
  

 

Abstract—The research on detection malware variants 

attracts much attention in recent years. However current 

variant classification methods either are interfered by some 

confusion technologies or have a high time or space complexity. 

In this paper, a classification technique using dynamic analysis 

based on behavior profile is proposed. We capture API calls and 

other essential information of running malware, then establish 

their multilayer dependency chain according to the dependency 

relationship of these function calls. In order to deal with the 

confusion, we remove sequence confusion, sequence noise, and 

other confusions to optimize the multilayer dependency chain. 

Finally, a similarity comparison algorithm is used to identify the 

degree of similarity between malware variants. The 

experimental results demonstrate that our classification 

technique is feasible and effective. 

 

Index Terms—Malware, variants, dependency chain.  

 

I. INTRODUCTION 

Most Internet security problems are caused by malware, 

such as botnet, Trojan, rootkits, virus, worms. Some 

anti-malware companies get thousands of new malware 

samples every day. The threshold of making malware 

becomes increasingly low for malware developers, these 

malware developers easily use a variety of malware core on 

the network and other modification tools to produce 

numerous malware in short time. Malware and its variants 

bring a great challenge to the malware analysis area [1]. 

Variant recognition methods based on static scan usually lose 

their efficiency when dealing with this situation, because they 

only compare the static structure and semantic information. 

Dynamic monitoring technology has become the main form 

of malicious behavior mining. Compared with static analysis, 

dynamic analysis ill not be affected by the obfuscation 

technology such as packers, polymorphic, etc [2]-[4]. 

The main contributions of this paper are as follows: 

1) We implemented a dynamic analysis framework which 

can capture malware behaviors on Temu. We capture 

API functions while the malware running, according to 

its behavior on registry, service, process and so on. We 

also took the input parameters, output parameters and 

return value into consideration so that a more detailed 

characterization of the malware behavior is acquired. 

2) We extracted a behavioral profile that accurately 

describes the runtime activity of malware. According to 
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the control dependencies between different actions, we 

converted the initial API flow sequence into a 

multi-function behavior dependency chain. As variants 

often use some common confusing technology, we 

removed the rearrangement sequence, noise and other 

confusing information in behavior dependency chain to 

improve the ability to identify variants. 

3) We proposed a weighted matching algorithm of 

malicious code variants based on behavior dependency 

chain. We design weighted Jaccard similarity matching 

algorithm according to the different behavior type of 

malware variants. The correctness of the proposed 

algorithm is verified in the experimental section finally. 

 

II. RELATED WORK 

Classification of malicious code variants can be divided 

into two categories, which are static analysis and dynamic 

analysis respectively. L. Wu, who use software such as PEID 

or UPX to unpack the malware, and then call the static 

analysis method to get the program flow diagram, by 

matching similarity graph of vertices and edges to achieve the 

In dynamic analysis, Forrest proposed fixed-length 

sequence of N-gram recognition model based on system call 

[6]. This method uses sliding windows to intercept short N 

fixed-length of system call and performs the anomaly 

detection and similarity analysis. After monitoring a large 

number of system calls experiments and they found that when 

the fixed-length is 6, the anomaly detection efficiency is 

relatively high. The algorithm is easy to implement, but false 

negative rate of detection is high, and requires a lot of test 

cases. Bayer [7] et al. found that the dynamic behavior 

analysis has a very big advantage in detecting malware 

variants. They proposed a behavior-based malware clustering 

approach, which establishes a multi-dimensional feature 

vector to describe the behavior of malware using the hash 

algorithm, but the method does not take the resistance 

techniques which malware often used into account, so this 

method may be unable to effectively deal with confusion and 

other anti-analysis malware so as to fail to achieve effective 

classification. 

Yang Yi proposed a graph matching similarity-based 

identification method [8]. They generated control dependency 

graph and data dependency graph through dynamic taint 

propagation, then optimize the dependency graph by 

eliminating redundant calls. Finally, they compare the 

similarity of dependency graph between the malware. The 
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classification of malware variants [5]. This method is based 

on the malicious code correctly unpacking and disassembly 

analysis. However it is not very easy to do this.



  

advantage of this method is that it utilizes the graph matching 

in variants classification, which can accurately describe 

malware behavior. However, the processing time is so time 

consuming that it is not suitable to handle large quantities of 

malware classification. 

Sun Xiaoyan solved the question of the sequence of 

confusion, noise injection and simulation sequences in sliding 

window based on sequence analysis. She used the branch 

sequence Markov chain judgment and interactive objects to 

achieve the automatic classification of malware [9]. Hanlan 

Sheng used the information gain to evaluate API function call 

sequences and API input parameters as behavioral 

characteristics in dynamic detection of malware, which 

improve the recognition rate of malware detection [10]. 

In summary, when dealing with the malware variants 

classification, dynamic analysis performs better than static 

analysis, especially in against confusion technology and other 

anti-analysis techniques. 

 

III. OUR TECHNIQUE 

A. Motivation 

Classification of malware variants has been concerned by 

analysts in a long period. Evolving malware generates a lot of 

variants and brings great challenges to analytical work. 

Although these variants change in the file format and 

appearance, but there are many similarities with the behavior 

on the specific function. For example, a Trojan named 

"rwxing" generated a dozen variants in December 2012. 

Although these variants look different with each other, the 

start-up mode, the injection mode and registry behavior are 

very similar. Therefore, analyzing malware variants on the 

specific behaviors and comparing these behaviors could 

realize the malware variants effective identification and 

classification. 

In this paper, according to control dependencies between 

different API calls based on malware behavior, we convert the 

generally function flow to multilayer behavior chain. At the 

same time for some confusion and noise sequence 

characteristics, we optimize the multilayer behavior chain. 

Compared with the graph matching methods, Not only the 

efficiency of classification is ensured, this method also can 

reduce the analysis time. 

B. Dynamic Monitor Based on TEMU 

1) Introduction to TEMU 

TEMU comes from a dynamic binary platform called 

Bitblaze [11], which was released by Professor Dawn Song’s 

security team of University of California. Bitblaze includes 

three components, which are TEMU, VINE and Rudder 

respectively [12]. TEMU is one of the dynamic analysis 

module which is based on QEMU. TEMU adds taint analysis 

engine and semantic extraction module, providing a set of 

API functions and callback functions for users to develop 

functional plugin. Users can load the plugin and perform 

analysis work [13]. The architecture of TEMU is shown in Fig. 

1. 

2) Capturing behavior information 

When the simulation system is Windows, TEMU provides 

a kernel module which is used to get the operating system 

semantic information. The kernel module runs as a driver on 

Windows systems. Whenever detecting a new process is 

loaded into memory, the module will get the address range 

and export symbol information. This paper analyzes malware 

in PE format, so the simulation system is Windows. 
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Fig. 1. Architecture of TEMU. 

 

The plugin we developed communicates with the kernel 

module through I/O interface. Our plugin could get 

information containing currently executing instruction, basic 

block instruction information and module information. We 

analyze the captured information, and extract the API 

information during malware running, then get the input as 

well as output parameters and return values in stack and 

memory at the beginning or end of API calls. We combine all 

the information with the some semantic information for 

further analysis. 

C. Behavior Profile: Multilayer Dependency Chain 

This paper defines a function template. The behavior of the 

malware is divided into six sub-behaviors, which are file 

behavior, registry behavior, service behavior, process 

behavior, network behavior and the behavior gaining 

operating system information respectively. These behaviors 

cover the main aspects of malware behavior. In a function 

template, six categories of behavior are related to 

corresponding functions. For instance, file behavior is labeled 

A1 (Note that memory behavior is also treated as file 

behavior), the registry behaviors are labeled as A2, service 

behavior is marked as A3, process behavior is labeled as A4, 

network behavior is labeled as A5, behavior of gaining 

operating system information is marked as A6. With help of 

the continuous testing, the template contains a total of six 

categories of behavior about 160 API functions. 

After being processed by the function template, each 

function captured by our plugin will be stored in the form of 

structures in memory. The definition of nodes as follows: 

Corresponding definition: 

1) Definitions of nodes 

Each API function is a node structure, and each node 

contains information which is equivalent to a 6-tuple 

(Type,Name,IN_P,Out_P,Ret,Next). 

Type: the type of function, there are four types. Type 1 

means that the functions mainly produce function handle or 

other control handles, such as CreateFile (), CreateProcess (), 

etc; type 2 represents functions that rely on handles created by 

type 1, such as ReadFile (), WriteFile ()etc; type 3 represents 

functions that close these handles, such as CloseHandl (), 

RegClose () and other functions; type 0 represents 
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independent functions, that does not have control dependency, 

such as ShellExecute (), GetTickCount () and so on. 

Name: function name; 

IN_P: a structure storing the input parameters of function 

Out_P: a structure storing the output parameters of function 

Ret: value of function returned 

Next: a pointer to the next node 

2) Definition of chain  

In behavior description, a complete sequence of operations 

is defined as operating chain L (N1, N2, ... NK), where N 

represents the function of each element nodes. Such as 

functions F1:. CreateFile, F2: ReadFile F3: CloseHandle can 

form the control function chain L (F1, F2, F3). These 

functions perform a complete file operation. Compared with 

dependency graph, dependency chain is one-dimensional and 

easier to compare and calculate. 

We establish control dependency behavior chain of 

malware based on the relationship between function flow and 

dependency of different functions. The dependency chain 

could better describe software profile for analyzing malware. 

For the function flow N1，N2，……NN, we process each 

node one by one. The step to make dependency chain as 

follow: 

Step 0: analyze the type of the function node. If it is type 1, 

then turn to step 1; if it is type 2, turn to step 2; If it is type 3, 

then turn to step 3; If it is type 4, then turn to step 4;  

Step 1: insert a new head node on the longitudinal control 

chain, and set the rely flag with the Ret field, then go to step 0;  

Step 2: Traverse the active control chain from the scratch. 

According to the Name and IN_P field, decide which chain 

should be the right chain and insert the node at the end of the 

chain. 

Step 3: Find the corresponding control chain. Turn off the 

active flag, skip to step 0;  

Step 4: Insert a new control chain, and turn off the active 

flag. Skip to step 0; 

When all the function nodes are inserted, the algorithm will 

generate a multilayer behavioral chain. Each behavior chain is 

a complete sequence of operations. For instance, open file to 

read and write files, and then close the file. For example, the 

multilayer behavioral chain of r Trojan "NetThief" shown in 

Fig. 2. 
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Fig. 2. Multilayer dependency chain. 

 

The head node of each chain contains the information about 

the number of nodes, the type of operation (such as file, 

registry or services) and the active flag.  

D. Removing the Confusion and Noise 

The usual obfuscations used by malware variants are 

sequence confusing, sequence noise, parameters 

decomposition, which try to change the function sequence or 

control flow graph for the aim of interference identification. 

1) Sequence confusion 

For the sequence S1, S2; generally each of them has a 

complete operating behavior and means different behaviors. 

To confuse the observed sequence, malware often 

cross-random arrange various function and maintain their 

relative order in the sequence S1 S2. This will form numerous 

functional equivalent sequences, but which are different in 

appearance. 

2) Sequence noise 

There are normal sequence S1and redundant sequence S2, 

the distribute one or more S1 in S2 sequence, sequence S2 is 

called sequence noise. 

3) Parameter decomposition 

The function N will run multiple times because of 

decomposition of key parameters. It will have more than one 

function N. We take the function writefile() as an example. If 

one parameter is “c://windows//ststem32” , the malware 

author may divide this parameter into three parts, since 

“c://windows//ststem32” is a sensitive string. After division, 

function writefile() will appear three time. 

We establish a confusion library, which include common 

confusion type mentioned above. So we use different methods 

to eliminate the confusion. 

Eliminating the sequence confusion:according to the 

establishment of dependency chain in 3.3, we have 

summarized function of different types or dependencies to a 

different dependency chain. So if there are S1 and S2 in the 

function flow, they will be summarized to different chain.  

Eliminating the function noise:Sun Xiaoyan used the 

Markov chain to determine the next sequence is noise or not 

[9]. This method’s temporal overhead is high. The essential 

feature of the sequence noise is that they just disrupt the 

normal sequence of position, and will not cause changes in the 

function and system status. The sequence noise is always a 

short sequence used repeatedly. Part of them could be filtered 

by the function template in 3.3, and the rest are short 

operation chains during multilayer dependency chain. So we 

scan all the short chains which contain less than 4 function 

nodes, and compare them with the confusion library. If the 

short chain matches the noise in confusion library, then delete 

the chain from the multilayer chain. 

Eliminating the parameters decomposition: parameter 

decomposition actually is an equivalent transformation. In the 

actual analysis, we found some of the malware which often 

read or write the key character string or the contents of the file 

several times, thereby changing the length of the sequence. 

Consequence of the parameters decomposition is that there 

will be numerous same function calls in a chain. When we 

scan the chain and find some continuous same function calls, 

we match the chain with the confusion library and check the 

parameters. If the result is true, we will merge the 

corresponding parameters. 
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E. Classification Algorithm 

After the processing of dependence and optimization 

process, multilayer dependency chain represent the behavior 

profile of the malware. In this paper, we weighted similarity 

with Jaccard similarity. According to the multilayer chain, we 

calculate the similarity of each type of operation. For example, 

the file operation similarity, registry operations similarity will 

be calculated respectively. We calculate the weight of each 

type based on the proportion of each operation in the whole 

behavior profile. 

For example, if file behavior of malware A and B is FA and 

FB. The similarity of file operation ( , )A BS F F is: 

 

| |
( , )

| |
A B

A B
S F F

A B





 

 

If ( , ) 1A BS F F  , which means the file operation of A and B 

is equal to each other. After calculating the similarity of files, 

registry, services, etc., then we calculate the value of each 

operation based on the proportion of each sub-behavior. 

Weight of file operation is calculated as follows: if the total 

number of chain in multilayer chain is K and the number of 

file operation chain is F, then the file operation similarity 

value is T1=F/K. For example, in Trojan “Lying”, the file 

operation chain number is 6, total chain is 21, the weight of 

file operation similarity is T1 = 0.286. 

In summary, the similarity is calculated as follows: 

 

1 1 2 2 6 6...P AT A T A T     

 

According to the value of P, we could describe the degree 

of similarity between two malware about their behavior. After 

continuous variant experiment, there will be a reasonable 

threshold. A higher threshold represents a higher degree of 

similarity between the malware. 

 

IV. EXPERIMENT AND EVALUATION 

Our experimental platform is Lenovo E30, whose host OS 

is Ubuntu, guest OS is Windows XP SP3 on which we run the 

malware. 

A. Similarity Detection between Different Variants 

We use Trojan.Spook.a and Backdoor.Win32.Alicia.d as 

test samples. We run two dynamic variants on the analysis 

platform. In the capture and confusing process, 

Trojan.Spook.a generates 16 behavioral chains, 

Backdoor.Win32.Alicia.d generates 9 behavioral chains. The 

final similarity calculated is shown in Table I: 
 

TABLE I: SIMILARITY BETWEEN DIFFERENT VARIANTS 

File Registry Service Process System information Network Weighted similarity 

35.2% 18% 40% 0% 20% 40% 27% 

 

TABLE II: SIMILARITY BETWEEN VARIANTS OF THE SAME MALWARE 

 File Registry Service Process System information Network Weighted similarity 

Trojan.gh0st.a 85.2% 78% 82% 100% 86% 85% 86.17% 

Trojan.gh0stb 90.6% 84% 74% 75% 91% 100% 86.16% 

Trojan.gh0st.c 100% 100% 81% 100% 94% 86% 96.2% 

Trojan.gh0st.e 100% 100% 100% 75% 63% 100% 89.4% 

Trojan.gh0st.f 100% 100% 100% 100% 60% 100% 91% 

 

We can see that the behavior of different variants show a 

very low degree of similarity, they could be easily 

distinguished by this method. 

 

We use malware gh0st as the experimental sample. Gh0st is 

a typical remote control Trojan. Because of its open source 

codes, there are a very large number of variants. 

We detected five variants named Trojan.gh0st.a, 

Trojan.gh0st.b, Trojan.gh0st.c, Trojan.gh0st.e, 

Trojan.gh0st.f. The former three are changed from the source 

code, the latter two are processed by some packer tools. 

Similarity analysis of variants are shown in Table II. 

To assess the validity and accuracy of the method, there are 

total 200 samples of 12 types downloaded from the online 

website anubis [14], which contains backdoors, remote 

Trojan , bot, remote downloader program, and cover the main 

types of malware.  

In the experiment, the threshold P is set to 0.73. The 

classification results are shown in Fig. 3: 
 

 
Fig. 3. Classification result of 200 samples. 

 

We can see that 200 samples are divided into 13 categories. 

The classification results generally consistent with online 

result. Six samples among them are not able to be categorized. 

After manual analysis, we found that the reasons are 

two-folded. First, the sample program is damaged. Second, it 

is likely to have anti-analysis code in the programs, which 

could avoid detection and hide malicious behavior.  
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B. Similarity Detection between Variants of the Same 

Malware
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In the analysis of the performance, the total 200 samples 

running time is 80 minutes, while the average classification 

time of each variant is 40 seconds. The average consumed 

time of graph matching proposed by Yang Yi is 4 minutes. 

Our method could save more time than Yang’s method. 

 

V. CONCLUSIONS 

In this paper, API calls and other key information of 

running malware are captured and extracted to establish 

dependency chain which could accurately describe the 

behavior of malware. After that, some confusion technologies 

commonly used by variants are eliminated. Finally, we use the 

weighted similarity of malware behavior to judge the 

similarity among different variants. Experimental results 

show that our method could classify the variants effectively. 

In the future we will focus on two aspects. One is to 

enhance the detection of anti-judgment malware, and propose 

countermeasures for the existing anti-detection methods; the 

other is to add the data flow information in similarity analysis 

of malware, which will serve as an auxiliary of behavior 

analysis to further improve the classification accuracy of 

malware variants. 
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