

Abstract—Code reading is very important in programming

educations for students. Through reading and analyzing high

quality codes, they can study how to write a proper code and

modify it with given specification. To assist with the studies of

Java code reading, we proposed the value trace problem in
Web-based Java Programming Learning Assistant System

(JPLAS). JPLAS has been developed to provide self-learning

environments to students by our group. This value trace

problem asks students to trace the actual values of important

variables in a Java code implementing a fundamental data

structure or an algorithm. In this paper, we study value trace

problems for graph theory algorithms. First, using the Dijkstra

algorithm, we analyze the requirements and points in a value

trace problem for this representative graph theory algorithm.

Then, we generate problems for the two graph theory

algorithms to examine their problem size and the effectiveness in

Java programming studies. Our evaluation results show that

value trace problems for graph theory algorithms are viable

learning tools for algorithm understanding and code reading

whereas additional tools are necessary for code writing.

Index Terms—Java programming, JPLAS, code reading,

value trace problem, graph theory algorithm.

I. INTRODUCTION

The programming language Java is selected as the most

popular programming language [1]. Java produces high

reliability and portability under fine learning environments,
and has been extensively used for various practical systems
amongst industries. As a result, Java programming engineers
are in high demand from across industries. In fact, a lot of
universities and professional schools offer Java programming
courses to deal with these demands. A Java programming

course usually combines grammar instructions of classroom

lectures and programming exercises via computer operations.

To assist teachers and students in doing Java programming

exercises, we have developed the Web-based Java

Programming Learning Assistant System (JPLAS) [2], [3]. In

JPLAS, we proposed the value trace problem as a new type of

the element fill-in-blank problem to cultivate code reading

capabilities for novice students learning Java programming

[4], [5]. This problem allows students to trace the actual

values of important variables in a Java code to form a

fundamental data structure or an algorithm. The goal of this

value trace problem is to offer code reading opportunities for

Manuscript received December 1, 2015; revised March 11, 2016.

N. Funabiki, K. K. Zaw, and M. Kuribayashi are with the Department of

Electrical and Communication Engineering, Okayama University, Okayama,

Japan (e-mail: funabiki@okayama-u.ac.jp).

W.-C. Kao is with the Department of Electrical Engineering, National

Taiwan Normal University, Taipei, Taiwan (e-mail:

jungkao68@gmail.com).

students, so that they can analyze and understand the structure

as well as behaviors of the code for an algorithm. In addition,

it is also expected that students can write and modify the code

freely, in order to comply with the required specifications of

an assignment or a project using this algorithm.

A value trace problem can be generated by the following

seven steps: 1) select a high-quality class code for an

algorithm, 2) make the main class instantiating the class in 1)

if it does not contain the main method, 3) add functions to

output the changed values of important variables into a text

file while executing the code, 4) prepare the input data for this

algorithm code, 5) run the code to obtain the sequence of

variables in the text file, 6) blank some values in the text file

to be filled by students, and 7) upload the final Java code, the

blanked text file, and the correct answer file into the JPLAS

server, then add the brief description to the algorithm for a

new assignment. In our previous study [6], we proposed the

blank line selection algorithm to help blank values in 6). This

algorithm basically blanks the whole data in a line of output

data during the execution, so that at least one data in the line

will be changed (different) from the previous line. For

evaluations, we used this algorithm and asked students to

solve value trace problems for Stack, Queue, Insertion sort,

Selection sort, Bubble sort, Shell sort, and Quick sort.

In the graph theory, several important algorithms should be

regarded as fundamental algorithms in computer science for

students. They include the algorithms of Dijkstra, Prim,

Breadth First Search (BFS), Depth First Search (DFS), and

Maximum Flow. These algorithms have been used in many

important practical applications in computer systems,

information systems, and network systems [7].

In this paper, we study value trace problems for graph

theory algorithms. First, using Dijkstra algorithm as a

representative graph theory algorithm, we analyzed

requirements in value trace problems for graph theory

algorithms. Then, we generated problems for two algorithm

and examined the size of each problem. Next, we asked 25

students from our department to solve the problems for

evaluations of solution performances and effectiveness in

learning Java programming.

Many related studies have shown that animation tools can

improve teachings of fundamental data structure and

algorithms. In [8], Stallmann et al. presented a graph

algorithm animation tool called “Galant”. It simplifies the

work of the animator who designs an animation so that

students can create their own by adding visualization

directives to pseudocode algorithms. Animation examples of

Dijkstra, Kruskal, Depth-first search, and Insertion sort were

also given. In [9], Scott et al. proposed the direct

manipulation (DM) language for explaining algorithms by

Value Trace Problems for Graph Theory Algorithms in

Java Programming Learning Assistant System

Nobuo Funabiki, Khin Khin Zaw, Minoru Kuribayashi, and Wen-Chung Kao

International Journal of Information and Education Technology, Vol. 7, No. 5, May 2017

374doi: 10.18178/ijiet.2017.7.5.897

manipulating visualized data structures. In [10], Osman et al.

introduces a visualized learning environment that combines

the algorithm animation and the program animation, as well as

to assess its effectiveness to enhance the computer science

education and data structure course of information

technology.

The paper is organized as follows: Section II overviews

JPLAS as the platform for value trace problems. Section III

reviews Dijkstra algorithm. Section IV presents the generated

value trace problem for Dijkstra algorithm. Section V shows

evaluations of value trace problems for two graph theory

algorithms. Section VI concludes this paper with future

studies.

II. OVERVIEW OF JPLAS

In this section, the JPLAS is viewed as the platform of

providing value trace problems for students using a Web

browser.

A. Software Platform of JPLAS

JPLAS is a typical Web application system. Fig. 1

illustrates the software platform for JPLAS. In the JPLAS

server, we adopt Linux for the operating system, Tomcat for

the Web application server, JSP/Servlet for application

programs, and MySQL for the database. The user can access

JPLAS through a Web browser.

Fig. 1. Software platform of JPLAS.

B. Two Problems Types in JPLAS

JPLAS mainly provides two types of problems, namely the

code writing problem [2] and the fill-in-blank problem [3] to

support self-studies of students at various learning levels.

JPLAS can assist teachers in reducing their workloads of

evaluating codes and writing comments, while boosting

students’ motivations with quick feedbacks at the same

time. This system is expected to improve Java programming

education environments in any institute around the world.

1) Code Writing Problem: The code writing problem

intends to help students to learn how to write Java source

codes from scratch. The implementation of this JPLAS

function is based on the test-driven development (TDD)

method [11], which uses an open source framework JUnit

[12]. Junit automatically tests the answer code in the

server to verify its correctness when submitted by a

student. Thus, a student can easily repeat the learning

cycle of writing, testing, modifying, and resubmitting a

code by him/herself. However, the drawback of this

function is that any student needs to write a code so as to

be tested with the test code prepared by the teacher on

JUnit. Thus, this function may be considered to be too

advanced for novice students learning Java

programming.

2) Fill-in-blank Problem: The fill-in-blank problem allows

a student to learn the Java grammar and basic

programming skills through code reading. In a

fill-in-blank problem, a Java code with several blank

elements, called a problem code, is shown to a student,

where he/she needs to fill in the blanks.

This problem code should be of high-quality worth for code

reading. An element is defined as the least unit of a code, such

as a reserved word, an identifier, and a control symbol.

A reserved word is a fixed sequence of characters that has

been defined in Java grammar to represent a specified

function, and should be mastered first by the students. An

identifier is defined by the author as a sequence of character in

the code to represent a variable, a class, or a method. A

control symbol in this paper includes other grammar elements

such as “.” (dot), “:” (colon), “;” (semicolon), “(,)” (bracket),

“{, }” (curly bracket). The correctness of each answer from a

student is checked through string matching with the

corresponding correct answer in the server. The value trace

problem in this paper has been implemented in JPLAS as a

variant of the fill-in- blank problem that uses the same

functions in user interface and the answer checking.

III. DIJKSTRA ALGORITHM

In this section, we review Dijkstra algorithm that finds the

shortest path from a given node to the other nodes in a given

weighted graph [13].

A. Algorithm Overview

Dijkstra algorithm computes a solution for the single

source shortest path problem in a weighted graph G = (V, E)

where each edge in E has a non-negative weight [14].

1) It starts by assigning initial values for the distances from

the starting node s to the other nodes in G.

2) It operates in steps where the shortest distance from node

s to another node is improved.

B. Pseudo Code for Dijkstra Algorithm

The pseudo code for Dijkstra algorithm is described as

follows:

1: Procedure single-source-Dijkstra(G, w, s)

2: begin

3: for each vertex u in V

4: begin

5: dist[v] = INFINITY

6: pred[v] = NULL

7: end
8: add all the vertices in V to Q
9: while (!ISEMPTY (Q))
10: begin
11: Extract from Q a vertex u such that

dist[u] is minimum

12: remove u from Q
13: for each vertex v adjacent to u do
14: if dist[v] > dist[u] + w(u,v)
15: then
16: begin
17: dist[v] = dist[u] + w(u,v)
18: pred[v] = u
19: end
20: end

International Journal of Information and Education Technology, Vol. 7, No. 5, May 2017

375

21: end

For this pseudo code, a connected weighted graph G = (V,

E) with a cost function w to an edge, and a source node s are

given as the inputs, and a shortest path tree T is generated as

the output. In this pseudo code, dist[v] represents the

minimum weight of the path from s to v. It is initialized by

INFINITY which represents a larger value of any path

weight. The list Q contains all the nodes whose shortest paths

have not yet been found. pred[v] represents the parent

vertex of v in T.

C. Requirement Analysis in Value Trace Problem for

Dijkstra Algorithm

As mentioned earlier, the goal of value trace problems is to

give code reading opportunities to students, so that they can

analyze and understand the structure and behaviors of a code

for an algorithm, while they can write and modify the code

freely under required specifications in an assignment or a

project when using this algorithm. Thus, we extract the points

or parts of the code where students tend to find the reading

and writing to be difficult.

After interviewing some students in the Java programming

course in our department, we found the following three points

to be considered in value trace problems for Dijkstra

algorithm:

P1: How to give the information of a graph G = (V, E, W) as

an input to the algorithm:

Unlike a sorting algorithm, a graph is composed with

complex information of vertices V, edges E, and weights W.

An edge must be given to a pair of vertices with its weight.

The adjacent vertex information in line 13 in the pseudo code

is also important. Thus, students may find the corresponding

code parts to be difficult.

P2: How to implement line 9 in the pseudo code:

This algorithm uses the list Q that contains the vertices

whose shortest paths are not found. Novice students are not

familiar with handling this kind of list which includes the

initialization and the termination judgement.

P3: How to implement line 11 in the pseudo code:

Using the list Q, this algorithm finds a vertex whose

distance is the shortest among those undiscovered. However,

the corresponding part of the code is considered to be hard for

novice students to understand.

IV. VALUE TRACE PROBLEM FOR DIJKSTRA ALGORITHM

In this section, we present the value trace problem for

Dijkstra algorithm based on the requirement analysis in

Section III-C.

A. Adopted Java Classes

In this paper, we adopted the following three Java classes to

generate the value trace problem for Dijkstra algorithm.

1) WeightedGraph Class: WeightedGraph class defines the

necessary procedures to handle the input graph for

Dijkstra algorithm. It contains the methods of setLabel,

getLabel, addEdgeWeight, getEdgeWeight, and

neighbors. setLabel method sets the label for the

specified vertex. getLabel method gets the label of the

specified vertex. addEdgeWeight method assigns the

weight to the edge specified by the incident vertices.

setLabel and addEdgeWeight methods are used to

generate a weighted connected graph. neighbors method

returns the list of the neighbor vertices of the vertex in the

argument, which is used for line 13 in the pseudo code in

Section III-B. getEdgeWeight method returns the weight

of the edge in the argument, which is used for lines 14 and

17 in the pseudo code.

1: public class WeightedGraph {

2: public int [][] edges;

3: public String [] lables;

4: public WeightedGraph(int verSize) {

5: edges = int[verSize][verSize];

6: labels = new String[verSize];

7: }

8: public int vertexSize() {

9: return labels.length;

10: }

11: public void setLabel(int vertex ,

String label) {

12: labels[vertex] = label;

13: }

14: public Object getLabel(int vertex) {

15: return labels[vertex];

16: }

17: public void addEdgeWeight(int source,

int target, int weight) {

18: edges[source][target] = weight;

19: }

20: public int getEdgeWeight(int source,

int target) {

21: return edges[source][target];

22: }

23: public int [] neighbors(int vertex) {

24: int count = 0;

25: for (int i = 0; i <

edges[vertex].length;

i ++) {

26: if (edges[vertex][i]>0) count++;

27: }

28: final int [] answer = new int[count];

29: count = 0;

30: for (int i = 0; i <

edges[vertex].length;

i ++) {

31: if (edges[vertex][i] > 0)

answer[count++] = i;

32: }

33: return answer;

34: }

35:}

2) DijkstraMethod Class: DijkstraMethod class produces

the shortest path tree T, which finds the shortest path

from the source node s to another node in an ascending

order of the distance in the graph G [15].

1: public class DijkstraMethod {

2: public static int[] dijkstra(

WeightedGraph G, int startV) {

3: final int [] dist = new

int[G.vertexSize()];

4: final int [] pred = new

int[G.vertexSize()];

5: final boolean[] visited =

new

boolean[G.vertexSize()];

6: for (int i = 0; i < dist.length; i ++)

{

7: dist[i] = Integer.MAX_VALUE;

International Journal of Information and Education Technology, Vol. 7, No. 5, May 2017

376

8: }

9: dist[startV] = 0;

10: for (int i = 0; i < dist.length-1;

i ++) {

11: final int nextV = minVertex(G, dist,

visited)

;

12: visited[nextV] = true;

13: final int [] neighV =

G.neighbors(nextV);

14: for (int j = 0; j < neighV.length;

 j ++) {

15: final int nbrV = neighV[j];

16: final int newD = dist[nextV] +

G.getEdgeWeight(nextV, nbrV);

17: if (dist[nbrV] > newD) {

18: dist[nbrV] = newD;

19: pred[nbrV] = nextV;

20: }

21: }

22: }

23: return pred;

24: }

25: private static int

minVertex(WeightedGraph

G, int [] dist, boolean [] visit) {

26: int minD = Integer.MAX_VALUE;

27: int minV = -1;

28: for (int i = 0; i < dist.length;

i ++) {

29: if (!visit[i] && dist[i] < minD) {

30: minV = i;

31: minD = dist[i];

32: }

33: }

34: return minV;

35: }

36: }

3) Main Class: Main class generates an input graph to the

algorithm using WeightedGraph class, and finds the

shortest path tree using DijkstraMethod class.

1: class Main {

2: public static void main (String[] args)

{

3: final WeightedGraph inG =

new WeightedGraph(6);

4: inG.setLabel(0, "v0");

5: inG.setLabel(1, "v1");

6: inG.setLabel(2, "v2");

7: inG.setLabel(3, "v3");

8: inG.setLabel(4, "v4");

9: inG.setLabel(5, "v5");

10: inG.addEdgeWeight(0,1,2);

11: inG.addEdgeWeight(0,5,9);

12: inG.addEdgeWeight(1,2,8);

13: inG.addEdgeWeight(1,3,15);

14: inG.addEdgeWeight(1,5,6);

15: inG.addEdgeWeight(2,3,1);

16: inG.addEdgeWeight(2,4,7);

17: inG.addEdgeWeight(3,4,3);

18: inG.addEdgeWeight(5,4,3);

19: DijkstraMethod.dijkstra(inG,0);

20: }

21: }

B. References

Using the Java code and the output file, we generate a value

trace problem for Dijkstra algorithm considering the three

points in Section III-C.

1) Problem for P1: For P1, Main class provides the graph

information of this code, namely, the vertex labels, the

edge weights, and the adjacent vertices to each vertex, by

using WeightedGraph class. Since the trace of the

variables for the labels and weights are obvious, the

following statements are inserted to find the values of the

corresponding variables to the adjacent vertices after line

18 in Main:

A1: System.out.println("What are the

neighbors

for each vertex ?");

A2: for (int i = 0; i < inG.vertexSize();

i ++) {

A3:

System.out.print(inG.getLabel(i)+"->");

A4: int [] neighV = inG.neighbors(i);

A5: for (int j = 0; j < neighV.length;

j ++) {

A6: System.out.print(" "+ neighV[j]+",");

A7: }

A8: System.out.println();

A9: }

Then, by blanking the numbers randomly in the output file

with 50% probability, the following value trace problem for

P1 is generated:

What are the neighbors for each vertex ?

v0-> 1, _1_ ,

v1-> _2_ , 3, _3_ ,

v2-> 3, 4,

v3-> _4_ ,

v4->

v5-> 4,

2) Problem for P2 and P3: For P2, DijkstraMethod class

handles the list Q using an array visited[]. For P3,

DijkstraMethod class realizes the procedure in minVertex

method using an array dist[]. These arrays are defined

for the vertices. Because visited[] is a Boolean

variable and is used in line 11, the variable nextV

should be traced instead. nextV can only be correctly

traced when visited[] is traced accurately. To trace

the values of the corresponding variables, the following

statement is inserted after line 9 in DijkstraMethod:

B1: System.out.println("What are values of

“minVertex” and updated “dist[]” at each

iteration step ?");

and after line 12:

B2: System.out.println("step"+(i+1)+"->"

+nextV+”, ”);

and after line 20:

B3: System.out.println("("+nbrV+","

+dist[nbrV]+ ")");

and after line 21:

B4: System.out.println();

Then, by blanking the numbers randomly in the output file

with 50% probability, the following value trace problem for

P2 and P3 is generated:

What are values of “minVertex” and updated

“dist[]” at each iteration step ?

International Journal of Information and Education Technology, Vol. 7, No. 5, May 2017

377

step 1-> _5_ ,(1,2)(_6_ , _7_)

step 2-> _8_ ,(2,10)(_9_ ,17)(5,8)

step 3->5,(_10_ , _11_)

step 4->2,(_12_ , _13_)(4, 11)

step 5-> _14_ ,(_15_ , _16_)

step 6->4,

V. EVALUATIONS

In this section, we evaluate the application of value trace

problems for two graph theory algorithms, Dijkstra and Prim,

to students in our department.

A. Value Trace Problem for Prim

In this evaluation, we adopted the Java code for Prim [16]

which has the almost same code structure as Dijkstra.

Actually, the only difference is the update of “dist[]”, where

the smallest edge weight between a visited vertex and each

unvisited vertex is stored instead of the distance from the

starting node for Dijkstra. Thus, we should consider the three

points in Section III-C, because these algorithms are as the

first step evaluation of value trace problems for graph theory

algorithms. Here, we made a small change to the code for

Prim. To let students carefully read the code for Prim, we

changed line 30 in DijkstraMethod class to dist[i] <=

minD so that the vertex with the largest index is selected there,

unlike the smallest index used for Dijkstra.

B. Size of Generated Value Trace Problems

First, we evaluate the problem size. Table I shows the

number of vertices in the adopted graph, the number of lines

(NOL) in the problem code, and the number of blanks (NOB)

for each value trace problem. This table indicates that NOL is

much larger and NOB is smaller, if compared with the

average ones (NOL=35.2, NOB=23.4) with fundamental data

structures and sorting algorithms in [5] where the applied

blank selection algorithm is of 50% probability. One reason

of the larger NOL comes from the graph generation procedure.

Thus, it is our future goal to show important progress such as

the problem code and the answer forms on the user interface

to reduce the difficulty of solving problems for novice

students.

TABLE I: SIZE OF VALUE TRACE PROBLEM FOR TWO GRAPH THEORY

ALGORITHMS

algorithm # of vertices NOL NOB

Dijkstra 6 123 16

Prim 6 120 16

C. Solutions by Students

For student evaluations of the solution performances, we

asked 25 sophomore students in our department who are

currently taking both the Java programming course and the

graph theory course, to solve the value trace problems of the

two graph theory algorithms. In previous semesters, they

completed the C and C++ programming courses in the

department before this Java course. In addition, they are

learning the grammar for Java programming. After they

solved the two value trace problems, we asked them to answer

the 10 questions in Table II with five levels (1: No, 2: Rather

No, 3: Neutral, 4: Rather Yes, 5: Yes) for the questionnaire.

Table III shows the results for this questionnaire, where the

average correct answer rate and number of answer

submissions in JPLAS among the students are also depicted to

evaluate the solution performances by them.

TABLE II: QUESTION IN QUESTIONNAIRE

ID question

Q1 Did you understand Dijkstra/Prim algorithm?

Q2 Did you understand the code for Dijkstra/Prim algorithm?

Q3 Can you write a code for Dijkstra/Prim algorithm?

Q4
Do you think the value trace problem for Dijkstra/Prim

algorithm is easy?

Q5
Do you think the value trace problem is useful for code

reading for Dijkstra/Prim algorithm?

TABLE III: RESULTS IN SOLUTION AND QUESTIONNAIRE

ID Dijkstra Prim

correct answer rate (%) 100 91.25

of submissions 14.6 6.68

Q1 4.12 3.96

Q2 2.84 2.8

Q3 1.64 1.56

Q4 3.28 3.04

Q5 3.48 3.4

First, we analyze the results for each question to the both

algorithms. From Q1, most students can understand the

algorithms sufficiently after solving these value trace

problems, whereas the scores of some student’s the mid-term

examination in the graph theory course are much worse than

the results shown above. From Q2, students feel that their

understandings of the Java codes for the algorithms are

moderate. From Q3, most students feel that they do not have

enough confidence in writing the codes for the algorithms.

This suggests that the study of code reading through solving

current value trace problems is not taught enough for code

writing. Our future work will further discuss the necessity to

improve and use different learning tools together for code

writing.

From Q4, many students think these value trace problems

are not too hard or easy to solve, which indicates that the

levels are suitable for students who have just started learning

Java programming. This observation is also supported from

the high correct answer rates. From Q5, most students agree

that the value trace problem is useful for code reading study.

Then, we analyze the differences of the results between the

two algorithms. From the correct answer rate and the number

of submissions, students spent a long time to solve the

problems for Dijkstra with higher answer submissions but

with more correct answer rates than Prim. The reduce of the

answer submissions between the two may suggest that

students find it easier when they first understand the code for

Dijkstra than Prim, despite the change of the critical

statement described in Section V-A. However, this small

change of code may turn the evaluation of students in Q1-Q4

to worse results for Prim.

D. Summary of Evaluations

Here, we summarize our evaluation results for the value

trace problems for Dijkstra and Prim algorithms in this paper.

 The number of statements becomes much larger,

compared with the number of blanks.

 Through solving value trace problems, students can

International Journal of Information and Education Technology, Vol. 7, No. 5, May 2017

378

obtain sufficient understanding of graph theory

algorithms, moderate grasp of code reading, yet lack of

confidence in code writing.

 Through reading similar codes, students can speed up

code reading.

 The levels of value trace problems generated for graph

theory algorithms are suitable for students who have just

started studying Java programming.

VI. CONCLUSION

In this paper, we generated value trace problems for two

typical graph theory algorithms, and evaluated their problem

sizes, solution performances, and effectiveness in code

reading when applied to sophomore students. The results

show that value trace problems for graph theory algorithms

are viable learning tools for algorithm understanding and

code reading, whereas additional tools are necessary for code

writing. In future works, we will generalize important points

for graph theory algorithms, improve the value trace problem

as a learning tool of code reading including showing the

problem code on the user interface, investigate the combined

use of additional tools for code writing, and evaluate them in

Java programming course.

REFERENCES

[1] S. Cass. The 2015 top ten programming languages. [Online].

Available:

http://spectrum.ieee.org/computing/software/the-2015-top-ten-progra

mming-languages/?utm so

[2] N. Funabiki, Y. Matsushima, T. Nakanishi, K. Watanabe, and N.

Amano, “A Java programming learning assistant system using

test-driven development method,” IAENG International Journal of

Computer Science, vol. 40, no.1, pp. 38-46, Feb. 2013.

[3] Tana, N. Funabiki, and N. Ishihara, “A proposal of graph-based blank

element selection algorithm for Java programming learning with

fill-in-blank problem,” in Proc. International Multi Conference of

Engineers and Computer Scientists, pp. 448-453, March 2015.

[4] K. K. Zaw and N. Funabiki, “A concept of value trace problem for Java

code reading education,” in Proc. 4th International Congress on

Advanced Applied Informatics, pp. 253-258, July 2015.

[5] K. K. Zaw, N. Funabiki, and W.-C. Kao, “A proposal of value trace

problem for algorithm code reading in Java programming learning

assistant system,” Information Engineering Express, vol. 1, no. 3, pp.

9-18, Sep. 2015.

[6] K. K. Zaw and N. Funabiki, “A blank line selection algorithm for value

trace problem in Java programming learning assistant system,” in Proc.

IEICE Society Conf., pp. S19-S20, Sep. 2015

[7] D. S. Hochbaum. Graph algorithms and network flows. [Online].

Available:

http://www.ieor.berkeley.edu/_hochbaum/files/ieor266-2012.pdf

[8] M. Stallmanny, J. Cockrell, T. Devriesz, A. McCabex, and M. Owoc,

“Galant: A graph algorithm animation tool,” Tech. Report, North

Carolina State Univ., June 2014.

[9] J. Scott, P. J. Guo, and R. Davis, “A direct manipulation language for

explaining algorithms,” in Proc. IEEE Symp. Visual Languages and

Human-Centric Computing, pp. 45-48, July 2014.

[10] W. I. Osman and M. M. Elmusharaf, “Effectiveness of combining

algorithm and program animation: A case study with data structure

course,” Issues in Informing Science and Information Technology, pp.

155-168, vol. 11, 2014.

[11] K. Beck, Test-driven Development: by Example, Boston, MA:

Addison-Wesley, 2002.

[12] JUnit. A simple framework to write repeatable tests. [Online].

Available: http://www.junit.org/

[13] S. K. Chang, Data Structures and Algorithms, River Edge, NJ: World

Scientific Pub., Oct. 2003.

[14] Dijkstra algorithm: Short terms and pseudocode. [Online]. Available:

http://www.gitta.info/Accessibiliti/en/html/Dijkstra_learningObject1.

html

[15] The Java Program: Dijkstra.java. [Online]. Available:

http://cs.fit.edu/~ryan/java/programs/graph/Dijkstra-java.html

[16] The Java Program: Prim.java. [Online]. Available:

http://cs.fit.edu/~ryan/java/programs/graph/Prim-java.html

Nobuo Funabiki received the B.S. and Ph.D. degrees

in mathematical engineering and information physics

from the University of Tokyo, Japan, in 1984 and

1993, respectively. He received the M.S. degree in

electrical engineering from Case Western Reserve

University, USA, in 1991. From 1984 to 1994, he was

with Sumitomo Metal Industries, Ltd., Japan. In

1994, he joined the Department of Information and

Computer Sciences at Osaka University, Japan, as an assistant professor, and

became an associate professor in 1995. He stayed at University of Illinois,

Urbana-Champaign, in 1998, and at University of California, Santa Barbara,

in 2000-2001, as a visiting researcher. In 2001, he moved to the Department

of Communication Network Engineering (currently, Department of

Electrical and Communication Engineering) at Okayama University as a

professor. His research interests include computer networks, optimization

algorithms, educational technology, and web technology. He is a member of

IEEE, IEICE, and IPSJ.

Khin Khin Zaw received the B.E. degree in

information technology from Technological

University Hmawbi, Myanmar, in 2006, and the M.E.

degree in information technology from Mandalay

Technological University (MTU), Myanmar, in 2011,

respectively. She is currently a Ph.D. candidate in the

Graduate School of Natural Science and Technology

at Okayama University, Japan. Her research interests

include educational technology and Web service systems.

Minoru Kuribayashi received B.E., M.E., and D.E

degrees from Kobe University, Kobe, Japan, in 1999,

2001, and 2004. From 2002 to 2007, he was a

research associate in the Department of Electrical and

Electronic Engineering, Kobe University. In 2007, he

was appointed as an assistant professor at the Division

of Electrical and Electronic Engineering, Kobe

University. Since 2015, he has been an associate

professor in the Graduate School of Natural Science and Technology,

Okayama University. His research interests include digital watermarking,

information security, cryptography, and coding theory. He received the

Young Professionals Award from IEEE Kansai Section in 2014.

Wen-Chung Kao received the M.S. and Ph.D.

degrees in electrical engineering from National

Taiwan University, Taiwan, in 1992 and 1996,

respectively. From 1996 to 2000, he was a department

manager at SoC Technology Center, ERSO, ITRI,

Taiwan. From 2000 to 2004, he was an assistant vice

president at NuCam Corporation in Foxlink Group,

Taiwan. Since 2004, he has been with National

Taiwan Normal University, Taipei, Taiwan, where he is currently a professor

in the Department of Electrical Engineering and the dean in the School of

Continuing Education. His current research interests include

System-On-a-Chip (SoC), flexible electrophoretic display, machine vision

system, digital camera system, and color imaging science.

International Journal of Information and Education Technology, Vol. 7, No. 5, May 2017

379

