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Abstract—Integrating Virtual Laboratory (VL) technology 

into engineering education is increasingly adopted to 

complement hands-on laboratory learning. However, 

comprehensive studies and empirical analyses are still required 

to understand its impact on students’ Learning Engagement 

(LE) and Learning Outcomes (LO). This study investigates the 

effects of Virtual Laboratory Use (VLU) on students’ LE and 

LO in an electrical machine course within the Industrial 

Electrical Engineering program, Faculty of Engineering, 

Universitas Negeri Padang, Indonesia. A quantitative, 

survey-based approach was employed, involving 117 

second-year university students. Data were analyzed using 

Variance-Based Structural Equation Modeling (VB-SEM). The 

results indicated that the VLU had a positive and significant 

effect on students’ LE across behavioral, cognitive, and 

emotional dimensions. Furthermore, VLU positively and 

significantly influenced students’ perceived LO directly and 

indirectly through LE as a mediating variable. LO were 

simultaneously and significantly influenced by the variables of 

VLU, Cognitive Engagement (CE), Behavioral Engagement 

(BE), and Emotional Engagement (EE), with a strong effect size. 

These findings underscore the pedagogical value of the VL in 

enhancing the learning experience in engineering education. 

 
Keywords—quality education, virtual laboratory, learning 

engagement, learning outcomes, engineering education, 

electrical machine course  

I. INTRODUCTION 

The digital revolution has brought fundamental changes to 

the implementation of learning in higher education, including 

engineering and vocational education [1, 2]. Digital-based 

learning technologies, such as Virtual Laboratory (VL), have 

emerged as strategic alternatives to address challenges 

related to limited access to physical equipment, time 

constraints, and safety risks in engineering practicum 

activities [2, 3]. VL facilitates interactive simulations 

replicating real-world experimental conditions, offering 

flexibility to explore technical concepts independently and 

repeatedly across time and space [4–6]. 

VL is particularly relevant as it provides practicum 

simulations that reflect real conditions of electrical systems 

without the risk of accidents or equipment damage, and it can 

be adapted to evolving technologies [7, 8]. These courses 

typically require a comprehensive understanding of the 

operating principles of motors, generators, transformers, 

control and protection systems, concepts that necessitate 

direct observation of current, voltage, torque, and machine 

efficiency [9, 10]. However, constraints such as limited 

equipment availability, restricted lab time, and high electrical 

hazard risks often hinder the implementation of hands-on 

laboratory practices [8, 11, 12]. The VL offers a solution by 

enabling students to conduct simulation-based experiments 

with unlimited repetitions, explore operational parameters 

flexibly, and receive immediate visual and numerical 

feedback [11, 13, 14]. As these technologies continue to 

advance, academic interest in their impact on learning 

processes and outcomes has grown, particularly in students’ 

Learning Engagement (LE) and Learning  

Outcomes (LO) [15, 16]. 

LE plays a critical role as an indicator of the success of the 

learning process, as it reflects students’ cognitive, emotional, 

and behavioral involvement in learning activities [16, 17]. 

High levels of LE are believed to enhance conceptual 

understanding, knowledge retention, and the ability to apply 

knowledge in practical contexts. In engineering education, 

which emphasizes theoretical knowledge and practical 

application, LE becomes even more essential in determining 

the effectiveness of technology-based approaches such as the 

VL [3, 17]. Therefore, a comprehensive understanding of the 

effect of Virtual Laboratory Use (VLU) on the various 

dimensions of LE and its implications for students’ LO is 

necessary to inform effective pedagogical strategies. 

Previous studies have highlighted the positive potential of 

VLU in enhancing students’ motivation, self-efficacy, and 

LE [17–20]. However, a gap remains in the literature 

regarding the role of the LE as a mediating mechanism that 

bridges the relationship between VLU and LO. More 

specifically, there is a limited understanding of how the 

distinct dimensions of LE, such as behavioral, cognitive, and 

emotional, jointly function as mediators in this relationship. 

LO encompasses physical participation and cognitive 

involvement in problem-solving and emotional investment in 

the complex learning process [15, 21, 22]. Therefore, it is 

essential to investigate the role of the different dimensions of 

LE in explaining the impact of VLU on students’ LO. 

This study analyzes the effect of VLU on students’ LE and 

LO in electrical machines courses within the context of 

engineering education. Furthermore, it investigates the 

mediating role of the three dimensions of LE in explaining 

the indirect effect of VLU on students’ LO. Employing a 

Variance-Based Structural Equation Modeling (VB-SEM) 

approach, this study is expected to contribute empirically to 
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the literature on educational technology in engineering 

education and offer practical insights for implementing and 

developing more effective and contextually relevant 

technology-based learning strategies. This study provides a 

novel contribution by integrating the three dimensions of LE 

as intervening variables within a structural model based on 

VB-SEM in engineering education, specifically in electrical 

machines courses. While prior research has predominantly 

focused on LO, often fragmented or limited to a single 

dimension of LE, this study adopts a holistic approach that 

synthesizes behavioral, cognitive, and emotional aspects of 

students’ LE within a unified theoretical and empirical 

framework. By adopting a multidimensional approach to LE, 

this study addresses a critical gap and offers a more 

comprehensive understanding of how students interact with 

VL. This perspective captures the interrelated roles of BE, 

CE, and EE, all of which are essential for facilitating learning 

success, particularly in simulation-based, self-directed 

learning environments. The integrated model enables a more 

detailed analysis of the mechanisms through which VLU 

influences student LO, thereby enhancing both the theoretical 

framework and practical implications of the study. 

II. LITERATURE REVIEW

A. Pedagogical Foundation

The design and integration of VL in engineering education

can be grounded in several pedagogical theories that offer a 

comprehensive understanding of how students engage with, 

process, and retain knowledge. First, Constructivist Theory 

(CT) posits that individuals actively construct knowledge 

through direct experience and engagement in learning 

activities. Learning is most effective when students 

participate in problem-solving, experimentation, and 

reflective practices. VL provides an interactive environment 

that enables exploration and simulation of engineering 

phenomena, aligning well with constructivist principles. 

Second, Cognitive Load Theory (CLT) emphasizes the role 

of instructional design in managing the cognitive demands 

placed on working memory. CLT differentiates among 

intrinsic, extraneous, and germane cognitive loads. In the 

context of the VL, tools such as PSIM offer dynamic 

visualizations of abstract engineering concepts and support 

gradual, iterative learning. This approach helps reduce 

extraneous load and enhance germane load, thereby 

facilitating deeper knowledge internalization. Third, 

Self-Determination Theory (SDT) underscores the 

significance of intrinsic motivation and the satisfaction of 

three basic psychological needs, competence, autonomy, and 

relatedness, in fostering LE and achievement. VL offers 

students opportunities for autonomous learning, 

confidence-building through experimentation (competence), 

and collaboration with peers (relatedness). In this study, SDT 

provides a conceptual framework for understanding LE as a 

multidimensional construct encompassing behavioral, 

cognitive, and emotional dimensions. 

B. Virtual Laboratory

The VL is a technology-based learning platform that

enables students to perform experiments or practical 

activities in a digital environment. VL offers a learning 

experience comparable to hands-on practice in a hands-on 

laboratory, but with greater flexibility in time and location [8, 

23]. This technology allows students to conduct repeated 

experiments without the risk of damaging equipment or 

materials, while also addressing the resource constraints 

commonly encountered in hands-on laboratories [24–26]. In 

engineering education, VL provides opportunities for 

students to comprehend complex concepts through 

interactive visualizations and simulations, thereby deepening 

their understanding of engineering theories and real-world 

applications [11, 12, 27]. 

This study employs a PSIM (PowerSIM) as the VL 

application to support practical learning in the electrical 

machine course. PSIM is an advanced simulation software 

that digitally models and analyzes electrical systems and 

power devices [23, 24]. With PSIM, students can access a 

variety of simulations and models, including electric motors, 

transformers, and other power systems that typically require 

expensive hardware and time-intensive experimentation [8, 

23]. This application enables students to visualize the 

performance of electrical systems in real time, enhancing 

their understanding of the fundamental principles and 

practical applications related to electrical machines [11, 23, 

24]. The use of PSIM in this study aims to examine the effect 

of VL implementation on students’ LE and LO, as well as to 

explore the potential of this technology to improve the 

effectiveness of instruction in industrial electrical 

engineering. The PSIM application utilized as a VL in this 

study is illustrated in Fig. 1. 
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Fig. 1. The PSIM app as VL used in electrical machine course. 

C. Learning Outcomes

LO describes the knowledge, skills, and attitudes students

are expected to acquire upon completing the learning process 

[15, 23, 28]. In this study, LO is operationalized as students’ 

perceived LO, which refers to their perceptions of the 

achievements gained after engaging in learning activities 

involving the VL [21, 29]. This concept emphasizes the 

extent to which students feel they have attained conceptual 

understanding, enhanced technical skills, and strengthened 

positive attitudes toward the subject matter, particularly in 

electrical machines courses. Perceived LO encompasses 

objectively measurable results and subjective dimensions 

derived from students’ learning experiences [15, 21, 29]. 

These include the degree to which students feel supported by 

technology in understanding the material, completing 

practical assignments, and connecting theoretical knowledge 

to real-world applications [15, 23, 30]. In this study, students’ 

perceived LO serves as a key indicator for evaluating the 

effectiveness of VLU and examining how LE, comprising 

behavioral, cognitive, and emotional dimensions, contributes 

to shaping students’ perceptions of their learning success. 

While perceived LO differs from objective LO, that are 

typically assessed through standardized tests or performance 

evaluations, it offers valuable insights into the cognitive and 

affective dimensions of learning that are not easily 

quantifiable. By capturing students’ self-assessed progress, 

confidence, and engagement, perceived LO provides a 

critical lens into the effectiveness of learning technologies 

such as VL. Moreover, in educational settings where 

students’ motivation, autonomy, and emotional responses 

play a central role in shaping learning behaviors, perceived 

LO can serve as a valid and meaningful proxy of learning 

effectiveness. For future research, a combined approach 

integrating both perceived and objective measures could 

offer a more comprehensive understanding of how the VL 

influences learning. 

D. Learning Engagement

LE is a critical indicator that reflects the extent to which

students are actively involved in the learning process, 

physically, cognitively, and emotionally [16, 31]. In this 

study, LE refers to the degree of students’ participation and 

involvement during practical learning in the electrical 

machines course through the VL technology. Such 

involvement is crucial, as higher levels of LE are associated 

with more profound understanding and improved LO. 

The BE dimension encompasses students’ participation in 

observable learning activities, including attendance in 

practical sessions, active use of the VL, and completion of 

assigned tasks [16, 31, 32]. CE refers to students’ mental 

investment in processing information and comprehending the 

learning content. In VL, this is demonstrated by how students 

utilize VL, such as PSIM, to explore technical concepts in 

depth, manipulate experimental variables, and analyze results 

to solve engineering problems [17, 32]. Meanwhile, EE 

involves students’ feelings and motivation toward the 

learning process. In the PSIM usage, EE is reflected in 

students’ interest, motivation, and satisfaction with the 

virtual experiments conducted [16, 31, 33]. The VLU is 

expected to enhance EE by offering a more interactive and 

stimulating learning experience. Students emotionally 

connected to the learning material are generally more 

motivated to participate in practicum activities and report 

greater satisfaction with their learning experience. 

III. METHODS

A. Research Design

Fig. 2. The research framework. 

Following the research objectives, a quantitative 

survey-based approach was employed in this study [7, 34]. 

The survey method was selected as a systematic means of 

collecting data to obtain relevant information and formulate 

solutions to the research problem, both descriptively and in 

terms of revealing relationships between variables [34, 35]. 
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This approach also aimed to ensure the accuracy and 

reliability of the collected data. Moreover, this approach is 

relevant for examining the complex mediation model 

employed in this study, as it allows for the standardized 

collection of data from a large number of respondents.  

The use of VB-SEM via SmartPLS offers advantages in 

handling models with numerous latent constructs, relatively 

small sample sizes, and no strict requirement for normally 

distributed data. Therefore, the combination of a survey 

approach and VB-SEM is considered appropriate and 

efficient for testing both direct and indirect relationships 

within the framework of this study. The variables analyzed in 

this study include VLU, BE, CE, EE, and LO, as illustrated in 

the conceptual framework presented in Fig. 2. The data were 

analyzed using VB-SEM. For this purpose, the SmartPLS 

software was utilized, a widely used tool in VB-SEM. This 

approach enables researchers to assess the validity and 

reliability of the model, as well as to analyze both the direct 

and indirect effects of exogenous variables on endogenous 

variables. In this way, the study empirically evaluates the 

impact of VLU on students’ LE and LO in the practicum of 

the electrical machines course. 

B. Research Instruments 

The instrument used in this study was a questionnaire 

employing a five-point Likert scale (1–5) [34, 36, 37]. The 

indicators included in the instrument, as presented in Table 1, 

were developed through adaptations from various relevant 

literature sources identified via a comprehensive literature 

review. These indicators were contextually adapted and 

customized to suit the specific objectives of this study, 

aiming to capture students’ unique experiences in using 

PSIM software within the context of electrical machinery 

courses. The Likert scale provides a standardized method for 

capturing respondents’ perceptions of the studied phenomena, 

particularly in survey-based research aimed at conducting 

empirical analysis [31, 36]. The data collected through this 

instrument are expected to enhance understanding of the key 

variables investigated in this study. 

 
Table 1. Research instrument details 

Contructs Indicators Source 

VLU 

VLU.1. The VL is regularly integrated into learning activities. 

VLU.2. The VL is utilized to support the completion of practical assignments. 
VLU.3. Access to the VL is carried out independently based on individual learning needs. 

VLU.4. VLU.4: Simulations provided in the VL accurately represent real-world practical activities. 
VLU.5. The VL is used to review and reinforce practical learning materials. 

VLU.6. The VL usage enhances students’ understanding of practical concepts. 

[1, 11, 35, 38] 

BE 

BE.1. Participates in practical activities consistently and with discipline. 
BE.2. Actively engages in discussions and group work during practical sessions. 

BE.3. Completes practical assignments following the given schedule and instructions. 

BE.4. Seeks additional learning resources to support practical activities. 
BE.5. Performs practical procedures following established guidelines. 

[16, 17, 31, 32] 

CE 

CE.1.  Demonstrates understanding of relevant theoretical concepts before conducting the practicum. 

CE.2.  Establishes connections between theoretical concepts and the practicum implementation. 
CE.3.  Analyzes practicum results to deepen conceptual understanding. 

CE.4.  Evaluates errors encountered during the practicum as part of the learning process. 

[3, 16, 17] 

EE 

EE.1.  Feels enthusiastic when participating in practicum activities. 
EE.2.  Feels satisfied after completing practicum activities. 

EE.3.  Feels motivated to learn after using the VL. 
EE.4.  EE.4: Feels comfortable using the VL while engaging in practicum activities. 

EE.5.  EE.5: Feels proud of the results achieved in the practicum activities. 

[3, 16, 17, 31] 

LO 

LO.1. Demonstrates a solid understanding of the electrical machines’ working principles. 
LO.2. Applies learned concepts effectively in practical learning. 

LO.3. Shows improved technical skills in conducting practicum activities. 

LO.4. Analyzes and evaluates experimental results logically and critically. 
LO.5. Exhibits responsibility and teamwork during practicum activities. 

LO.6. Demonstrates increased readiness to face challenges in the professional engineering field. 

[15, 18, 30, 32] 

 

The research instrument was initially piloted with 30 

students outside the primary research participants to ensure 

its validity and reliability before full implementation. 

Validity was assessed using Pearson’s Product-Moment 

Correlation [39–41], while reliability was evaluated through 

Cronbach’s Alpha [40, 42]. Before these tests, a content 

validity assessment was conducted, involving eight experts 

who reviewed each item in the instrument and provided 

feedback regarding the relevance, clarity, and completeness 

of the questionnaire items. The expert evaluations and 

subsequent revisions confirmed that the instrument met the 

criteria for content validity. 

Based on the post-pilot validity analysis, all item 

correlation coefficients (r-calculated) exceeded the critical 

r-value (0.619 > 0.3610), with significance levels below 0.05, 

indicating that all items were statistically valid [39, 40]. 

Additionally, the reliability test yielded a Cronbach’s Alpha 

of 0.785, surpassing the acceptable threshold of 0.60 (0.785 > 

0.600), thus confirming the instrument’s reliability [42, 43]. 

These findings affirm the research instrument’s validity and 

reliability, supporting its appropriateness for use in this 

study. 

C. Research Participant 

A purposive sampling technique was employed, involving 

all second-year students (117) enrolled in the electrical 

machine course, from the Industrial Electrical Engineering 

Study Program, Faculty of Engineering, Universitas Negeri 

Padang, Indonesia, as respondents. The students participated 

in learning activities using a VL. After completing the 

learning process, they were asked to fill out a research 

questionnaire based on their learning experiences during the 

activity.  

D. Analysis Technique 

The data obtained in this study were analyzed using the 
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VB-SEM approach, also known as Partial Least Squares 

Structural Equation Modeling (PLS-SEM). The analysis was 

conducted using SmartPLS software. This analytical 

technique was selected based on several methodological 

considerations. First, VB-SEM offers greater flexibility 

regarding data distribution assumptions. Second, VB-SEM is 

particularly well-suited for testing exploratory conceptual 

models. Third, this approach supports robust predictive 

analysis. Additionally, VB-SEM is more accommodating of 

smaller sample sizes, making it a practical choice for this 

research context.  

Before conducting the primary structural analysis, the 

validity and reliability of all research constructs and their 

associated indicators were assessed within the VB-SEM 

framework [36, 44]. The analysis was then carried out in two 

key stages: the outer model analysis and the inner model 

analysis [36, 44]. The outer model analysis aimed to evaluate 

the quality of the measurement model by examining several 

critical parameters, including Internal Consistency 

Reliability (ICR), Unidimensionality Model (UM) to ensure 

that each construct is measured by indicators that represent a 

single concept, Convergent Validity (CV) to confirm that 

indicators strongly reflect the underlying construct, and 

Discriminant Validity (DV) to ensure that each construct is 

conceptually different from the others [35, 36, 44].  

The inner model analysis was conducted to examine the 

structural relationships among latent variables. This analysis 

focused on identifying the direct, indirect (mediated), total, 

and simultaneous effects of exogenous variables on 

endogenous variables [24, 44]. Through this approach, the 

study aimed to comprehensively explain the mechanisms by 

which VLU influences students’ LE and LO in engineering 

education. 

IV. RESULTS 

This study investigates the influence of VL technology on 

students’ LE and LO within the context of engineering 

education, specifically in the electrical machines course. 

Furthermore, the study explores the mediating role of LE, 

which includes BE, CE, and EE, in explaining the indirect 

relationship between VLU and LO. Specifically, the study 

examines the direct effects of VLU on BE, CE, EE, and LO. 

Additionally, the direct impacts of BE, CE, and EE on LO 

were analyzed to understand how different dimensions of LE 

contribute to students’ perceived learning success. Moreover, 

the study evaluates the indirect effects of VLU on LO 

through BE, CE, and EE as intervening variables. The 

simultaneous impacts of VLU, BE, CE, and EE on LO were 

also assessed. To provide a more comprehensive 

understanding. The initial conceptual model of this study, 

which visually represents the research framework, is 

illustrated in Fig. 3 All constructs in the model are measured 

using reflective indicators, the detailed list of which is 

provided in Table 1. 

 

 
Fig. 3. Initial concept model. 

 

The initial model in Fig. 3 was evaluated to ensure its 

compatibility with the underlying assumptions and analytical 

requirements of the VB-SEM approach. This evaluation 

included both the inner model (constructs) and the outer 

model (indicators), with the primary aim of confirming the 

model’s validity and absence of statistical issues such as 

multicollinearity, as well as its compliance with Goodness of 

Fit (GoF) standards.  

A key for assessing multicollinearity is the Variance 

Inflation Factor (VIF) [44, 45]. In this study, the results of the 

VIF analysis, as summarized in Table 2, demonstrate that all 

indicators exhibit VIF values below the threshold of 5 (VIF < 

5). This indicates that the model does not suffer from 

multicollinearity issues, affirming the appropriateness of the 

initial measurement model for further analysis [36, 44]. 

A multicollinearity test was conducted for the inner model 

to examine potential collinearity among the latent variables. 

This step is essential to ensure the robustness of the structural 
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model and the validity of the path coefficient estimates. As 

presented in Table 3, all constructs in the inner model 

exhibited VIF values below 5, indicating no multicollinearity 

issues were detected among the endogenous and exogenous 

variables [24, 44]. These results support the appropriateness 

of the structural model for further hypothesis testing and path 

analysis within the VB-SEM framework. 
 

Table 2. The VIF analysis for Indicators 

Indicators VIF 

VLU.1 1.373 

VLU.2 1.509 
VLU.3 1.464 

VLU.4 1.501 
VLU.5 1.633 

VLU.6 1.460 

BE.1 1.662 
BE.2 1.291 

BE.3 1.314 
BE.4 1.251 

BE.5 1.525 

CE.1 1.206 
CE.2 1.356 

CE.3 1.314 
CE.4 1.288 

EE.1 1.154 

EE.2 1.423 
EE.3 1.305 

EE.4 1.423 

EE.5 1.423 
LO.1 1.284 

LO.2 1.500 
LO.3 1.562 

LO.4 1.249 

LO.5 1.520 
LO.6 1.533 

The assessment results, summarized in Table 4, indicate 

that the Normed Fit Index (NFI) exceeds the recommended 

threshold of 0.90, the Standardized Root Mean Square 

Residual (SRMR) value is below 0.08, and the Root Mean 

Square Theta (RMS Theta) is below 0.102. These values 

collectively suggest that the model demonstrates an 

acceptable overall fit [36, 44, 46]. The fulfillment of these 

GoF criteria confirms that the model is structurally sound and 

appropriate for further hypothesis testing. Having met all 

underlying assumptions and analytical requirements, the 

study proceeded to the core analysis stage using the VB-SEM 

approach. The final structural model, along with the path 

coefficients and indicator relationships, is illustrated in Fig. 4, 

which presents the visualization of the final research model 

analysis results. 
 

Table 3. The VIF values analysis for the Inner Model 

Variable BE CE EE LO 

VLU 1.325 1.770 1.881 1.920 

BE - - - 1.819 

CE - - - 1.782 
EE - - - 1.911 

 

Table 4. The GoF analysis  

Item SRMR NFI Rms theta GoF 

Saturated 

Model 
0,061 1,131 0,089 Fit 

Estimated 

Model 
0,065 1,138 0,092 Fit 

 

 
 

 

 
Fig. 4. The visualization of the final research model analysis results. 

 

A. Outer Model 

The outer model analysis in the VB-SEM approach 

involves evaluating the indicators within the research model 

using several key parameters, including Outer Loading (OL), 

Composite Reliability (CR), Average Variance Extracted 

(AVE), Cronbach’s Alpha (CA), and rho_A. This analysis 

aims to assess ICR, UM, and CV of the measurement model. 

ICR evaluates the extent to which indicators consistently 

measure the intended construct, typically indicated by the CA 

value [7, 44].  

The analysis results in Table 5 show that all variables 

exhibit CA values above 0.7, indicating that all indicators are 
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considered reliable [36, 44, 46]. The assessment of 

unidimensionality ensures that there are no structural issues 

in the measurement model [36, 44]. Table 5 demonstrates that 

all constructs fulfill the UM criteria, as both CR and CA 

values exceed the threshold of 0.7 [35, 44]. Meanwhile, CV 

assesses whether indicators within a single construct are 

sufficiently correlated. The analysis results confirm that all 

constructs meet the criteria for CV, as evidenced by AVE 

values exceeding 0.50 for each variable. 
 

Table 5. The results of the outer model analysis 

Variable OL CR CA rho_A AVE 

VLU  0.812 0.765 0.673 0.699 

VLU.1 0.852     

VLU.2 0.755     
VLU.3 0.731     

VLU.4 0.718     

VLU.5 0.734     
VLU.6 0.852     

BE  0.803 0.713 0.722 0.683 

BE.1 0.741     
BE.2 0.740     

BE.3 0.898     

BE.4 0.877     
BE.5 0.846     

CE  0.815 0.869 0.821 0.712 

CE.1 0.749     

CE.2 0.735     

CE.3 0.797     

CE.4 0.759     

EE  0.834 0.842 0.731 0.681 
EE.1 0.888     

EE.2 0.748     

EE.3 0.861     
EE.4 0.714     

EE.5 0.703     

LO  0.835 0.877 0.753 0.771 
LO.1 0.813     

LO.2 0.720     

LO.3 0.770     
LO.4 0.828     

LO.5 0.741     

LO.6 0.775     

 

DV is assessed by comparing the square root of the AVE, 

following the Fornell-Larcker criterion, with the correlation 

coefficients between latent variables. As shown in Table 6, 

the square root of the AVE for each construct exceeds its 

correlations with other constructs. For instance, for VLU, the 

square root of the AVE is 0.878, which is greater than its 

correlations with BE = 0.469, Cognitive Engagement CE = 

0.519, Emotional Engagement EE = 0.521, and Learning 

Outcomes LO = 0.518. 
 

Table 6. The results of the Fornell-Larcker criterion 

Variable VLU BE CE EE LO 

VLU 0.878         

BE 0.469 0.836       

CE 0.519 0.614 0.826     
EE 0.521 0.491 0.461 0.844   

LO 0.518 0.477 0.569 0.560 0.825 

B. Inner Model  

The purpose of this analysis is to examine the relationships 

among variables and to assess the influence of exogenous 

variables on endogenous variables within the structural 

model. These effects are evaluated in terms of direct, indirect 

(via mediating variables), total, and simultaneous impacts. 

The strength and direction of direct effects are indicated by 

path coefficients, ranging from -1 to +1. Coefficients 

approaching +1 reflect a strong positive relationship, while 

those nearing -1 indicate a strong negative association [7, 35, 

44].  

  

  

  

 

 

 

 

   
 

Table 7. The direct effect analysis in the inner model  

No. Direct Effect Path coefficient P-value 

1 VLU → BE 0.679 0.001 

2 VLU → CE 0.731 0.001 

3 VLU → EE 0.795 0.001 
4 VLU → LO 0.224 0.006 

5 BE → LO 0.218 0.006 
6 CE → LO 0.221 0.006 

7 EE → LO 0.334 0.005 

 

A comparison graph of the magnitude of the direct 

influence (β) for each path in this model is presented in Fig. 5. 

This graph presents the comparison of β-values across all 

paths in the structural model. The highlighted pathways 

(VLU → EE and EE → LO) indicate the stronger roles of EE 

both as a direct outcome of VLU and as a predictor of LO, 

underscoring its central position in the model. 
 

 
Fig. 5. Path coefficients of direct effects in the SEM model. 

 

The β values in Table 7 indicate that VLU influences the 

multidimensional LE. EE shows the highest path coefficient, 

followed by CE and BE, as visualized through the radar chart 

in Fig. 6. This visualization emphasizes the dominant role of 

EE in mediating the relationship between VLU and LO. 

The analysis of indirect effects in the inner model using the 

VB-SEM approach aims to determine the extent to which 

exogenous variables influence endogenous variables through 

mediating variables. Based on the results presented in Table 8, 

the following findings were obtained: (1) The indirect effect 

of VLU on LO through BE was found to be positive and 

statistically significant (β = 0.148, p < 0.05); (2) The indirect 

effect of VLU on LO through CE was found to be positive 

and statistically significant (β = 0.162, p < 0.05); and (3) The 

indirect effect of VLU on LO through EE was found to be 
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Based on the results of the inner model analysis using the 

VB-SEM approach, as presented in Table 7, the following 

findings were obtained: (1) The effect of VLU on BE was 

found to be positive and statistically significant (β = 0.679, 

p < 0.05); (2) The path from VLU to CE was found to be 

positive and statistically significant (β = 0.731, p < 0.05); (3) 

The effect of VLU on EE was found to be positive and 

statistically significant (β = 0.795, p < 0.05); (4) The effect of 

VLU on LO was found to be positive and statistically 

significant (β = 0.224, p < 0.05) ; (5) The effect of BE on LO 

was found to be positive and statistically significant (β = 

0.218, p < 0.05); (6) The effect of CE on LO was found to be 

positive and statistically significant (β = 0.221, p < 0.05); and 

(7) The path from EE to LO was found to be positive and 

statistically significant (β = 0.334, p < 0.05). 



  

positive and statistically significant (β = 0.265, p < 0.05). 

Therefore, the total indirect effect of VLU on LO, mediated 

through the three dimensions of LE, is 0.575.   
 

 
Fig. 6. Comparison of BE, CE, and EE influenced by VLU. 

 

Table 8. The indirect effect analysis in the inner model  

No. Indirect Effect Path coefficient P-value 

1 VLU → BE → LO 0.148 0.009 
2 VLU → CE → LO 0.162 0.009 

3 VLU → EE → LO 0.265 0.006 

 

Subsequently, the total effect was examined and calculated 

to determine the overall impact of the exogenous variable on 

the endogenous variable, encompassing both direct and 

indirect effects. The analysis results indicate that the total 

effect of VLU on LO was found to be positive and 

statistically significant (β = 0.799, p < 0.05). In the VB-SEM 

framework, simultaneous effects are further evaluated using 

 

values [36, 44]. Based on the analysis, the simultaneous 

effect of VLU, BE, CE, and EE on LO is strong (Adj. R² = 

0.831). 

V. DISCUSSION 

The VL can be strategically combined with hands-on 

laboratory activities through constructivist instructional 

design and competency-based learning approaches, which 

encourage students to develop conceptual understanding and 

technical skills through exploratory experiences 

independently. In the context of blended learning, the VL 

serves as an effective bridge between online and offline 

instruction by enabling students to engage in self-directed 

practice before and after face-to-face sessions. Lecturers can 

deliver theoretical and technical content during online 

sessions, grant students access to VL environments for 

independent exploration, and subsequently conduct in-person 

sessions for discussion, feedback, or hands-on practice using 

physical equipment. This integrated approach promotes 

flexibility, autonomy, personalized learning, and timely 

feedback. It is also aligned with the principles of 

student-centered learning, in which students take an active 

role in managing their learning process, while instructors 

serve as facilitators. 

The main findings indicate that the effect of VLU on 

students’ LE and LO was found to be positive and 

statistically significant. The results suggest that VL 

implementation significantly influences students’ LE, which 

encompasses behavioral, cognitive, and emotional 

dimensions. These forms of LE represent the intensity of 

students’ interactions with learning materials, the mental 

strategies employed in understanding concepts, and the 

positive emotional responses experienced during the learning 

process. These findings demonstrate that VL technology not 

only serves as a complementary tool to hands-on laboratory, 

but also acts as a catalyst for creating an interactive and 

immersive learning environment, thereby supporting the 

achievement of more meaningful LO within the context of 

engineering education. 

In terms of BE, the VL (PSIM) interactive features enable 

students to independently and flexibly explore circuit 

parameters, conduct iterative simulations, and observe 

real-time system responses without safety risks. Regarding 

CE, PSIM facilitates the understanding of complex electrical 

concepts through visual representations, simulated 

experiments, input/output manipulation, and immediate 

feedback, thereby strengthening conceptual understanding 

and critical thinking skills. For EE, PSIM fosters a motivating 

and enjoyable learning experience by promoting a sense of 

autonomy, reducing anxiety about making errors, and 

enhancing learning satisfaction through dynamic 

visualizations and flexible scheduling. Together, these three 

dimensions synergistically reinforce students’ LE in 

engineering education. 

This study finds that the VLU enhances EE, partly by 

reducing students’ anxiety about making errors, thereby 

directly addressing the “risk of harm” that often undermines 

motivation in hands-on laboratory. Likewise, the evidence 

that VLU supports flexible and independent exploration 

offers a concrete solution to the challenge of “limited 

laboratory time,” as students can repeat experiments anytime 

without being constrained by equipment availability. 

Moreover, the observed increase in CE suggests that students 

develop a deeper conceptual understanding, reducing their 

reliance on face-to-face instruction, which is frequently 

hindered by “limited instructors and equipment.” The 

improvement in BE, reflected in active participation and 

timely completion of lab assignments, further demonstrates 

that VL can mitigate the issue of “limited laboratory 

resources,” where students often lack equal opportunities for 

hands-on practice. 

Furthermore, LE plays a crucial role as a mediating factor 

between the VLU and the achievement of LO. High levels of 

students’ LE across behavioral, cognitive, and emotional 

dimensions contribute significantly to improved LO, both in 

knowledge acquisition and practical skills development. This 

implies that VL not only offers access to instructional content 

and practical simulations but also creates a learning 

experience that fosters student focus, cognitive, and 

emotional involvement.  

EE is the most influential dimension of students’ LE in 

predicting LO. This is attributable to the complex and 

cognitively demanding nature of the electrical machine 

course. Consequently, an emotionally safe, enjoyable, and 

motivating learning environment is essential to support 

students’ focus and persistence throughout the learning 

process. Moreover, in self-directed digital learning contexts, 

affective factors play a critical role in reinforcing the 

instructor’s function of fostering motivation and sustaining 

EE. This finding supports the notion that affective factors 

such as interest, satisfaction, and intrinsic motivation play a 

International Journal of Information and Education Technology, Vol. 16, No. 2, 2026

389

the R-squared (R²) and Adjusted R-squared (Adj. R²) 



  

critical role in academic achievement, as emphasized in 

affective learning theories. In self-paced virtual learning 

environments, students encounter both cognitive and 

emotional challenges. Consequently, learning success 

depends on the virtual system’s ability to evoke positive 

emotions, provide enjoyable learning experiences, and foster 

emotional attachment to the content and the medium.  

According to CLT, positive emotional states can reduce 

extraneous cognitive load and enhance germane load, thereby 

improving the efficiency of knowledge processing. In this 

context, the VL can stimulate EE while simultaneously 

reinforcing students’ conceptual understanding. Furthermore, 

the enhancement of BE and CE is underpinned by CT. The 

VL offers students opportunities to conduct repeated 

experiments, test hypotheses, and reflect on outcomes 

without the time constraints or potential risks. This process 

enables students not only to acquire information but also to 

develop deeper conceptual understanding through active 

meaning-making. In addition, the role of EE in fostering 

learning motivation aligns with SDT. The VL promotes 

autonomy through the flexibility of self-directed learning, 

strengthens competence through the successful completion of 

experiments, and fosters relatedness by facilitating virtual 

collaboration with peers. 

These findings also underscore the importance of 

instructional strategies that integrate VL not merely as 

technological tools, but as pedagogical instruments. The 

VLU should be oriented toward enhancing students’ active 

participation in the learning process, thereby fostering deeper 

LE. In this context, VL holds the potential to deliver 

immersive, adaptive, and contextually relevant learning 

experiences, which ultimately contribute to the achievement 

of higher LO. Therefore, the success of VL implementation 

in engineering education depends not only on the availability 

of the technology but also on how effectively it is employed 

to activate and support students’ holistic LE. 

The effectiveness of VL in engineering education largely 

depends on its capacity to enhance LE, which collectively 

influences students’ LO. The findings contribute 

significantly to the development of technology-enhanced 

learning designs and support a paradigm shift, from the 

digital tools’ mere use toward the creation of a digital 

learning ecosystem that empowers students as active 

participants in the learning process. Furthermore, this study 

reinforces the relevance of VL as a strategic solution for 

overcoming limitations in access and flexibility of practical 

learning amid the digital transformation of higher education. 

The research findings indicating that the VLU can enhance 

students’ LE are consistent with several previous studies, 

which report that VL increases student motivation and active 

participation in engineering education [3, 16, 17]. Moreover, 

findings from other studies also confirm that integrating VL 

into engineering courses fosters deeper student LE through 

independent exploration and experimentation, thereby 

reinforcing the CE and BE [12, 23, 25]. Consequently, the 

results of this study further support the existing literature on 

the effectiveness of VL in promoting more active and 

meaningful learning interactions. 

The findings demonstrating the mediating role of LE in the 

relationship between VLU and LO align with several 

previous studies, which have identified LE as a significant 

predictor of academic achievement in digital learning 

environments [3, 17, 32]. Additionally, other studies support 

the central role of LE as a transitional mechanism linking 

technology experience to LO [32, 47, 48]. Through 

behavioral, cognitive, and emotional involvement, students 

become not merely passive users of technology but active 

participants in constructing meaningful learning experiences. 

Regarding its impact on LO, this finding corroborates prior 

research indicating that students who use VL alongside 

hands-on laboratory achieve better outcomes than those 

relying solely on hands-on laboratory, particularly in 

conceptual understanding and analytical thinking  

skills [1, 2, 8]. Similarly, other studies have shown that the 

combination of virtual and physical laboratories results in 

higher learning gains compared to hands-on laboratory alone, 

offering increased time efficiency and flexibility [2, 7, 34]. 

The results indicate that VL functions not merely as 

alternatives, but as practical and evidence-based learning 

solutions in engineering education. 

Furthermore, the study results contribute to the broader 

scientific discourse on VL-based learning in engineering 

education. Unlike previous studies that primarily focused on 

technical aspects or system design [1, 11, 49], this research 

emphasizes psychopedagogical dimensions, particularly 

students’ LE as a critical mediating factor in the success of 

technology-enhanced learning. Therefore, this study 

advances the development of a more comprehensive 

theoretical framework that explains how technology 

influences LO through students’ affective and cognitive 

processes. It also allows future research to explore the 

mediating variables’ role within digital learning approaches. 

However, this study was conducted in a single institution, 

focusing on one course with a limited sample. It restricts the 

generalizability of the findings to broader contexts, 

particularly across interdisciplinary engineering programs. 

This limitation implies that caution should be exercised in 

transferring the results directly to other settings. Accordingly, 

future research is encouraged to replicate the study in diverse 

institutions, disciplines, and cultural contexts to validate and 

extend the applicability of the findings. 

Thus, the VLU in engineering education, particularly in 

electrical machines courses, significantly enhances student 

LE, which positively affects LO. This study confirms that the 

success of technology-based learning depends not only on the 

system’s sophistication but also on its ability to foster 

behavioral, cognitive, and emotional involvement of students 

throughout the learning process. These findings reinforce the 

theoretical premise in the literature that LE is a crucial 

mechanism mediating the relationship between digital 

learning experiences and academic achievement. Thus, 

integrating VL should be seen not just as implementing a 

learning tool but as adopting a teaching approach that 

promotes active, thoughtful, and impactful learning 

experiences. 

VI. CONCLUSION 

 This study demonstrates that the VLU has a significant 

impact on students’ LE and LO in engineering education, 

particularly in electrical machines courses. The analysis 

results indicate that VLU directly enhances BE, CE, and EE, 

and exerts both direct and indirect effects on LO through 
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these LE dimensions as intervening variables. LE plays a 

critical role as a bridge that connects VL-based learning 

experiences with optimal LO. Furthermore, the simultaneous 

influence of VLU, BE, CE, and EE on LO underscores that 

the success of engineering education in the digital era is 

primarily determined by the strategic integration of learning 

technologies and the holistic activation of students’ LE.  

These findings offer valuable implications for the design 

of technology-enhanced engineering education, highlighting 

the importance of not only implementing digital tools but also 

fostering learning experiences that promote active 

participation, cognitive reflection, and emotional 

involvement among students. The findings of this study 

provide a solid foundation for engineering education 

institutions to integrate the VL into technology-enhanced 

practical learning. For instance, in the electrical machines 

course, lecturers can employ the PSIM application to 

simulate electric motor circuit parameters before conducting 

physical laboratory sessions. This approach allows students 

to develop an initial conceptual understanding while 

minimizing the risks of injury or equipment damage.  

As a practical implication, educators are encouraged to 

select or design VL that not only conveys technical content 

but also fosters optimal cognitive engagement. Several 

strategies can be employed to achieve this goal: (1) aligning 

the VL design with the characteristics and content of the 

learning material; (2) integrating problem-solving tasks 

based on real-world industrial contexts to promote critical 

and reflective thinking; (3) incorporating interactive, 

simulation-based features that support autonomous 

exploration and active manipulation of experimental 

variables; and (4) including guiding questions that stimulate 

conceptual reasoning and reflective thinking. 

This study provides a valuable contribution to 

understanding the impact of VLU on student LE and LO 

within the context of engineering education. However, 

several limitations should be acknowledged. First, the study 

employs a cross-sectional design and is confined to a single 

course, a limited sample size, at one engineering education 

institution, and does not involve a control group design. 

Consequently, caution must be exercised in generalizing the 

findings. Second, future research should adopt a longitudinal 

approach to examine objective LO over an extended period, 

to assess how students’ performance evolves with sustained 

use of VL. As a follow-up, it is recommended that future 

studies employ longitudinal or experimental designs to 

investigate causal relationships and the progression of LO 

over time. A longitudinal approach enables researchers to 

observe the progression and changes in the dimensions of LE 

as students gain experience with VL technology. This allows 

for a more rigorous examination of the mediating role of 

students’ LE on LO, particularly by accounting for temporal 

precedence, an essential criterion for establishing causal 

inference.  

Therefore, future research employing longitudinal or 

experimental designs is strongly recommended to strengthen 

the evidence for causal relationships and to assess the 

long-term effects of the VL integration in engineering 

education. Broadening the scope to include other engineering 

courses, diverse types of institutions, and more 

heterogeneous student populations is also essential to 

enhance the external validity of the findings. Moreover, 

future research could explore additional mediating or 

moderating factors, such as digital self-efficacy, instructional 

design quality, or collaborative learning dynamics, that may 

further enrich the understanding of how VL contributes to 

effective learning in engineering education. 
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