) [78]. 
Motivation, while exhibiting the weakest total effect on 

computational thinking skills (0.088; performance = 67.309), 
remains a critical factor to address. Notably, MT4 
(confidence in facing new technological challenges) recorded 
the lowest performance score (56.449), indicating that many 
students experience anxiety or lack confidence when 
confronted with unfamiliar tasks—a pattern consistent with 
prior findings on self-confidence and growth mindset [79]. 
Several external factors may explain the low MT4 
performance, including complex course design, limited 
instructional support, and inadequate access to user-friendly 
technologies. These factors can heighten anxiety when 
encountering new technological demands. To mitigate this, 
instructional designs should provide sufficient scaffolding, 
technical support, and intuitive learning technologies to 
foster confidence and reduce anxiety. Moreover, targeted 
interventions such as resilience training, counseling, and 
explicit coping strategies may help strengthen MT4. Aligning 
learning materials with students’ interests and career 
aspirations can enhance intrinsic motivation (MT1, MT2), 
while short-term goal setting, positive reinforcement, and 
gamified rewards may further sustain engagement and 
persistence. 

Overall, the IPMA results suggest that while self-efficacy 
remains the most influential factor, targeted improvements in 
both engagement and motivation sub-indicators—especially 
SE1, EN1, and MT4—are essential for optimizing 
computational thinking skill development. A holistic, 
student-centered instructional approach that integrates 
scaffolding, interactive technology, real-world problem 
solving, peer collaboration, and motivation-enhancing 
strategies can serve as a comprehensive framework for 
improving computational thinking skills in 
technology-mediated learning contexts. 

IPMA are used to examine how self-efficacy, engagement, 
motivation, and computational thinking skills influence the 

use of technology in learning. Table 7 displays the 
importance and performance metrics for each construct, as 
derived from the IPMA results. These values offer a 
comprehensive view of which constructs are most influential 
in predicting outcomes and how effectively each is currently 
performing, thereby guiding priorities for instructional 
improvement and strategic intervention Importance values 
were calculated using standardized total effects, while 
performance values were obtained from rescaled latent 
variable scores on a 0–100 scale. 

Then, Importance values reflect the total effects 
(standardized) of each construct on computational thinking 
skills, while performance values represent the rescaled latent 
variable scores (0–100 scale) obtained from SmartPLS. 
These results provide strategic insight for prioritizing 
interventions: efforts should continue to maintain high 
self-efficacy, while greater attention should be devoted to 
enhancing engagement and especially motivation to optimize 
students’ computational thinking development. 

Fig. 6 illustrates the Importance-Performance Map, with 
indicators plotted based on their standardized total effects. 
The X-axis reflects the importance of each construct, 
measured by its total effect on the outcome variable, while 
the Y-axis indicates performance levels, presented on a 
standardized scale from 0 to 100. This visual representation 
helps identify high-impact constructs that may require 
targeted improvement to enhance overall learning outcomes. 
Quadrant divisions reflect combinations of high/low 
importance and high/low performance, helping to prioritize 
improvement areas. Fig. 6 shows that self-efficacy is the most 
critical and highest-performing construct in supporting 
computational thinking skills, with a standardized total effect 
of approximately 0.71 and a performance score near 78. 
Engagement falls in the middle—its effect is substantial 
(≈ 0.47) but its performance (≈ 72) leaves room for 
improvement—while motivation exhibits the weakest 
influence (≈ 0.09) and the lowest performance (≈ 67). 

 

 
Fig. 6. Importance-Performance Map indicators standardized total effects. 
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Fig. 7. Importance-Performance Map constructs standardized total effects. 

 
Fig. 7 Importance-Performance Map constructs 

standardized total effects. Constructs are positioned across 
quadrants based on their total effects (importance) and 
performance levels. Self-efficacy constructs cluster in the 
high-importance/high-performance quadrant, while 
motivation constructs, particularly MT4, fall in the 
low-performance quadrant. Based on the Fig. 7 breaks down 
the performance of each latent indicator: all four self-efficacy 
indicators (SE1–SE4) occupy the top-right quadrant, 
confirming students’ confidence as both consistent and 
important; the engagement indicators (EN1–EN5) are 
scattered in the mid-range area, signaling a need to boost their 
performance to match their relevance; and the motivation 
indicators (MT1–MT4) cluster in the bottom-left 
quadrant—especially MT4 with a performance score of 
around 56—indicating that motivational aspects require more 
intensive intervention to contribute optimally to the 
development of computational thinking skills. 

The findings of this study demonstrate that self-efficacy 
plays a pivotal role in shaping students’ computational 
thinking skills, emphasizing the critical need to cultivate 
confidence in the use of technology. Learners who possess 
greater confidence in their technological capabilities are 
more inclined to incorporate digital tools into their 
educational activities, thereby strengthening their 
computational thinking. This underscores the value of 
pedagogical strategies that actively promote 
self-efficacy—such as targeted training programs, hands-on 
workshops, or mentorship initiatives focused on building 
technical proficiency. Enhancing students’ belief in their 
ability to use technology effectively not only empowers them 
to engage more fully with learning tools but also facilitates 
deeper cognitive development in computational thinking. 

However, it is essential to recognize that while 
self-efficacy significantly influences students’ computational 
thinking, its effectiveness can be further amplified when 
paired with a strong perception of technology’s usefulness. 
Even students with high levels of confidence may 

underutilize digital tools if they do not clearly perceive their 
educational value. Therefore, it is imperative for educators to 
integrate technologies that are not only user-friendly and 
accessible but also clearly aligned with academic goals and 
learning outcomes. By explicitly demonstrating the practical 
benefits of technology within instructional settings, educators 
can enhance students’ perceived usefulness of these tools. 
This, in turn, supports the development of more robust 
computational thinking skills and fosters deeper engagement 
with the learning process. 

The IPMA results indicate that the development of 
computational thinking skills is predominantly influenced by 
self-efficacy and engagement, while motivation plays a 
comparatively lesser role. Students’ belief in their 
technological competence, coupled with their active 
participation in learning experiences supported by MAR and 
GPS technologies, are identified as the most impactful 
contributors. Based on these insights, educational 
interventions should prioritize enhancing self-efficacy 
through focused training programs, user-friendly 
technological interfaces, and hands-on practice with digital 
tools. Simultaneously, learning activities should be designed 
to promote engagement by incorporating collaborative, 
context-rich tasks that make technology use meaningful and 
immersive. Given motivation’s lower performance, 
educators should additionally highlight the tangible benefits 
of MAR and GPS technologies—such as real-world 
problem-solving advantages and quick, successful 
experiences—to build intrinsic interest and maximize the 
impact on students’ computational thinking development. 
This likely reflects the relatively limited influence exerted by 
perceived usefulness. 

Overall, the advancement of self-efficacy, the perception 
of technology’s usefulness, and the cultivation of 
computational thinking skills should be understood as 
mutually reinforcing components within the learning process. 
Educational interventions that address all three elements in a 
coordinated manner have the potential to significantly elevate 
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student engagement, promote more effective and meaningful 
use of technology, and lead to improved academic 
performance. As a result, educational institutions and 
decision-makers in the education sector must prioritize the 
development of integrated strategies that embed these 
interconnected elements into all technology-supported 
learning programs. Such holistic approaches are vital to 
maximizing the educational benefits of digital tools and 
fostering deeper, more meaningful student learning 
experiences.  

Building on these insights, the following practical 
recommendations may help optimize the development of 
computational thinking by addressing the specific needs 
identified in self-efficacy, engagement, and motivation. To 
strengthen self-efficacy, learning designs should include 
scaffolded instruction, real-world problem-solving tasks, and 
continuous formative feedback to build students’ confidence 
in handling technological challenges. Instructors should 
promote active engagement through collaborative learning, 
gamification elements, and interactive technologies that 
facilitate student-centered exploration. Moreover, targeted 
interventions such as resilience training, counseling, and 
goal-setting activities may help enhance motivation, 
particularly in addressing low-performing sub-indicators 
such as MT4. For technology developers, designing intuitive 
and user-friendly applications that reduce cognitive load can 
further support students’ confidence and motivation, leading 
to improved computational thinking development. 

While this study offers valuable insights into the interplay 
between self-efficacy, engagement, motivation, and 
computational thinking within technology-enhanced learning 
environments, several limitations warrant consideration. First, 
reliance on self-reported data introduces the possibility of 
bias stemming from students’ subjective perceptions, which 
may not fully reflect actual behaviors or competencies. 
Second, the research was conducted within a single academic 
cohort from a specific program, potentially limiting the 
applicability of the findings to broader educational contexts 
or different fields of study. Third, the cross-sectional design 
of the study constrains the ability to draw causal conclusions 
about the relationships among variables. To address these 
limitations, future studies should consider employing 
longitudinal or experimental methodologies to track changes 

over time and provide stronger evidence of causal 
relationships. Additionally, further studies may explore how 
instructional design elements, cultural differences, or 
technological accessibility affect these relationships in 
diverse educational contexts. 

V. CONCLUSION 

This study highlights the interconnected roles of 
self-efficacy, engagement, motivation, and computational 
thinking in optimizing the use of Markerless Augmented 
Reality (MAR) and GPS technologies in higher education. 
Students with stronger self-efficacy are more likely to engage 
with and benefit from technology-enhanced learning, while 
engagement and motivation serve as key pathways for 
developing computational thinking skills. Instead of treating 
these constructs as separate entities, the findings suggest a 
dynamic relationship in which confidence, curiosity, and 
sustained interaction with technology reinforce one another. 
These psychological and behavioral factors collectively 
support deeper learning and stronger academic outcomes. 

To support this, educational institutions should focus on 
cultivating students’ confidence and motivation by 
integrating intuitive, meaningful, and enjoyable learning 
experiences. When students perceive MAR and GPS as 
useful and accessible, their willingness to explore and apply 
technology in real-world problem-solving 
increases—thereby strengthening computational thinking 
and improving learning achievement. 

Enhancing students’ belief in their own abilities can lead to 
increased motivation, which subsequently promotes more 
active engagement with MAR and GPS technologies. 
Consistent interaction with these tools contributes to the 
advancement of computational thinking abilities and 
supports the broader integration of technology into the 
learning process. When educational technologies are 
designed to be intuitive and engaging, their frequent use 
becomes more likely, thereby improving learners’ capacity 
for analytical and problem-solving tasks. Additionally, when 
students recognize the practical value of such technologies, it 
further reinforces their computational thinking development 
and contributes to improved academic outcomes. 
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In summary, this study’s findings highlight that 

self-efficacy, engagement, and motivation function 

collectively to support the development of students’ 

computational thinking skills within technology-enhanced 

learning environments. Self-efficacy plays a pivotal role, 

exerting both direct and indirect effects—students who are 

confident in their technological capabilities are more inclined 

to participate actively in learning tasks and maintain high 

levels of motivation. Engagement serves as a mediating 

factor, bridging self-efficacy and computational thinking by 

fostering sustained involvement and deeper cognitive 

interaction with the learning content. Motivation, although 

contributing with a smaller effect size, reinforces students’

persistence and willingness to apply computational concepts. 

The integrated interaction among these constructs 

emphasizes the importance of fostering not only cognitive 

competence but also affective and behavioral factors to 

optimize computational thinking outcomes.
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