

Abstract—In recent years, plagiarism has become

increasingly prevalent in programming courses. As a

consequence, there is an enormous amount of research work in

the area of preventing and detecting plagiarism. There is a

number of tools that are available for automated detection of

plagiarism. However, most of the cases must be reviewed by

instructors to confirm the conclusions suggested by the tools.

This is a labour intensive process which always requires too

much time and effort from the instructors. More importantly, it

must be highlighted that it is always possible for undetectable

plagiarism to occur, no matter how sophisticated the tools

available. In this paper, we propose an assessment design

method that aims to prevent students from plagiarizing without

deep understanding and to promote peer learning. We present

our sample design and share some initial results in implementing

the method in a programming course.

Index Terms—Plagiarism, programming, assessment design,

pedagogy.

I. INTRODUCTION

Joy et al. [1] defined software plagiarism as the act of

“unacknowledged copying of documents or programs”. With

the increasing popularity of programming courses, either

within a computing related degree or as part of another degree,

software plagiarism has becoming a big concern for academic

institutions. Assessment of programming courses usually

involves students writing programs for some assignments,

which are then marked against criteria such as coding style

and program correctness. Unfortunately, due to the electronic

nature of these programming assignments, it is very easy for

students to exchange copies of source code they have written

or obtained from other sources.

An enormous amount of research work has been published

in the area of preventing and detecting plagiarism in

programming courses. However, due to the large number of

students in a programming course, it is often difficult to detect

plagiarism. Moreover, when student’s knowledge become

more advanced, plagiarism becomes more subtle and

elaborate. Therefore, it is even more difficult to detect for the

class instructors [2]. Even though there are some tools

available to enable automated detection of plagiarism, most of

the cases are reviewed by instructors to confirm the

conclusion suggested by the tools. This is a labor intensive

process which requires much time and effort from the

instructors. It must be highlighted that we could never detect

100% of all the plagiarism cases, no matter how sophisticated

Manuscript received May 10, 2015; revised July 21, 2015.

Minh Ngoc Ngo is with Singapore Institute of Technology, Singapore

(e-mail: cristal.ngo@singaporetech.edu.sg).

the tools available [1]. Another problem which makes

detection of source code difficult is that similar coding can be

used for the same application [3]. This is mainly due to the

assignment design. When instructors design an assignment,

which is very close-ended, chances are it is very hard to tell

whether students plagiarize or they just happen to have the

same solutions. For a simple example, it is very likely that

instructors will get similar code from students if they are

asked to write a program to swap two integers. Therefore, the

plagiarism detection technique must take into account “which

of the different conditions that define a certain specific

situation allow the case to be considered as plagiarism” [2].

Plagiarism is often considered serious by all academic

institutes mainly because it prevents students from achieving

the main goal of programming: to interpret source code and to

write source code [4]. According to Clough [5], when

students plagiarize, they do not benefit from the experience of

writing code, which is considered the most effective way to

learn programming. Even more seriously, students might alter

the plagiarized code to make them appear unique without

fully understanding the code.

A. Why Students Plagiarize?

Various reasons why students plagiarize have been

highlighted by researchers [1], [4] include:

1) Solution availability: Students tend to plagiarize if

solutions to assignment can be easily obtained from

Internet or similar sources.

2) Procrastination: Steel [6] reported that 80% to 95% of

college students procrastinate, particularly when it comes

to doing their course work. Procrastination is usually due

to underestimating the amount of time that one needs to

spend on coursework. It has become a bad habit which

leads to doing rush works at the last minute. Harris [7]

suggested that instructor should set “intermediate” due

dates where sub tasks of a large assignments are due. In

this ways, students are less tempted to plagiarize to meet

deadline.

3) Motivation: Poorly motivated and week students copies

then edits a friend’s program or solution obtained from

other sources, with or without permission, to minimize

the work required. In this case, students usually hope that

the unacknowledged copied work with go unnoticed.

Some students have the perception that it is more

beneficial to “breeze through assignment than to learn

from them” [4]. Some other students do not feel confident

of their own ability to complete assignments. Harris [7]

also stressed that instructor should help students to

realize that assignments are designed to help them to

learn and gain knowledge. It does not make sense to

plagiarize to get good marks and pass the course without

Eliminating Plagiarism in Programming Courses through

Assessment Design

Minh Ngoc Ngo

International Journal of Information and Education Technology, Vol. 6, No. 11, November 2016

873DOI: 10.7763/IJIET.2016.V6.808

actual knowledge and understanding. Yet, based on our

experience, no matter how much instructors emphasize

this to students, if assignment is not well designed,

plagiarism is not avoidable.

B. Work-Around Solutions to Plagiarism

To the best of our knowledge, there is no absolute

technique or tool to detect plagiarism, both manually and

automatically. Abraham [4] summarized methods to help in

preventing and partially detecting plagiarism which include 1)

plagiarism education, 2) modifying course grading structure,

and 3) using plagiarism detection software.

Students should be clearly informed of what constitutes

plagiarism. In our experience, we give briefing to students at

the beginning of each semester during orientation day. We

show students concrete examples of plagiarized code. Each

student must sign attendance as a form of confirming that they

are aware and understand about this problem. Instructors

should also show students how plagiarism can be detected

using existing tools. The effectiveness of this approach is,

however, not proven.

Bowyer et al. [8] suggested that one of the main reason that

students plagiarize is because they want to achieve higher

grade without spending much effort and time on it. As such,

non-assessed assignments could be given to students and the

course grade depended only on in-class activities such as

exams. However, it has also been proved that many students

are not motivated to do this kind of assignments; although the

assignments “help them to prepare for quizzes and other

in-class activities” [8]. Our proposed strategies follow this

method of “no incidents of plagiarism”. However, our

assignments are designed carefully to avoid copying without

understanding and our in-class assessments are designed to

test students’ understanding on their own source code. As

such, students could not pass the in-class assessments without

attempting the assignments.

Many complex tools that have been developed to automate

much of the plagiarism detection process [9]-[12]. Most of the

tools can detect plagiarism, however, some tools are designed

to target certain patterns of plagiarism and are not suitable for

other kinds. MOSS [12] ignores “comments and identifier

names” thus focusing more on the structure and pattern of the

program. However, obvious cases of plagiarism detected

through identifier and comments cannot be detected

efficiently with MOSS. Some applications, such as MOSS

[12], compare submitted code to other submitted code without

building a database of code. Therefore, it is impossible to

detect if students copy source code from students in previous

batch. Some tools take significant amount of time to analyze

source code. Code Match [11] uses a combination of

algorithm; thus it is reliable but could take hours or days to

complete the detection process.

In this paper, we propose a method to avoid plagiarism

without understanding through assignment and assessment

design. We believe that learning from worked examples,

including from friends or other sources, is useful. The key

point is, however, students must understand the examples

clearly and be able to modify the examples to meet new

requirements. In our programming assignment design, source

code skeletons are designed to force students to follow some

certain program structure. As such, it is impossible for

students to copy source code from other sources because

students need to adapt the existing source code into the code

skeletons’ structure.

We also design assessments to make sure that students do

not copy source code from their friend without understanding

the source code. Students are not graded based on their source

code but their understanding of the source code. More

specifically, how well they could modify their source code to

meet new programming requirements given in the

assessments. In this way, students are encouraged to learn

from their peer. More importantly, students are not afraid to

teach their peer and share with their peer their understanding

and knowledge.

In the remaining sections, we introduce our assessment

design strategies and samples to address the above challenges.

Finally, we share our positive experiences in implementing

this method.

II. ASSESSMENT DESIGN STRATEGIES

Our objectives in coursework design include 1) covering

the learning outcomes, 2) helping students to learn

programming and 3) promoting peer learning among students.

The first objective is easy to achieve. The second objective

can be achieved given that one must ensure that students did

not plagiarize without fully understanding. The third

objective is not easy to achieve. If instructors using plagiarism

detection techniques seriously, either manual or automated, it

is very likely that students will not share their ideas with

others because they are afraid that their idea will be

plagiarized. In our opinion, students learn best from their peer.

This drives us to design an assignment and assessment

framework to promote peer learning and yet still ensure

students’ understanding of the subject matters.

We are also inspired by learning from “worked examples”,

which has recently attracted much attention [13]. Researchers

have found that worked examples provide good opportunities

for learners to study and emulate. Brusilovesky [14] proposed

the WebEx platform to enable learning from examples in

programing courses. According to Brusilovesky, learning

from worked examples is especially useful in the domain of

programming. “Both experienced and novice programmers

often use program examples they have created or solved from

the past to solve new programming tasks” [14]. In our opinion,

it is also important that students master a set of system skills to

be successful in professional development. Beside

development, students must also be able to comprehend and

maintain existing applications, open for adaptation to new

needs and for reuse some of their components. As such, it is

good if students are able to understand existing applications

and adapt them for their own purpose. However, the key here

is we must ensure that student understand the “worked

examples”.

Our assessment design strategies consist of two key

components 1) assignment design with code skeleton and 2)

in-class assessments based on assignment content. Fig. 1

shows the whole assessment flow. We will elaborate more on

this in the subsequent sub-sections.

International Journal of Information and Education Technology, Vol. 6, No. 11, November 2016

874

Fig. 1. Assessment flow.

A. Assignment Design to Avoid Plagiarism without

Understanding

The key in our programming assignment design is a code

skeleton provided to students together with the requirements.

For example, in one of the programming assignment, we

asked our students to implement a Sudoku game in C

programming language.

Numerous solutions can be found for this problem on the

Internet. Therefore, we designed the code skeleton to force

students to write programs which must follow some certain

structures, it could simply be data structure or it could be

some predefined functions that they must use. Fig. 2 gives a

sample of the code skeleton that was given to students to

complete this task. The constraints include students must 1)

use all the functions in the code skeleton, 2) not remove any

code in the code skeleton and 3) construct the Sudoku board

using the board 1-dimensional array. The design of this code

skeleton is based on the observation that most of the

implementations of this game use 2-dimensional arrays. As

such, even if students obtain solutions from other sources,

they must study the source code and rewrite most of them to

fit into the given code skeleton.

There are several benefits to provide students with a code

skeleton:

1) Students develop the ability to understand existing source

code and how they should write their source code to fit

into an existing structure.

2) The code skeleton gives students who are new to

programming some ideas to start.

3) The code skeleton prevents students from directly

copying code from the Internet. Even if students find

solutions from the Internet, they cannot copy and paste

the source code directly into the code skeleton. This is

because the code skeleton has been designed such that

there are certain data structures, variable names that

students have to use in their implementation. As such, in

most cases, if they copy the code directly, the program

will not compile. Instead, to re-use solutions from the

Internet, students need to understand the solution and

translate them to fit into the code skeleton.

B. Assessment Design to Promote Deep Understanding

and Peer Learning

With code skeleton, we can ensure that students do not

directly from other sources without fully comprehending the

source code. However, we still need to design assessments to

ensure that students do not plagiarize from their peer and to

encourage peer learning. The main features of our assessment

design to address these challenges include:

1) Weekly/fortnightly assignment submission. Students are

required to submit their source code at the end of each

week. Having weekly or fortnightly assignment

minimizes students’ procrastination because it is easier

for them to manage their time for a week. They are more

motivated to complete their lab project when knowing

that the deadline is at the end of the week.

2) An in-class test after every one or two programming

assignments. The test motivates and creates pressure for

students to complete the assignment on time.

Constructive feedback and scores are returned to students

before the next test so they can learn from their mistakes.

Source code must be submitted before the class test.

Table I gives a sample of the timing of assignment

submissions and in-class test. Even though students are

not graded based on the submitted source code we will

not grade their lab tests if the source code are not

submitted on time. Fig. 1 illustrates in detail the

assessment flow.

TABLE I: ASSIGNMENT AND TEST TIMING

Assignment Deadline Test

Assignment 1 9AM, 27 April 2015 10 AM, 4 May

2015 Assignment 2 9AM, 4 May 2015

Fig. 2. A sample Sudoku code skeleton.

After every one or two programming assignments, students

are required to take an in-class test. Each test is designed to

really assess students about their comprehension of their

submitted source code.

In each test, we often change the original requirements for

the respective assignment(s). We then ask the students to

International Journal of Information and Education Technology, Vol. 6, No. 11, November 2016

875

identify the changes required in source code to meet the

changes in the requirements. Students are required to bring a

hard copy of their source code and make changes directly on

the printed source code.

For example, Fig. 3 and Fig. 4 show one task in a

programming assignment and part of the accompanied code

skeleton:

Fig. 3. Sample assignment task.

Fig. 5 shows a sample test question that has been designed

to assess the assignment task in Fig. 3. In the assignment, we

asked student to “create a player ID from the first 3 characters

of their full name and 2 random numbers”. However, in the

test, we changed the requirement to the one shown in Fig. 5.

Only by truly understanding the original source code, students

are able to modify the code to meet this new requirement.

The basic steps applied in designing the in-class test

include:

1) Identify the learning outcomes or the objectives of each

assignment.

2) Identify important code segments or assignment

requirements that correspond to the learning outcomes.

3) Modify the assignment requirements identified to test

student’s understanding.

Fig. 4. Another sample code skeleton.

Fig. 5. Sample test question.

Take the test question in Fig. 5 for example. In this

assignment requirement, the objective is to test students on

string formation and manipulation in C programming

language. To be able to solve the test question, students need

to perform several tasks that require deep understanding and

skills to change source code:

1) Identify the code segments in their source code that

implement this requirements.

2) Instead of getting the first 3 characters in a string,

students need to know how to access the last 2 characters.

The original requirement of using the first 3 characters is

slightly easier. As such, students first need to understand

the original implementation and apply the technique to

get the last 2 characters.

3) Similarly, if students understand how to generate 2

random numbers, generating 3 random numbers should

be easy for them.

As having been highlighted in the introduction, in

traditional programming assessment design, students have to

submit their source code and instructors grade the source code.

In this design, instructors need to check for plagiarism. Even

with the help of an automated tool such as JPlag [9],

instructors still need to manually verify the results produced

by the tools. Moreover, students are afraid to share their ideas

and knowledge with their peer because they are afraid that

their source code will be plagiarized. As such, this design

does not promote peer learning. It makes it more difficult for

students who have no knowledge in programming. This group

of students requires a lot of support from their peer.

In our assessment design, we do not check if students copy

source code. We are testing students’ understanding. Students

are free to use source code from the Internet or from their peer,

study the source code and learn from worked examples. This

is because we do not grade students based on the source code

submitted. We only evaluate the students based on the test

results, which students need to understand the source code

really well to pass the test. Therefore, even if students are

getting source code from their peer, they need to put an effort

to understand the source code. As students are not assessed by

the source code submitted but by the ability to understand and

change the source code, students are more willing to help their

peer to learn. By designing our in-class test based on the

content of the programming assignments, we also avoid the

problem highlighted by Barry [15], where students do not put

effort into assignments that are not graded.

C. Assignment Design to Maintain the Interest of More

Advanced Students

Jenkins et al. observed that students in a programming

course are usually from different majors and background and

that this diversity tended to increase over time [16]. The

diverse student population creates major challenges in

In the “PLAYER_MENU”, if user enters “New”, the program

will ask the player to enter his name. The program will then

automatically generate a unique ID and add his record to the

array playerList.

The uniqueID should consist of the player name’s first 3

letter, 2 generated digits and the last letter in the player’s name.

You should think about how to generate the 2 digits. Function

int checkUniqueness(char * idString) can be used to

check whether idString is unique. It returns 0 if idString is

not unique, returns 1 otherwise. To do this, you should insert

your own source code into the following two places:

/*insert your own code here (2)

This code segment should call to
checkUniqueness() to check for the
uniqueness of the generated ID */

/*insert your own code here (3)*/

Assume that the requirement for the player id has been changed. The

id should contain:

• 2 last characters from the player’s name,

• 3 random numbers and

• the first character from the player’s name.

Modify your implementation of the function void
generateId(char *name, char *id) accordingly

International Journal of Information and Education Technology, Vol. 6, No. 11, November 2016

876

teaching introductory programming courses. It is difficult to

decide on the depth of knowledge to be covered in the course

to suite all the students. Moreover, it is difficult to motivate

the interest of students whose minds are already set on a

different major [17]. As a consequence, it is very hard to

maintain the interest of this group of students in a

programming course.

Programming assignments can be designed with bonus

tasks. These tasks are more challenging which are designed

based on the basic tasks. Advanced students therefore need to

finish the basic tasks before moving on to the bonus ones. For

these bonus tasks, there are equivalent bonus questions in the

in-class tests.

Interestingly, we observed that there are about 70% of

students attempted the bonus tasks, including students who

has no programming experience. Advanced students are more

motivated to complete the bonus task ahead of time. They also

often provide help to their peer in attempting the bonus tasks.

We feel that student view the bonus tasks as some incentive or

some form of back-up plan in case that they fail to answer the

test questions for the basic tasks, they can attempt the bonus

questions.

III. INITIAL RESULTS

We have applied the assessment design strategies presented

in the previous section to a Programming Fundamentals (PF)

course in September 2014. The failure rate for this course as

reported in January 2015 is 6.3%. Other institutions have

reported failure rates for introductory programming courses

ranging from 25% to 50% [18], [19]. The failure rate in our

first cohort was radically lower. Surprisingly, the percentage

of students who received grade A- and above is 65.7%. We

strongly believe that this result is highly influenced by the

assessment design which encourages peer learning.

Within 13 weeks we managed to cover all the predefined

learning outcomes. Most of the learning outcomes are

incorporated in our lab assignments. The last week was

dedicated to revision. Therefore, practically, there are only 12

learning weeks. We designed 6 lab assignments and

conducted 3 in-class tests, one test after every two lab

assignments. Fig. 6 shows the students’ performance after the

first test. The first test was conducted at the fifth week of the

course.

Fig. 6. Test 1 results.

According to the figure, the grade average is A- (77.2%)

and the minimum grade is C. This result provided evidence to

show a really good achievement in term of students’

understanding on the fundamental concepts including:

algorithms and problem solving, testing and debugging,

functional decomposition, data types and control structures.

Starting from week 5, we taught students more complex

concepts such as functions, lists, arrays and pointers. The

second was conducted in week 9 to test all of these concepts.

According to a survey done by Iain et al. [20], pointers and

parameters passing to functions are some of the most difficult

programming concepts to comprehend for beginners.

The graph in Fig. 7 shows the results for the second test.

Surprisingly, the class grade average increases to A-

(75.67%). There are 2 students that failed the test (grade F).

However, it is encouraging that the number of students who

are mastering the concepts are increasing. We believe that this

is the good achievement of peer learning where students really

help each other to deeply gain the knowledge.

Fig. 7. Test 2 results.

Fig. 8 shows the last test results. The last test was

conducted in week 13. In the last four weeks of this course, we

taught students even more complex concepts in programming

which require a deep understanding of pointers including

strings, files, and advanced data structures such as linked list.

We did not expect that students’ performance would be as

good as in the second test because they had many assignments

in other modules due in the last week of the semester.

However, as shown in Fig. 8, the number of “A+ students”

increases as compared to the second test. The class average

increases to A- (77.97%).

Fig. 8. Test 3 results.

Fig. 9. "The knowledge gained is practical and useful."

International Journal of Information and Education Technology, Vol. 6, No. 11, November 2016

877

Students were surveyed during the last week of the course.

The survey results indicate that 100% of students agree that

“the module was covered adequately according to the

syllabus”. According to the graphs in Fig. 9 and Fig. 10, 98 %

of our students agreed/strongly agreed that “the knowledge

gained is practical and useful” and about 82% of our students

said that they have increased their competency as a result of

taking this course.

Fig. 10. "I have increased my competency as a result of taking this

course/subject."

Survey responses also suggest that students enjoy the

experience they had in this course. For example, students

were asked to “give responsible and constructive feedback

regarding what you liked about the course”. Students

responded with enthusiastic feedback as shown in Fig. 11.

We feel that with this approach to assessment design,

students are more responsible for their own learning and

understanding. They really need to understand what they are

doing and why they use a certain method to solve a problem.

On the other hand, instructors are relived from manual

plagiarism detection and review. With careful assignment and

test design that are aligned with the learning outcomes,

instructors can ensure that students really understand and be

able to apply taught concepts.

However, we believe that the best achievement from this

assessment design strategy is the active peer learning that can

be observed from the students. As we have mentioned in the

previous section that due to the assessment design, students

are willing to help their peer to learn. Students automatically

form study group, actively discuss about the lab problems that

they need to solve and independently write their source code

to make sure that they understand their own code to pass the

lab tests. Students also share their ideas freely on the school’s

forum and help each other to correct their understanding.

Fig. 11. Students’ comments on programming fundamentals.

IV. CONCLUSIONS

We have proposed an approach to design assignments and

assessments in programming courses to eliminate plagiarism.

In the domain of programming, learning from worked

examples is especially useful where students learn to interpret

existing source code and modify it to their needs. The key in

learning from examples is that we need to make sure that

students understand the examples, not just copy the source

code for the sake of completing assignments. As such, in our

design strategy, code skeletons are developed for each

assignment to prevent students from copying without

understanding. In-class assessments are then designed based

on the assignment content to test students’ understanding and

ability to modify their source code to meet new program

requirements.

The initial results and feedback from students show

potential benefit of our design method in improving students’

understanding and performance. More importantly, it

eliminates instructors’ time and effort in detecting plagiarism.

However, it is not easy to design a series of assignments

with code skeletons and accompanied assessments. We spend

a lot of time to designing the application and the code

skeletons for lab assignments. The difficulty lies in designing

code skeletons to test students’ skills and understanding.

Moreover, the assignments should not be used from one

cohort to another to totally eliminate plagiarism. We are

looking into assignment design patterns to enable instructors

to design similar assignments but in different application

domains to overcome this challenge.

REFERENCES

[6] P. Steel, "The nature of procrastination: a meta-analytic and theoretical

review of quintessential self-regulatory failure," Psychological

Bulletin, vol. 133, no. 1, p. 65, 2007.

[7] R. Harris, "Anti-plagiarism strategies for research papers," Virtual Salt,

vol. 7, 2002.

[8] K. W. Bowyer and L. O. Hall, "Reducing effects of plagiarism in

programming classes," Journal of Information Systems Education, vol.

12, no. 3, pp. 141-148, 2001.

[9] L. Prechelt, G. Malpohl, and M. Philippsen, "Finding plagiarisms

among a set of programs with JPlag," J. UCS, vol. 8, no. 11. pp. 1016,

2002.

[10] M. J. Wise, "YAP3: Improved detection of similarities in computer

program and other texts," ACM SIGCSE Bulletin, 1996.

[11] B. Zeidman. (2015). Tools and algorithms for finding plagiarism IN

source code. [Online]. Available:

http://www.ddj.com/architect/18440573

[12] A. Aiken, Moss (Measure of Software Similarity) Plagiarism

Detection System, 2000.

“Introduction to C is interesting. The method of teaching is

a lot different.”

“I probably learnt more (and understand more) about

pointer here than I ever did in my poly.”

“We are provided with sufficient opportunities to apply

learning in lab exercises.”

“I like the independent learning style during labs.”

“The lab exercises are challenging and fulfilling.”

“I understand C programming language from the very

basic of that language.”

International Journal of Information and Education Technology, Vol. 6, No. 11, November 2016

878

[1] M. Joy and M. Luck, "Plagiarism in programming assignments.

Education," IEEE Transactions, vol. 42, no. 2, pp. 129-133, 1999.

[2] A. M. Bejarano, L. E. García, and E. E. Zurek, "Detection of source

code similitude in academic environments," Computer Applications in

Engineering Education, vol. 23, no. 1, pp. 13-2, 2015.

[3] M. N. More, M. C. Patel, and M. A. Bhootra, "Plagiarism detection in

source code," International Journal for Innovative Research in

Science and Technology, vol. 1, no. 10, pp. 109 -112, 2015.

[4] S. Abraham and G. Milligan, "Software plagiarism in undergraduate

programming classes," Information Systems Education Conference,

2008.

[5] P. Clough, "Plagiarism in natural and programming languages: An

overview of current tools and technologies," Research Memoranda:

CS-00-05, Department of Computer Science, University of Sheffield,

UK, pp. 1-31, 2000.

[13] S. S. Abdul-Rahman and B. D. Boulay, "Learning programming via

worked-examples: Relation of learning styles to cognitive load,"

Computers in Human Behavior, vol. 30, pp. 286-298, 2014.

Minh Ngoc Ngo received a B.Eng in computer

engineering and a Ph.D in software engineering from

Nanyang Technological University (NTU) Singapore

in 2004 and 2009 respectively.

In 2009, she joined the Division of Information

Engineering, School of Electrical and Electronic

Engineering (EEE) in NTU as a teaching fellow. From

2011 to 2014, she was a lecturer at Singapore Institute

of Management (SIM) where she receives SIM lecturer of the year award in

2011 for lecturing and tutoring in the collaborative bachelor program with

University of Wollongong, Australia. Since 2014, she has been with

Singapore Institute of Technology (SIT) as an assistant professor. Her

current research interests include software design and automated software

testing, computer science education, innovative teaching and learning

pedagogy and effective curriculum design.

She was a recipient of the NTU research scholarship from 2004-2008 and

a recipient of the Singapore Ministry of Foreign Affairs (MFA)

undergraduate scholarship for the best ASEAN students from 2000-2004.

International Journal of Information and Education Technology, Vol. 6, No. 11, November 2016

879

[14] P. Brusilovsky, "WebEx: Learning from examples in a programming

course," WebNet, 2001.

[15] E. S. Barry, "Can paraphrasing practice help students define

plagiarism?" College Student Journal, vol. 40, no. 2, p. 377, 2006.

[16] T. Jenkins and J. Davy, "Dealing with diversity in introductory

programming," presented at 1st Annual LTSN-ICS Conference,

Citeseer, 2000.

[17] M. Pregitzer and S. N. Clements, "Bored with the core: Stimulating

student interest in online general education," Educational Media

International, vol. 50, no. 3, pp. 162-176, 2013.

[18] N. Herrmann, "Redesigning introductory computer programming

using multi-level online modules for a mixed audience," ACM SIGCSE

Bulletin, ACM, 2003.

[19] N. Nagappan, "Improving the CS1 experience with pair

programming," ACM SIGCSE Bulletin, ACM, 2003.

[20] I. M. A. G. ROWE, "Difficulties in learning and teaching programming

— Views of students and tutors," Education and Information

Technlogies, vol. 7, no. 1, pp. 55-66, 2002.

