

Abstract—This paper proposed a new algorithm for

answering a novel kind of nearest neighbour search, that is,

continuous mutual nearest neighbour (CMNN) search. In this

kind of query, by providing a set of objects O and a query object

q, CMNN continuously returns the set of objects from O, which

is among the k1 nearest neighbours of q; meanwhile, q is one of

their k2 nearest neighbours. CMNN queries are important in

many applications such as decision making, pattern recognition

and although it is useful in service providing systems, such as

police patrol, taxi drivers, mobile car repairs and so forth. In

this paper, we have proposed the first work for handling CMNN

queries efficiently, without any assumption on object movements.

The most important feature of this work is incremental

evaluation and scalability. Utilizing an incremental evaluation

technique led to a significant decrease in processing time.

Index Terms—Moving objects, nearest neighbor, query

processing, spatio-temporal.

I. INTRODUCTION

Nowadays, the abundant use of mobile devices and

wireless networks has created new challenges for

spatiotemporal applications. Examples of such applications

include traffic monitoring and location-aware services. Due to

the highly dynamic nature of moving objects, the results of

queries in such environments are continuously changing;

therefore, these applications require continuous evaluation for

ensuring they provide the correct results. Objects and queries

move freely and unpredictably in space. They send new

location updates to system when they move from one location

to another. The number of updates that the system receives is

noticeably high and the queries that are issued last for

extended time intervals. If some objects change their

locations, the answer to a query may become invalid and will

need to be computed once again.

A subject that has recently received much attention is the

monitoring of continuous queries. “Place”Mokbel, Xiong [1]

as proposed by Mokbel is a framework that continuously

monitors ranged queries sent by moving objects. Continuous

nearest neighbour search with a trajectory assumption for

queries is proposed in [2]. Some research [3]-[5] has been

conducted on continuous nearest neighbour monitoring

Manuscript received December 21, 2015; revised March 15, 2016.

Shiva Ghorbani is with School of Computer Engineering, Iran University

of Science and Technology, Tehran, Iran (e-mail:

shiva_ghorbani@comp.iust.ac.ir).

Mohammad Hadi Mobini is with the Department of Computer

Engineering, Sharif University of Technology, Tehran, Iran (e-mail:

mobini@ce.sharif.edu).

Behrouz Minaei-Bidgoli is with the School of Computer Engineering,

Iran University of Science and Technology, Tehran, Iran (e-mail:

b_minaei@iust.ac.ir).

without any assumption for objects or query movement. All of

the above used a grid for indexing objects and queries. Other

studies [6], [7] have used an R-tree- like structure for indexing

objects and queries, or have applied it as a secondary index.

This paper studies a specific type of continuous nearest

neighbour query on moving objects in spatiotemporal datasets,

namely, continuous mutual nearest neighbour (CMNN)

search. These types of queries are useful in applications that

involve decision making, pattern recognition and data mining.

CMNN is also useful in service providing systems, which are

continuously, change their locations. These kinds of systems

are utilizing in police patrol, cab, mobile car repairs, or any

mobile service providers.

Continuous Mutual Nearest Neighbour (CMNN) search is

a kind of query in which, by providing a set of objects O and a

query object q, CMNN continuously returns the set of objects

from O, which is among the k1 nearest neighbours of q;

meanwhile, have q as one of their k2 nearest neighbours.

Having a dataset D of objects, a query object q, and two

parameters k1, k2, CMNN continuously returns objects O ∊ D

that O ∊ NNk1 (q) and q ∊ NNk2 (O). CMNN should find those

objects which are the nearest neighbours of the query point;

meanwhile, the query point is a nearest neighbour of answer

objects. Despite of usefulness of CMNN, there is not any

efficient method for handling this kind of queries. In this

paper, we have proposed the first work for handling CMNN

queries efficiently, without any assumption on object

movements. This paper does not assume any prediction or

trajectories regarding the movement of objects and queries.

Objects and queries can move freely in the space; by

considering a monitoring region for the CMNN query, it

becomes possible to process these types of queries

incrementally upon updates which are received from moving

objects to the system.

CMNN has been used for producing hierarchical clustering

trees [8]. The improvement of a k-means algorithm through

the use of k-mutual nearest neighbour is addressed in [9].

Studies closely related to the present research include [10],

[11]. In [10], an efficient method is proposed for answering

mutual nearest neighbour search in spatial databases, where it

is assumed that all objects and query points are stationary.

This approach utilizes the TPL technique [12] with KNN

search to answer mutual nearest neighbour queries.

Processing mutual nearest neighbour searches for moving

objects by assuming trajectories for objects and queries is

addressed in [11]. The present research assumes that all

objects and queries have trajectories, and answers the mutual

nearest neighbour query with this restriction.

To our knowledge, there is no existing research on

processing continuous mutual nearest neighbour searches on

Continuous Mutual Nearest Neighbour Processing on

Moving Objects in Spatiotemporal Datasets

Shiva Ghorbani, Mohammad Hadi Mobini, and Behrouz Minaei-Bidgoli

International Journal of Information and Education Technology, Vol. 7, No. 5, May 2017

392doi: 10.18178/ijiet.2017.7.5.900

International Journal of Information and Education Technology, Vol. 7, No. 5, May 2017

393

moving objects in spatiotemporal datasets without assuming

any restriction on object movement or query movement.

Therefore, in this paper, we propose a novel solution for

solving these types of queries.

The rest of this paper is organized as follows. Section II

reviews related researches. Section III presents the

characteristics of CMNN and a naïve solution is proposed for

answering these types of queries. Section IV presents our

method for processing CMNN queries. Section V describes

how updates are handled incrementally by our method.

Section VI presents our experimental results and findings. In

Section VII, we calculate and compare Big-O of the proposed

algorithm, as well as a baseline algorithm. Finally, Section

VIII concludes this paper.

II. RELATED WORKS

In this section, we briefly present nearest neighbour and

reverse nearest neighbour search algorithms, as our work is

based on these two techniques. There are many index

structures available for both NN & RNN indexing, most of

which are based on R-tree. R-tree and its derivations are very

popular for indexing spatial datasets. However, in the present

paper, we used a grid structure for indexing our objects and

queries, as it was shown in [13] to be the best choice for

managing moving objects in main memory. In the following

we describe some NN and RNN algorithms.

A. NN Query

A nearest neighbour query (NN) returns the nearest object

O in dataset D that has minimum distance to the query. NN

and KNN algorithms have been well-researched by, for

example, [14], [15]. The primary approach of these

algorithms is using a variant of R-tree structure [16]-[18] for

indexing objects. R-tree uses a branch-and-bound technique

and some distance metrics with which to prune search regions.

Another extension of R-tree is proposed for indexing

spatiotemporal databases, known as time parameterized

R-tree (TPR-tree) [19]. TPR-tree is an extended version of

R-tree that introduces velocity bounding rectangle (VBR) for

non-leaf entries. In this method, objects are grouped together

according to their positions and velocities, and then the rest of

VBR method is handled like R-trees. Although these

techniques are popular and well-established, they work well

only for snapshot queries. For continuous queries where

objects change location frequently and updating the query

answers is necessary, these indexing techniques are not useful.

Additionally, in the case of continuous queries, we need to

update answers frequently; therefore, updating the tree too

many times is not efficient [13]. As a result, we applied a grid

as an indexing structure for moving objects.

Several approaches for evaluating nearest neighbour in

high dimensional space have been proposed [20]-[22]. A

Voronoi cell was utilized for answering NN queries, as

proposed by Zhang [23]. A Voronoi cell is the area in which

the NN of a query will remain the same. The algorithm

therefore returns the NN according to a valid time result.

Constrained nearest neighbour search was proposed by

Ferhatosmanoglu [24] to answer nearest neighbour queries

with range constraints. This algorithm retrieves the NN in a

specific and constrained area of space. Additional research

has been conducted to answer queries related to constrained

nearest neighbour (e.g., [25]).

Studying KNN queries for moving objects was first

addressed in [26]. Following on, some studies have conducted

on range and KNN queries for moving objects [27]-[29].

Continuous k-nearest-neighbour queries (CKNN) are

addressed have been addressed in several studies [4]-[7]. Two

main approaches in this context are sampling and trajectory.

In the sampling approach, queries are evaluated multiple

times. In each time interval or with each query movement, the

query should be re-evaluated [4], [5], [7]. In the trajectory

approach [2], [6] a trajectory is assumed for a moving query.

The CKNN in this approach returns the nearest neighbour of

every point on the query line segment. It assumes that objects

are stationary and that only the query is moving. When the

trajectory of a query changes, the query should be

re-evaluated.

The following briefly explains some algorithms that have

been proposed for answering continuous nearest neighbour

searches for moving objects. In YPK_CNN [29], the query is

evaluated in two steps. The query is placed in a cell, Cq. First,

the query searches for k number of objects in Cq and the cells

that are exactly in the next level (the cells that surround Cq). If

k objects are found in this level, YPK_CNN searches the cells

at the next two levels to ensure the correct result.

Proposed by Xiong [5], SEA_CNN is a framework for

answering continuously concurrent KNN queries. It focused

on scalability and incremental evaluation, and does not

assume any module for evaluating the initialization of a newly

issued query. Its main goal is monitoring changes that occur

during the time that a query monitors the NNs. It

incrementally changes the query answer using objects or

query movements.

Mouratidis proposed CPM (conceptual partitioning

method) [4] for answering continuous nearest neighbour

queries efficiently. CPM disposes grid cells into conceptual

rectangles that have a direction and level number. It visits the

cells in ascending order of minimum distance between a cell

and the position of q query. CPM initializes a heap by

inserting Cq (the cell that contains the query point) and the

zero level rectangles. Then, by de-heaping the entries, if the

entry is a cell, the algorithm will analyse the objects inside it

and update the results. If the entry is a rectangle, CPM

en-heaps all the cells belonging to that rectangle, as well as in

the next level rectangles with the same direction. The

algorithm will continue until the heap is empty or until there is

an object whose distance to the query is larger than the

distance of KNN. CPM has some methods for handling query

updates and multiple object updates.

Cheema proposed CircularTrip [3] in which, given a radius

r and the location of a query q, it returns a set of cells that

intersect with the circle of radius r and q as the focal point.

CircularTrip improves efficiency and space requirements by

minimizing the number of cells that need visiting. Like

previous method CircularTrip is also using a heap to sort the

cells that should be visited in the future.

B. RNN Query

A reverse nearest neighbour (RNN) query issued to the

International Journal of Information and Education Technology, Vol. 7, No. 5, May 2017

394

system returns all objects that have a query as their nearest

neighbour. A reverse k-nearest neighbour (RKNN) query is

similar to RNN, the difference being that a specified query

point q is one of the KNN of object O. Therefore, a RKNN

returns the set of points that have q as one of their KNNs.

Following on, we summarize some of research on

RNN/RKNN, focusing specifically on continuous RNN

(CRNN) and explaining it in detail.

Studies that have been conducted on this subject are

divided into two main groups. The first is the algorithm-based

on pre-computation approach; the second is algorithms

without pre-computation. Pre-computation-based algorithms

have two steps. First, for any object in the system, the distance

between the object and its nearest neighbour should be

computed in advance and form a vicinity circle around each

object. The vicinity circle of each object has a radius equal to

the distance between the object and its nearest neighbour and

is centred at that object. After all vicinity circles have been

formed, a given query point will be checked with all vicinity

circles to see which vicinity circles are affected by the query

point. Then, the algorithm returns those objects that have q in

their own vicinity circles. Muthukrishnan [30] addressed

RNN query using the pre-computation method. RdNN-tree

[31] proposed by Yang et al. improved on the previous

technique by introducing an index structure for answering

these types of queries.

Some algorithms do not need pre-computation. Tao [12]

proposed a method for reducing the search space by utilizing

perpendicular bisectors. The idea of TPL is shown in Fig. 1.

First, an object that is a NN of query q is chosen, called p.

Then, a perpendicular bisector between query q and object p

is divided into two halves Hq (the half plane including q) and

Hp (half plane including p). The RNN will be p or another

point in Hq, because the other points in Hp are closer to p than

q. Like all RNN methods, TPL has a filter and a refinement

step. The filter step checks for NN of the query point for

drawing a perpendicular bisector and implementing filtering.

In the refinement step, the NNs of the final step will be

checked to see whether q is its nearest neighbour. If q is

nearest neighbour of NNs according to the filtering step, that

object will be an answer. TPL works very well in low

dimensions.

Fig. 1. TPL pruning technique.

Stanoiet proposed a novel method for answering RNN

queries called SAA. In [32], Stanoiet et al. proved that the

number of RNNs in a two dimensional space cannot exceed

six. In his algorithm, the two-dimensional space around a

query point is divided into six equal partitions (the degree of

each partition is 60 degrees), i.e., S0 to S5. In the filter step, a

nearest neighbour to q is found in each Si, referred to as Oi.

Other objects in this partition cannot be a RNN of q because

they are closer to Oi than q. Thus, other objects in that

partition are pruned by this method. In this step, six NN of q

are defined. Then, in the refinement step, each Oi are verified

by checking whether q is their nearest neighbour or not. Fig. 2

illustrates how the algorithm works.

As an illustrative example, consider Fig. 2, in which the

space around query q is divided into six sub-regions, S0 to S5.

In each sub-region Si, a nearest neighbour Oi is found. As is

shown in Fig. 2, O1 is the nearest neighbour of q in sub-region

S0; however, in the refinement step, this object is omitted from

the RNN answer, because O0 is the NN of O1. Therefore, q

cannot be the NN of O1. SAA utilizes R-tree for indexing

objects. Singh [33] proposed an algorithm for high

dimensional space.

Fig. 2. Illustration of SAA.

Following on, numerous studies have been conducted

based on SAA for answering RNN and RKNN for moving

objects [34], [35]. Tian Xia [36] utilized SAA with a grid

index to answer continuous RNN. Wei Wu [37] proposed an

algorithm for answering continuous reverse

k-nearest-neighbour monitoring. His approach was based on

SAA with the use of a grid index structure. Rei Wu modified

the refinement step by using a continuous range query

monitoring technique. All of the works noted above employed

monochromic RNN. Bichromatic RNN search was proposed

by Stanoi [38]. A new method for answering this kind of

query on moving objects proposed by Rahmati [39]. Another

research on RNN by considering uncertain movement of

objects has been performed by Emrich[40]. A recent study

on reverse k nearest neighbour has been done by Yang [41].

III. PRELIMINARIES

In this section, we first define MNN and CMNN queries, as

well as the characteristics of these queries. Then, we propose

a baseline algorithm for answering a CMNN search. This

algorithm is used for comparing the performance of our

algorithm to the baseline algorithm. In Section V, we show

that our algorithm performs better than the baseline algorithm.

As is shown in [32], a query q can only have six reverse

nearest neighbours; as such, the number of MNN query

results cannot exceed six. A MNN query returns all objects

that are in the six nearest neighbours of query q and that are in

RNN query q. A CMNN is issued to the system once, but it

repeatedly returns the answer by object movements and time

passes, so it continuously returns the correct answer via query

or the movement of objects. We can formally state that MNN

(mutual nearest neighbour query) retrieves the set of objects S

that ∀P ∈ S: 1) P ∈ NNk1(q) and 2) q ∈ NNk2(P). For the sake

International Journal of Information and Education Technology, Vol. 7, No. 5, May 2017

395

of simplicity, we set k2 to one, but we did not assume any

restriction on k1. As we know, NN and RNN queries are

asymmetric.

Fig. 3. Baseline algorithm.

This means that if object O1 is the NN of O2, it does not

mean that object O2 is also the NN of O1. However, the MNN

query is symmetric. If O1 is a MNNk1k2 of O2 we can conclude

that O2 is a MNNk2k1 of O1. Another property that MNN has is

that the result of the MNN query q is always a subset of

k1-NN(q) and meanwhile, is a subset of k2-RNN(q). Therefore,

due to the definition of MNN query and continuous query, by

giving a query point q, k1 and k2 parameters, a CMNN query

should continuously return the set of objects that are in

k1-NN(q) and k2-RNN(q). With the movements of an object

and time changes, the result of the query should be updated. In

this section, we introduce a baseline algorithm for solving this

problem. The baseline algorithm is introduced to compare it

to our algorithm and to observe how our proposed algorithm

is more effective.

A. Baseline Algorithm for CMNN Query

In this section, we propose a simple algorithm that is able to

answer CMNN queries.

In this approach, we first perform a k1-NN search on q to

find k1 objects that are nearer to q. These objects can be

candidates for an MNN answer. In other words, the MNN

answer is a subset of this candidate set. We call the candidate

set Sc. In the next step, we check each candidate object in Sc to

verify if it can be a MNN answer. This verification was done

by performing a k2-NN search on candidate object C and

because the query should be answered continuously, with

each update that the system received, we ran this algorithm

once. Thus, it repeatedly sent a correct answer alongside the

movements of an object. For performing a KNN search, we

can use one of the existing methods, for example YPK

algorithm. The baseline algorithm is shown in the Fig. 3.

B. Monitoring Region of CMNN

Continuous queries have monitoring regions. As these types

of queries are continuously processed, we should consider a

monitoring region for them to enable them to answer queries

repeatedly. The monitoring region of nearest neighbour and

range query is a simple circle or a rectangle. In a range query,

the monitoring region is a regular shape and the distance of

objects does not influence the query result. The monitoring

region of a CNN is slightly different for a range query. It is

usually a circle with the query as its centre and the radius of

the circle depends on the distance of the object to the query

point.

Fig. 4. The monitoring region of a CMNN (filtering & verifying region).

Fig. 5. The monitoring region of a CMNN (KNN region with k=3).

A CRNN query includes two separate monitoring regions,

because it consists of two parts, i.e., filtering and verifying.

Continuous filtering continuously computes and keeps

candidates for RNN. In this step, the nearest neighbours of the

query in each partition Si, which can be a candidate for

reverse nearest neighbours, are obtained. In the verifying step,

these candidates are checked to verify whether they might be a

RNN of the query. In CRNN, both monitoring regions for

filtering and the verifying step should be computed for all of

the six regions. We also need to monitor the filtering regions

continuously for each partition, but the verifying region only

monitors for the regions that are candidates for having an

MMN query result in the initialization step. Later, by applying

operating updates, we only processed those monitoring

regions that were influenced by object updates. By utilizing

the monitoring regions, we had the possibility for incremental

query processing. Fig. 4 and Fig. 5 illustrate the monitoring

regions of a CMNN query.

As is shown in Fig. 4, at first the nearest neighbours of the

query point are defined in each region Si, then a KNN search

performs on q to find the exact k-nearest neighbours of q. This

monitoring region is shown in Fig. 5 and is referred to as the

KNN region.

The third part of the monitoring region in CMNN is the

verifying region, which forms a circle around the objects that

can potentially be an answer to the query. In the following

sections, we show how the updates in filtering regions and the

verifying region, as well as the result of the CMNN query, are

handled and processed incrementally.

IV. CMNN EXPLANATION

In this section we explain our algorithm, for which we used

a grid to index for moving objects and queries. In each time

interval, objects were mapped to the grid, based on their

locations. We submitted queries to the system and it

continuously returned the MNN according to the movements

of objects, which influenced the results. Each query point was

stored in the system and the space around a query point is

divided into six partitions (S0 to S5). For each partition Si, we

kept (1) the nearest neighbour of that partition called NNi; (2)

d(NNi, q) which is the distance between NNi and q; (3) RNNi,

the reverse nearest neighbour of q in Si. RNNi was an object

nearer to NNi than q. We computed NNi for all six partitions

at all times. RNNi was computed only for those partitions

where their NNi was a subset of kNN(q) in the initialization

step. If Si did not contain any objects, the NNi was set to null

and its distance to q was set to infinity.

Fig. 6. The CMNN initialization.

A. CMNN Query Initialization

Initially, we set all NNi to null and initialized all RNNi as

null, while the distances of NNi and q was set to infinity. The

algorithm for initializing CMNN is presented in the following;

this algorithm computed the initial MNN result for each query

issued to the system.

Fig. 7. Algorithm to find nearests in each partition Si.

The initMNN had two filtering steps and one refinement

step, in which the objects that were found in the filtering steps

were checked for being possible answers. Steps 3 and 4 in Fig.

6 are filtering steps. In these two steps, objects that were

potential answers were determined and other objects were

pruned. Therefore, the number of objects that had to be

processed was small. Verification took place in step 7, in

which the candidate objects were checked as being potential

answers. The candidate objects were those objects that

resulted from both filtering steps. All the objects in candidate

sets were checked and those that were query results were

returned at the end of algorithm.

Fig. 8. Algorithm to find reverse nearest neighbors.

Fig. 9. Algorithm to update query answer.

For each query q issued to the system, we first divided the

space around q into six regions and found a nearest neighbour

of q in each partition (the algorithm for this process is

illustrated in Fig. 7). In the next step, we performed a kNN

search on q to find the exact k nearest neighbours of q. Finally,

we only checked those objects that were present in both

filtering parts. In other words, we only checked objects that

were the result of intersection in the two filtering steps.

Alternatively, we might say that only the NNis that were in

kNN(q) were checked. Through this method, no matter how

large k was, in the worst case scenario, we only needed to

check six objects to see whether q was their NN.

The first filtering method is illustrated using an example in

Fig. 4. The second filtering step, which finds the exact k

nearest neighbours of the query, utilized YPK algorithm.

When the above two filtering steps were applied, we found the

objects that were returned by the first filtering step;

meanwhile, these objects were also returned by the second

filtering step. In other words, we were able to establish an

intersection between the results of the two filtering steps and

only checked those objects that were returned by these two

filtering methods for being a MNN. The algorithm or

checking objects to be a MNN is shown in Fig. 8. Using this

algorithm, we checked the candidate objects to find out

whether their nearest neighbour was q or not.

International Journal of Information and Education Technology, Vol. 7, No. 5, May 2017

396

We created a circle centred at each candidate object and

with radius d (q, candidate). If an arbitrary object was found

between this candidate object and the query point, this

candidate object was not considered to be a MNN answer.

This algorithm returned the first object it found as a reverse

nearest neighbour of q; it did not need to find the exact RNN

of q. The first object that could break the condition was

considered as the nearest neighbour of that candidate object.

V. INCREMENTAL PROCESSING OF CMNN

This section illustrates how to obtain CMNN query results

incrementally. By updating the locations of objects, we

incrementally updated the result sets; this does not require

performing the entire algorithm at each time interval. We had

two types of updates: (1) updates due to query movement; (2)

updates that were the result of object movement. We treated

the query movements by deleting the query and all the items

that are related to query from the system. Thereupon we

should submit the query q along with its new location and

then perform the InitMNN algorithm on it.

Fig. 10. Algorithm to update filtering region.

The movement of objects may influence the answers of

CMNN query in two ways. The result of filtering parts and

verifying regions may have been changed by the movement of

objects. The filtering step consisted of two different parts that

are processed separately. We call the first filtering part

filtering regions (Fig. 4) and the second filtering part the kNN

region (Fig. 5). Each update received to the system was

processed incrementally in the filtering region, kNN region

and verifying region. Once all these updates were applied, an

intersection between the kNN region and filtering region was

applied to establish the final results. The pseudo-code for

updating the results is shown in Fig. 9. In the following we

explain how the updates are handled in these three sections.

A. Updates in Filtering Region

Updates in filtering regions were handled similar to

handling updates explained in [36], though there were some

differences. Updates in the filtering region were handled

incrementally, without the need for processing all parts of the

six regions from the start. In the worst case scenario, with

each update that the system received, the algorithm needed to

search for nearest neighbour in only one region.

Fig. 11. Algorithm to update verifying region.

Fig. 12. Algorithm to update kNN region.

When an update occurred in the filtering region, there were

two aspects that needed to be observed: (1) whether one of the

NNis had moved from its previous location; (2) some objects

had moved within a filtering region.

Step 1 of the algorithm illustrates the first instance (a NNi

changes its previous location). When this happens, the NNi

moved closer to the query point; in the region located prior to

an update, the updated object (Onew) had been considered as a

NNi. If the NNi moved away from the query point or toward a

different region, we needed to search for a new NNi in that

regioni (the region of Oold).

The second situation showed the case where the Onew of any

object may have influenced a filtering region. This could

cause a new object to enter the system.

In all cases, after updating the filtering region and its new

NNi, the algorithm had to compute the verifying region

accordingly. Therefore, the CheckForReverse algorithm

(previously explained) was used to compute new regions and

verify them.

B. Updates in Verifying Region

In this part we show how an update will impress verifying

regions. Verified regions will change when an object exits

from it or when an object enters it. Therefore, when an update

is received in the system, the algorithm should check its Oold

(its previous location) to see whether it exits from some

verified regions, as well as check whether its new location

impresses on verified regions and if so, which ones. The

details of the algorithm are shown in Fig. 11.

C. Updates in KNN Region

The kNN region was first calculated in the initialization

section. During time intervals, the results of this part may

change due to the movement of objects. This part describes

how these updates are managed incrementally in the kNN

monitoring region.

When an object update is received in the system, three

International Journal of Information and Education Technology, Vol. 7, No. 5, May 2017

397

cases exist that can influence changes in the kNN region: 1)

object O enters the kNN region; 2) Object O leaves the kNN

region; 3) object O moves inside the kNN region.

The algorithm handles updates as follows: if object O was

not in the kNN, the result and distance of O and q is smaller

than distance kth NN to q. The algorithm omits the kth NN

from the answer and adds the new object O to the result, and

sort the objects according to their distance. Step 2 of the

algorithm controlled this case. Step 1 of the algorithm

illustrates cases 2 and 3.

VI. EXPERIMENTS

In this section, the efficiency of our proposed CMNN query

processing algorithms are evaluated and compared with the

baseline algorithm. The datasets used for observing

performance was generated by the GSTD framework using

random data and Gaussian data distribution. The metric that

we observed in this study was processing time. All algorithms

were implemented in C++ and the experiments were

conducted on a PC with an AMD Athlon 3Ghz CPU and 4 GB

primary memory running Windows 7 Ultimate. The effects of

the following parameters were studied: number of moving

objects, number of movements and the value of k and size of

the grid cell. Datasets parameters have been shown in TABLE

I.

TABLE I: DATASET PARAMETERS

Parameter Default Range

Number of objects 10k 1,10,20,30,40,50,60,70,80,90,100(k)

Number of movements 5k 1,5,10,20,30,40,50,100(k)

Value of K 5 1,2,4,6,8,10,12,14,16,18,20

Grid cell size 0.2 0.08, 0.1, 0.2, 0.4, 0.8, 1, 1.5, 2, 2.5, 3

Fig. 13. Effect of k parameter on processing time.

Fig. 14. Effect of number of objects on processing time.

Fig. 15. Effect of number of movements on processing time.

Effect of k: when we increased parameter k, the processing

time did not change significantly in the CMNN algorithm. As

verifying this step of the CMNN algorithm does not depend

on k and in the worst case scenario, on the initializing step, the

CMNN algorithm only checked six objects for having the

query as their NN. With each update, only those objects that

were in one of the NNis and also in the kNN of the query were

checked to see whether they had a query as their nearest

neighbour.

Effect of number of objects: when the number of objects

was bigger, both the baseline and CMNN developed higher

processing times. We differentiated the number of objects and

the number of updates from one another; by increasing the

number of objects, only the initialization time of the CMNN

algorithm changed. As is shown in Fig. 14, the CMNN

algorithm performed better than its baseline counterpart.

Effect of the number of movements (updates): Fig. 15

depicts the effect of the number of movements of an object on

processing time. Increasing the number of updates increased

the processing time of both Baseline and CMNN, but not to

the same extensive degree. This was because all the updates in

our algorithm were processed incrementally. Fig. 15 shows

the effect of the number of movements on processing time.

Effect of size of grid cell: we changed the size of grid cells

to uncover the effect of grid cell on processing time. The

results are depicted in Fig. 16.

By changing the size of grid cells, the number of objects in

each grid cell also changed; thus, changing grid cell size

affected processing time. If the number of objects in each grid

cell was numerous, the time needed for processing each grid

cell increased.

Fig. 16. Effect of size of grid cell on processing time.

VII. CONCLUSION

In this paper, we studied the problem of continuous mutual

nearest neighbour monitoring on moving objects. We also

proposed a basic algorithm for solving the problem of

continuous mutual nearest neighbour monitoring. We then

compared our algorithm to the Baseline algorithm. We

showed that CMNN query processing can be divided into

continuous filter, continuous KNN and continuous

verification. We handled the updates (which are received to

the system by object movements) incrementally. Our

proposed method was suitable for answering queries

involving data streams. We did not assume any restrictions on

data input and objects were processed separately. In other

words, unlike snapshot queries that process all objects within

a time interval, in our proposed algorithm, the query is

executed when an object update is received into the system.

The experiment results illustrated the performance of our

algorithm in terms of its efficiency.

REFERENCES

[1] M. F. Mokbel, X. Xiong, W. G. Aref, and S. E. Hambrusch, “PLACE:

A query processor for handling real-time spatio-temporal data

International Journal of Information and Education Technology, Vol. 7, No. 5, May 2017

398

streams,” in Proc. the Thirtieth International Conference on very

Large Data Bases, vol. 30, 2004, VLDB Endowment.

[2] Y. Gao, B. Zheng, G. Chen, Q. Li, and X. Guo, “Continuous visible

nearest neighbor query processing in spatial databases,” The VLDB

Journal, vol. 20, no. 3, pp. 371-396, 2011.

[3] M. A. Cheema, Y. Yuan, and X. Lin, “Circulartrip: An effective

algorithm for continuous kNN queries,” Advances in Databases:

Concepts, Systems and Applications, 2007, Springer, pp. 863-869.

[4] K. Mouratidis, D. Papadias, and M. Hadjieleftheriou, “Conceptual

partitioning: An efficient method for continuous nearest neighbor

monitoring,” in Proc. the 2005 ACM SIGMOD International

Conference on Management of Data, 2005.

[5] X. Xiong, M. F. Mokbel, and W. G. Aref, “Sea-cnn: Scalable

processing of continuous k-nearest neighbor queries in spatio-temporal

databases,” in Proc. 21st International Conference on Data

Engineering, 2005.

[6] Y. Tao, D. Papadias, and Q. Shen, “Continuous nearest neighbor

search,” in Proc. the 28th International Conference on very Large

Data Bases, 2002, VLDB Endowment.

[7] H. Xiao, Q. Li, and Q. Sheng, “Continuous K-nearest neighbor queries

for moving objects,” Advances in Computation and Intelligence, 2007,

Springer, pp. 444-453.

[8] A. K. Jain, R. P. W. Duin, and J. Mao, “Statistical pattern recognition:

A review,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, 2000, vol. 22, no. 1, pp. 4-37.

[9] C. Ding and X. He, “K-nearest-neighbor consistency in data clustering:

Incorporating local information into global optimization,” in Proc. the

2004 ACM Symposium on Applied Computing, 2004, ACM.

[10] Y. Gao, B. Zheng, G. Chen, and Q. Li, “On efficient mutual nearest

neighbor query processing in spatial databases,” Data & Knowledge

Engineering, 2009, vol. 68, no. 8, pp. 705-727.

[11] Y. Gao, B. Zheng, G. Chen, Q. Li, C. Chen, and G. Chen, “Efficient

mutual nearest neighbor query processing for moving object

trajectories,” Information Sciences, 2010, vol. 180, no. 11, pp.

2176-2195.

[12] Y. Tao, D. Papadias, and X. Lian, “Reverse kNN search in arbitrary

dimensionality,” in Proc. the Thirtieth International Conference on

very Large Data Bases, vol. 30, 2004.

[13] D. Šidlauskas, S. Šaltenis, and C. W. Christiansen, “Trees or grids?:

Indexing moving objects in main memory,” in Proc. the 17th ACM

SIGSPATIAL International Conference on Advances in Geographic

Information Systems, 2009, ACM.

[14] A. Papadopoulos and Y. Manolopoulos, “Performance of nearest

neighbor queries in R-trees,” Database Theory, 1997, Springer, pp.

394-408.

[15] N. Roussopoulos, S. Kelley, and F. Vincent, “Nearest neighbor

queries,” ACM Sigmod Record, 1995, ACM.

[16] N. Beckmann, H. P. Kriegel, R. Schneider, and B. Seeger, “The R*-tree:

An efficient and robust access method for points and rectangles,” vol.

19, 1990.

[17] A. Guttman, “R-trees: A dynamic index structure for spatial

searching,” vol. 14, 1984, ACM.

[18] T. Sellis, N. Roussopoulos, and C. Faloutsos, “The R+-tree: A dynamic

index for multi-dimensional objects,” 1987.

[19] S. Šaltenis, “Indexing the positions of continuously moving objects,”

Encyclopedia of GIS, 2008, Springer, pp. 538-543.

[20] S. Berchtold, C. Böhm, D. A. Keim, and H. P. Kriegel, “A cost model

for nearest neighbor search in high-dimensional data space,” in Proc.

the sixteenth ACM SIGACT-SIGMOD-SIGART Symposium on

Principles of Database Systems, 1997, ACM.

[21] P. Indyk, “Nearest neighbors in high-dimensional spaces,” 2004.

[22] E. Kushilevitz, R. Ostrovsky, and Y. Rabani, “Efficient search for

approximate nearest neighbor in high dimensional spaces,” SIAM

Journal on Computing, 2000, vol. 30, no. 2, pp. 457-474.

[23] J. Zhang, M. Zhu, D. Papadias, and Y. Tao, “Location-based spatial

queries,” in Proc. the 2003 ACM SIGMOD International Conference

on Management of Data, 2003, ACM.

[24] H. Ferhatosmanoglu, I. Stanoi, and D. Agrawal, “Constrained nearest

neighbor queries,” Advances in Spatial and Temporal Databases,

2001, Springer, pp. 257-276.

[25] M. Hasan, MA. Cheema, W. Qu, and X. Lin, “Efficient algorithms to

monitor continuous constrained k nearest neighbor queries,” Database

Systems for Advanced Applications, 2010, Springer.

[26] G. Kollios, D. Gunopulos, and V. J. Tsotras, “Nearest neighbor queries

in a mobile environment,” Spatio-Temporal Database Management,

1999, Springer.

[27] D. V. Kalashnikov, S. Prabhakar, S. E. Hambrusch, and W. G. Aref,

“Efficient evaluation of continuous range queries on moving objects,”

DEXA, 2002, Springer.

[28] K. L. Wu, S. K. Chen, and P. S. Yu, “Incremental processing of

continual range queries over moving objects,” IEEE Transactions on

Knowledge and Data Engineering, 2006, vol. 18, no. 11, pp.

1560-1575.

[29] X. Yu, K. Q. Pu, and N. Koudas, “Monitoring k-nearest neighbor

queries over moving objects,” in Proc. 21st International Conference

on Data Engineering, 2005.

[30] F. Korn and S. Muthukrishnan, “Influence sets based on reverse nearest

neighbor queries,” ACM SIGMOD Record, 2000.

[31] C. Yang and K. I. Lin, “An index structure for efficient reverse nearest

neighbor queries,” in Proc. 17th International Conference on Data

Engineering, 2001.

[32] I. Stanoi, D. Agrawal, and A. E. Abbadi, “Reverse nearest neighbor

queries for dynamic databases,” ACM SIGMOD Workshop on

Research Issues in Data Mining and Knowledge Discovery, 2000.

[33] A. Singh, H. Ferhatosmanoglu, and A. Ş. Tosun, High Dimensional

Reverse nearest Neighbor Queries, 2009.

[34] R. Benetis, C. S. Jensen, and G. Karčiauskas, “Nearest neighbor and

reverse nearest neighbor queries for moving objects,” in Proc.

Database Engineering and Applications Symposium, IEEE.

[35] R. Benetis, C. S. Jensen, G. Karĉiauskas, and S. Ŝaltenis, “Nearest and

reverse nearest neighbor queries for moving objects,” The VLDB

Journal, 2006, vol. 15, no. 3, pp. 229-249.

[36] T. Xia and D. Zhang, “Continuous reverse nearest neighbor

monitoring,” in Proc. the 22nd International Conference on Data

Engineering, 2006.

[37] W. Wu, F. Yang, C. Y. Chan, and K. L. Tan, “Continuous reverse

k-nearest-neighbor monitoring,” in Proc. 9th International

Conference on Mobile Data Management, 2008. IEEE.

[38] I. Stanoi, M. Riedewald, D. Agrawal, and A. E. Abbadi, “Discovery of

influence sets in frequently updated databases,” VLDB, 2001.

[39] Z. Rahmati, V. King, and S. Whitesides, “(Reverse) k-nearest

neighbors for moving objects,” in Proc. the Seventh International

Conference on Motion in Games, 2014, ACM.

[40] T. Emrich, HP. Kriegel, and N. Mamoulis, “Reverse-nearest neighbor

queries on uncertain moving object trajectories,” Database Systems for

Advanced Applications, 2014, Springer.

[41] S. Yang, M. A. Cheema, X. Lin, and W. Wang, “Reverse k nearest

neighbors query processing: experiments and analysis,” in Proc. the

VLDB Endowment, vol. 8, no. 5, pp. 605-616, 2015.

Shiva Ghorbani was born in Iran, in 1986. She

received the B.S. degree in computer engineering

from the central branch of Azad University of Tehran,

Iran, in 2008, the M.Sc. degree in software

engineering from the Iran University of Science and

Technology, in 2013.

Mohammad Hadi Mobini was born in Iran, in 1986.

He received the B.S. degree in computer engineering

from the Shahid Beheshti University of Tehran, Iran,

in 2010, the M.Sc. degree in software engineering

from the Sharif University of Technology, in 2012.

Behrooz Minaei-Bidgoli received the B.S. degree in

mathematics for computer science from Qom

University of Tehran, Iran, the M.Sc. degree in

computer engineering from the Iran University of

Science and Technology and the Ph.D. degree in

computer science and engineering from the Michigan

State University.

He is currently an assistant professor in the School

of Computer Engineering in Iran University of Science and Technology.

He received scholarships for the School of Computer Science and

Engineering University of Michigan, U.S. in 2001. He was second place

graduated of the University of Science and Technology, Tehran, Iran in 1997.

He ranked first graduating undergraduates from the University of Qom, Iran

in 1990.

International Journal of Information and Education Technology, Vol. 7, No. 5, May 2017

399

