



Abstract—The research on detection malware variants

attracts much attention in recent years. However current

variant classification methods either are interfered by some

confusion technologies or have a high time or space complexity.

In this paper, a classification technique using dynamic analysis

based on behavior profile is proposed. We capture API calls and

other essential information of running malware, then establish

their multilayer dependency chain according to the dependency

relationship of these function calls. In order to deal with the

confusion, we remove sequence confusion, sequence noise, and

other confusions to optimize the multilayer dependency chain.

Finally, a similarity comparison algorithm is used to identify the

degree of similarity between malware variants. The

experimental results demonstrate that our classification

technique is feasible and effective.

Index Terms—Malware, variants, dependency chain.

I. INTRODUCTION

Most Internet security problems are caused by malware,

such as botnet, Trojan, rootkits, virus, worms. Some

anti-malware companies get thousands of new malware

samples every day. The threshold of making malware

becomes increasingly low for malware developers, these

malware developers easily use a variety of malware core on

the network and other modification tools to produce

numerous malware in short time. Malware and its variants

bring a great challenge to the malware analysis area [1].

Variant recognition methods based on static scan usually lose

their efficiency when dealing with this situation, because they

only compare the static structure and semantic information.

Dynamic monitoring technology has become the main form

of malicious behavior mining. Compared with static analysis,

dynamic analysis ill not be affected by the obfuscation

technology such as packers, polymorphic, etc [2]-[4].

The main contributions of this paper are as follows:

1) We implemented a dynamic analysis framework which

can capture malware behaviors on Temu. We capture

API functions while the malware running, according to

its behavior on registry, service, process and so on. We

also took the input parameters, output parameters and

return value into consideration so that a more detailed

characterization of the malware behavior is acquired.

2) We extracted a behavioral profile that accurately

describes the runtime activity of malware. According to

Manuscript received July 29, 2014; revised November 20, 2014. This

work was supported by the National Natural Science Foundation of China

(Grant 61472447).

The authors are with the State Key Laboratory of Mathematical

Engineering and Advanced Computing, Zhengzhou 450002, China (e-mail:

lghray1987@163.com).

the control dependencies between different actions, we

converted the initial API flow sequence into a

multi-function behavior dependency chain. As variants

often use some common confusing technology, we

removed the rearrangement sequence, noise and other

confusing information in behavior dependency chain to

improve the ability to identify variants.

3) We proposed a weighted matching algorithm of

malicious code variants based on behavior dependency

chain. We design weighted Jaccard similarity matching

algorithm according to the different behavior type of

malware variants. The correctness of the proposed

algorithm is verified in the experimental section finally.

II. RELATED WORK

Classification of malicious code variants can be divided

into two categories, which are static analysis and dynamic

analysis respectively. L. Wu, who use software such as PEID

or UPX to unpack the malware, and then call the static

analysis method to get the program flow diagram, by

matching similarity graph of vertices and edges to achieve the

In dynamic analysis, Forrest proposed fixed-length

sequence of N-gram recognition model based on system call

[6]. This method uses sliding windows to intercept short N

fixed-length of system call and performs the anomaly

detection and similarity analysis. After monitoring a large

number of system calls experiments and they found that when

the fixed-length is 6, the anomaly detection efficiency is

relatively high. The algorithm is easy to implement, but false

negative rate of detection is high, and requires a lot of test

cases. Bayer [7] et al. found that the dynamic behavior

analysis has a very big advantage in detecting malware

variants. They proposed a behavior-based malware clustering

approach, which establishes a multi-dimensional feature

vector to describe the behavior of malware using the hash

algorithm, but the method does not take the resistance

techniques which malware often used into account, so this

method may be unable to effectively deal with confusion and

other anti-analysis malware so as to fail to achieve effective

classification.

Yang Yi proposed a graph matching similarity-based

identification method [8]. They generated control dependency

graph and data dependency graph through dynamic taint

propagation, then optimize the dependency graph by

eliminating redundant calls. Finally, they compare the

similarity of dependency graph between the malware. The

A Behavior-Based Malware Variant Classification

Technique

Guanghui Liang, Jianmin Pang, and Chao Dai

International Journal of Information and Education Technology, Vol. 6, No. 4, April 2016

291DOI: 10.7763/IJIET.2016.V6.702

classification of malware variants [5]. This method is based

on the malicious code correctly unpacking and disassembly

analysis. However it is not very easy to do this.

advantage of this method is that it utilizes the graph matching

in variants classification, which can accurately describe

malware behavior. However, the processing time is so time

consuming that it is not suitable to handle large quantities of

malware classification.

Sun Xiaoyan solved the question of the sequence of

confusion, noise injection and simulation sequences in sliding

window based on sequence analysis. She used the branch

sequence Markov chain judgment and interactive objects to

achieve the automatic classification of malware [9]. Hanlan

Sheng used the information gain to evaluate API function call

sequences and API input parameters as behavioral

characteristics in dynamic detection of malware, which

improve the recognition rate of malware detection [10].

In summary, when dealing with the malware variants

classification, dynamic analysis performs better than static

analysis, especially in against confusion technology and other

anti-analysis techniques.

III. OUR TECHNIQUE

A. Motivation

Classification of malware variants has been concerned by

analysts in a long period. Evolving malware generates a lot of

variants and brings great challenges to analytical work.

Although these variants change in the file format and

appearance, but there are many similarities with the behavior

on the specific function. For example, a Trojan named

"rwxing" generated a dozen variants in December 2012.

Although these variants look different with each other, the

start-up mode, the injection mode and registry behavior are

very similar. Therefore, analyzing malware variants on the

specific behaviors and comparing these behaviors could

realize the malware variants effective identification and

classification.

In this paper, according to control dependencies between

different API calls based on malware behavior, we convert the

generally function flow to multilayer behavior chain. At the

same time for some confusion and noise sequence

characteristics, we optimize the multilayer behavior chain.

Compared with the graph matching methods, Not only the

efficiency of classification is ensured, this method also can

reduce the analysis time.

B. Dynamic Monitor Based on TEMU

1) Introduction to TEMU

TEMU comes from a dynamic binary platform called

Bitblaze [11], which was released by Professor Dawn Song’s

security team of University of California. Bitblaze includes

three components, which are TEMU, VINE and Rudder

respectively [12]. TEMU is one of the dynamic analysis

module which is based on QEMU. TEMU adds taint analysis

engine and semantic extraction module, providing a set of

API functions and callback functions for users to develop

functional plugin. Users can load the plugin and perform

analysis work [13]. The architecture of TEMU is shown in Fig.

1.

2) Capturing behavior information

When the simulation system is Windows, TEMU provides

a kernel module which is used to get the operating system

semantic information. The kernel module runs as a driver on

Windows systems. Whenever detecting a new process is

loaded into memory, the module will get the address range

and export symbol information. This paper analyzes malware

in PE format, so the simulation system is Windows.

TEMU Plugin A

TEMU Plugin B

TEMU Plugin C

Emulated System

Taint Analysis

Engine

Semantics

Extractor

T
E

M
U

 A
P

I

Fig. 1. Architecture of TEMU.

The plugin we developed communicates with the kernel

module through I/O interface. Our plugin could get

information containing currently executing instruction, basic

block instruction information and module information. We

analyze the captured information, and extract the API

information during malware running, then get the input as

well as output parameters and return values in stack and

memory at the beginning or end of API calls. We combine all

the information with the some semantic information for

further analysis.

C. Behavior Profile: Multilayer Dependency Chain

This paper defines a function template. The behavior of the

malware is divided into six sub-behaviors, which are file

behavior, registry behavior, service behavior, process

behavior, network behavior and the behavior gaining

operating system information respectively. These behaviors

cover the main aspects of malware behavior. In a function

template, six categories of behavior are related to

corresponding functions. For instance, file behavior is labeled

A1 (Note that memory behavior is also treated as file

behavior), the registry behaviors are labeled as A2, service

behavior is marked as A3, process behavior is labeled as A4,

network behavior is labeled as A5, behavior of gaining

operating system information is marked as A6. With help of

the continuous testing, the template contains a total of six

categories of behavior about 160 API functions.

After being processed by the function template, each

function captured by our plugin will be stored in the form of

structures in memory. The definition of nodes as follows:

Corresponding definition:

1) Definitions of nodes

Each API function is a node structure, and each node

contains information which is equivalent to a 6-tuple

(Type,Name,IN_P,Out_P,Ret,Next).

Type: the type of function, there are four types. Type 1

means that the functions mainly produce function handle or

other control handles, such as CreateFile (), CreateProcess (),

etc; type 2 represents functions that rely on handles created by

type 1, such as ReadFile (), WriteFile ()etc; type 3 represents

functions that close these handles, such as CloseHandl (),

RegClose () and other functions; type 0 represents

International Journal of Information and Education Technology, Vol. 6, No. 4, April 2016

292

independent functions, that does not have control dependency,

such as ShellExecute (), GetTickCount () and so on.

Name: function name;

IN_P: a structure storing the input parameters of function

Out_P: a structure storing the output parameters of function

Ret: value of function returned

Next: a pointer to the next node

2) Definition of chain

In behavior description, a complete sequence of operations

is defined as operating chain L (N1, N2, ... NK), where N

represents the function of each element nodes. Such as

functions F1:. CreateFile, F2: ReadFile F3: CloseHandle can

form the control function chain L (F1, F2, F3). These

functions perform a complete file operation. Compared with

dependency graph, dependency chain is one-dimensional and

easier to compare and calculate.

We establish control dependency behavior chain of

malware based on the relationship between function flow and

dependency of different functions. The dependency chain

could better describe software profile for analyzing malware.

For the function flow N1，N2，……NN, we process each

node one by one. The step to make dependency chain as

follow:

Step 0: analyze the type of the function node. If it is type 1,

then turn to step 1; if it is type 2, turn to step 2; If it is type 3,

then turn to step 3; If it is type 4, then turn to step 4;

Step 1: insert a new head node on the longitudinal control

chain, and set the rely flag with the Ret field, then go to step 0;

Step 2: Traverse the active control chain from the scratch.

According to the Name and IN_P field, decide which chain

should be the right chain and insert the node at the end of the

chain.

Step 3: Find the corresponding control chain. Turn off the

active flag, skip to step 0;

Step 4: Insert a new control chain, and turn off the active

flag. Skip to step 0;

When all the function nodes are inserted, the algorithm will

generate a multilayer behavioral chain. Each behavior chain is

a complete sequence of operations. For instance, open file to

read and write files, and then close the file. For example, the

multilayer behavioral chain of r Trojan "NetThief" shown in

Fig. 2.

L1

L2

L3

L14

CreatFile() WriteFile()

RegOpenkey() RegCloseKey()

CopyFile()

CloseHandle()

……

…
…

OpenSCMana

ger()

CloseServiceH

andle()……

Fig. 2. Multilayer dependency chain.

The head node of each chain contains the information about

the number of nodes, the type of operation (such as file,

registry or services) and the active flag.

D. Removing the Confusion and Noise

The usual obfuscations used by malware variants are

sequence confusing, sequence noise, parameters

decomposition, which try to change the function sequence or

control flow graph for the aim of interference identification.

1) Sequence confusion

For the sequence S1, S2; generally each of them has a

complete operating behavior and means different behaviors.

To confuse the observed sequence, malware often

cross-random arrange various function and maintain their

relative order in the sequence S1 S2. This will form numerous

functional equivalent sequences, but which are different in

appearance.

2) Sequence noise

There are normal sequence S1and redundant sequence S2,

the distribute one or more S1 in S2 sequence, sequence S2 is

called sequence noise.

3) Parameter decomposition

The function N will run multiple times because of

decomposition of key parameters. It will have more than one

function N. We take the function writefile() as an example. If

one parameter is “c://windows//ststem32” , the malware

author may divide this parameter into three parts, since

“c://windows//ststem32” is a sensitive string. After division,

function writefile() will appear three time.

We establish a confusion library, which include common

confusion type mentioned above. So we use different methods

to eliminate the confusion.

Eliminating the sequence confusion:according to the

establishment of dependency chain in 3.3, we have

summarized function of different types or dependencies to a

different dependency chain. So if there are S1 and S2 in the

function flow, they will be summarized to different chain.

Eliminating the function noise:Sun Xiaoyan used the

Markov chain to determine the next sequence is noise or not

[9]. This method’s temporal overhead is high. The essential

feature of the sequence noise is that they just disrupt the

normal sequence of position, and will not cause changes in the

function and system status. The sequence noise is always a

short sequence used repeatedly. Part of them could be filtered

by the function template in 3.3, and the rest are short

operation chains during multilayer dependency chain. So we

scan all the short chains which contain less than 4 function

nodes, and compare them with the confusion library. If the

short chain matches the noise in confusion library, then delete

the chain from the multilayer chain.

Eliminating the parameters decomposition: parameter

decomposition actually is an equivalent transformation. In the

actual analysis, we found some of the malware which often

read or write the key character string or the contents of the file

several times, thereby changing the length of the sequence.

Consequence of the parameters decomposition is that there

will be numerous same function calls in a chain. When we

scan the chain and find some continuous same function calls,

we match the chain with the confusion library and check the

parameters. If the result is true, we will merge the

corresponding parameters.

International Journal of Information and Education Technology, Vol. 6, No. 4, April 2016

293

E. Classification Algorithm

After the processing of dependence and optimization

process, multilayer dependency chain represent the behavior

profile of the malware. In this paper, we weighted similarity

with Jaccard similarity. According to the multilayer chain, we

calculate the similarity of each type of operation. For example,

the file operation similarity, registry operations similarity will

be calculated respectively. We calculate the weight of each

type based on the proportion of each operation in the whole

behavior profile.

For example, if file behavior of malware A and B is FA and

FB. The similarity of file operation (,)A BS F F is:

| |
(,)

| |
A B

A B
S F F

A B






If (,) 1A BS F F  , which means the file operation of A and B

is equal to each other. After calculating the similarity of files,

registry, services, etc., then we calculate the value of each

operation based on the proportion of each sub-behavior.

Weight of file operation is calculated as follows: if the total

number of chain in multilayer chain is K and the number of

file operation chain is F, then the file operation similarity

value is T1=F/K. For example, in Trojan “Lying”, the file

operation chain number is 6, total chain is 21, the weight of

file operation similarity is T1 = 0.286.

In summary, the similarity is calculated as follows:

1 1 2 2 6 6...P AT A T A T   

According to the value of P, we could describe the degree

of similarity between two malware about their behavior. After

continuous variant experiment, there will be a reasonable

threshold. A higher threshold represents a higher degree of

similarity between the malware.

IV. EXPERIMENT AND EVALUATION

Our experimental platform is Lenovo E30, whose host OS

is Ubuntu, guest OS is Windows XP SP3 on which we run the

malware.

A. Similarity Detection between Different Variants

We use Trojan.Spook.a and Backdoor.Win32.Alicia.d as

test samples. We run two dynamic variants on the analysis

platform. In the capture and confusing process,

Trojan.Spook.a generates 16 behavioral chains,

Backdoor.Win32.Alicia.d generates 9 behavioral chains. The

final similarity calculated is shown in Table I:

TABLE I: SIMILARITY BETWEEN DIFFERENT VARIANTS

File Registry Service Process System information Network Weighted similarity

35.2% 18% 40% 0% 20% 40% 27%

TABLE II: SIMILARITY BETWEEN VARIANTS OF THE SAME MALWARE

 File Registry Service Process System information Network Weighted similarity

Trojan.gh0st.a 85.2% 78% 82% 100% 86% 85% 86.17%

Trojan.gh0stb 90.6% 84% 74% 75% 91% 100% 86.16%

Trojan.gh0st.c 100% 100% 81% 100% 94% 86% 96.2%

Trojan.gh0st.e 100% 100% 100% 75% 63% 100% 89.4%

Trojan.gh0st.f 100% 100% 100% 100% 60% 100% 91%

We can see that the behavior of different variants show a

very low degree of similarity, they could be easily

distinguished by this method.

We use malware gh0st as the experimental sample. Gh0st is

a typical remote control Trojan. Because of its open source

codes, there are a very large number of variants.

We detected five variants named Trojan.gh0st.a,

Trojan.gh0st.b, Trojan.gh0st.c, Trojan.gh0st.e,

Trojan.gh0st.f. The former three are changed from the source

code, the latter two are processed by some packer tools.

Similarity analysis of variants are shown in Table II.

To assess the validity and accuracy of the method, there are

total 200 samples of 12 types downloaded from the online

website anubis [14], which contains backdoors, remote

Trojan , bot, remote downloader program, and cover the main

types of malware.

In the experiment, the threshold P is set to 0.73. The

classification results are shown in Fig. 3:

Fig. 3. Classification result of 200 samples.

We can see that 200 samples are divided into 13 categories.

The classification results generally consistent with online

result. Six samples among them are not able to be categorized.

After manual analysis, we found that the reasons are

two-folded. First, the sample program is damaged. Second, it

is likely to have anti-analysis code in the programs, which

could avoid detection and hide malicious behavior.

International Journal of Information and Education Technology, Vol. 6, No. 4, April 2016

294

B. Similarity Detection between Variants of the Same

Malware

International Journal of Information and Education Technology, Vol. 6, No. 4, April 2016

295

In the analysis of the performance, the total 200 samples

running time is 80 minutes, while the average classification

time of each variant is 40 seconds. The average consumed

time of graph matching proposed by Yang Yi is 4 minutes.

Our method could save more time than Yang’s method.

V. CONCLUSIONS

In this paper, API calls and other key information of

running malware are captured and extracted to establish

dependency chain which could accurately describe the

behavior of malware. After that, some confusion technologies

commonly used by variants are eliminated. Finally, we use the

weighted similarity of malware behavior to judge the

similarity among different variants. Experimental results

show that our method could classify the variants effectively.

In the future we will focus on two aspects. One is to

enhance the detection of anti-judgment malware, and propose

countermeasures for the existing anti-detection methods; the

other is to add the data flow information in similarity analysis

of malware, which will serve as an auxiliary of behavior

analysis to further improve the classification accuracy of

malware variants.

REFERENCES

[1] Cert. [Online]. Available:

http://www.cert.org.cn/publish/main/12/2014/2014032814310027345498

1/20140328143100273454981_.html.

[2] A. Henderson and A. Prakash, “Make it work, make it right, make it

fast: Building a platform-neutral whole-system dynamic binary

analysis platform[C],” ISSTA, 2014.

[3] M. E. Theodoor and Scholte, “A survey on automated dynamic

malware-analysis techniques and tools,” ACM Computing Surveys, vol.

44, no. 2, pp. 4-8, 2012.

[4] M. Lindorfer and C. Kolbitsch, “Detecting environment-sensitive

malware,” in Proc. 14th International Symposium RAID, Menlo Park,

CA, USA, pp. 338-357, 2011.

[5] L.-F. Wu and M. Xu, “A novel malware variants detection method

based on function-call graph,” in Proc. IEEE Joint International

Computer Science and Information Technology Conference, pp.

313-319, 2011.

[6] S. Forrest, “The evolution of system-call monitoring,” Computer

Security Applications Conference, no. 8, pp. 418-430, 2008.

[7] Ulrich Bayer, Scalable, Behavior-Based Malware Clustering, San

Diego, California, USA: NDSS, 2009.

[8] Y. Yi et al., “Dependency-based malware similarity comparison

method,” Journal of Software, vol. 10, no. 22, pp. 2439-2446, 2011.

[9] X.-Y. Sun, Y.-F. Zhu, and Q. Huang, “Study of malware detection

based on interactive behavior,” Journal of Computer Applications, vol.

30, no. 6, pp. 1489-1492, 2010.

[10] H. Lansheng and G. Kunlun, “Behavior detection of malware based on

combination of API function and its parameters,”Application

Research of Computers, vol. 30, no. 11, pp. 3407-3410, 2011.

[11] Bitbalze. [Online]. Available:

http://bitblaze.cs.berkeley.edu/release/index.html

[12] D. Song, D. Brumle, H. Yin, and B. Blaze, “A new approach to

computer security via binary analysis,” in Proc. the 4th International

Conference on Information Systems Security, pp. 1-25. Berlin,

Heidelberg, 2008.

[13] J. Newsome and D. Song, Dynamic Taint Analysis for Automatic

Detection, Analysis, and Signature Generation of Exploits on

Commodity Software, NDSS 2005.

[14] Anubis. [Online]. Available: http://anubis.iseclab.org/

Guanghui Liang is a graduate student in State Key

Laboratory of Mathematical Engineering and

Advanced Computing, Zhengzhou 450002, China. His

major is computer science and technology. He is a

member of China Computer Federation. He is

interested in information security and reverse

engineering.

Jianmin Pang is a professor and doctoral supervisor in

State Key Laboratory of Mathematical Engineering and

Advanced Computing. His main research interests are

focused on information security, binary translate, high

performance computing.

Chao Dai is a Ph.D. student in State Key Laboratory of

Mathematical Engineering and Advanced Computing.

He is interested in web security, reverse engineering.

