
  

 

Abstract—Computational Thinking has gained popularity in 

recent years within educational and political discourses. It is 

more than ever crucial to discuss the term itself and what it 

means. In June 2017, Denning articulated that computational 

thinking can be viewed as either “traditional” or “new”. New 

computational thinking highlights certain skills as desired in 

solving problems, whereas traditional computational thinking is 

a skill set resulting from engaging in traditional computing 

activities. By looking at computational thinking through the 

perspective of semiotics, it is possible to dissolve the traditional 

vs new distinction and concentrate on computational thinking 

having both an explicit and implicit nature. In this perspective, 

a computer program becomes an algorithmic sign which can 

both be interpreted by humans and machines. The double 

interpretation allows for a dialectic relationship between 

computing activities and Computational Thinking instead of the 

dualistic traditional vs new approach.  

 
Index Terms—Computational thinking, constructionism, 

computing education, the notional machine. 

 

I. INTRODUCTION 

Computing education has gained much interest over the 

last decade. The importance of computing skills in disciplines 

outside of traditional computer science (CS) is apparent in 

initiatives like Computing at School [1] in the UK and 

Computer Science for ALL [2] in the USA. There are many 

ways to talk about computing. This paper presents a 

suggestion based primarily on computational thinking (CT). 

In addition to CT, it also includes prior articulations of 

Seymour Papert's constructionism [3]-[5] and Benedict Du 

Boulay's notional machine [6]. CT has become popular in 

education from K-12 to higher education [7], [8] and many 

attempts have been made to define an operational description 

of the term to implement it in an educational context. 

Recently, a critique has been raised against CT for having 

lost its heritage from traditional computing disciplines [9], 

[10]. This opens for a discourse of a dualistic understanding 

of CT – traditional and new as Denning [9] labels it. It means 

that when turning to CT in education, decision-makers have 

to choose which kind of CT to teach. In itself, that is not a 

problem. The problem arises when the popular version of CT 

is chosen because this version is overexposed, even though it 

may not be the most suitable version for the task at hand. This 

paper seeks to reform the dualistic understanding of CT into a 
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dialectic relationship between an implicit and explicit nature 

of CT.  

A. Methodological Considerations 

The analysis and discussions in this paper builds on 

previous exploration [11] and are based on analysis and 

reasoning from the presented positions. No empirical studies 

have been made. The conclusions reached here are therefore 

suggestions for further studies, which may take them up as 

hypotheses. Only a limited selection of the rich history of 

computing education can be covered. The examples 

presented in this paper are not the only voices in the field, but 

their articulations seem to be a fitting introduction to the field 

with the purpose to give the reader a sound starting point for 

understanding the main concern for this paper.  

 

II. TALKING ABOUT COMPUTING EDUCATION 

In this section, constructionism, the notional machine and 

CT will be presented. 

A. The Notional Machine 

Benedict du Boulay is recognised to be the first scholar to 

articulate the concept of the notional machine [12]. The term 

is used in the context of computing education, explicitly 

learning novices how to program. The concept rests on the 

assumption that the novice learner is ignorant of what the 

machine (the computer) can do through the instructions of the 

programming language and how the instructions are actually 

carried out by the machine [13].  

 

“The notional machine is an idealized, conceptual 

computer whose properties are implied by the constructs in 

the programming language employed.” [13] 

 

The notional machine can in this sense be understood as an 

abstraction of the execution of a computer program. It can be 

characterised as an “idealized computer” [12] which supports 

the novice learner in acquiring a certain programming 

language. From this will also follow that there may exist 

many different notional machines. Students may construct a 

notional machine for each programming language, based on 

the programming language's construction [13]. The notional 

machine is also seen as a façade for the inner workings of the 

real machine through a programming language controlling 

the actual machine [12]. In this way, the notional machine 

becomes a mental model of the real machine – an analogy 

based on the constructs present in a certain programming 

language. However, this does not always lead to a fruitful 

understanding of the machine, as it is based on an abstraction 

of its capabilities presented by the chosen programming 
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language – and programming languages differ in their design. 

Ideally, over time, as the novice builds more experience, the 

mental model or the notional machine gains in fidelity and a 

deeper and more solid and structured understanding of the 

real machine emerges. Computing education should, 

therefore, support this process in the mind of the novice 

learner [12]. This can be done down to the level of designing 

programming languages so that they make the working of the 

notional machine they are supposed to control more explicit. 

This may result in the language designer building smaller 

machines that allow the novice to control the main machine 

and build a mental model at the right level of detail [14].  

B. Constructionism 

Seymour Papert is commonly recognised as the creator of 

constructionism, a learning theory based on cognitive 

constructivism [15]. Cognitive constructivism is a concept to 

explain knowledge-construction through cognition in 

children’s development [15] whereby students acquire new 

knowledge through the mechanisms of assimilation and 

accommodation of cognitive schemata [16]. Assimilation 

incorporates or interprets new information to fit in excising 

cognitive schemata. Accommodation alters the schema to fit 

new information [17]. In a constructivist approach to 

teaching, the teaching should support the construction of 

knowledge through the student's cognition. However, 

cognitive constructivism does not suggest any concrete 

method of teaching to achieve this. In Papert's 

constructionism, the cognitive process of the student's mind 

is externalised into activities that support the knowledge 

construction taking place. One point that Papert makes is the 

notion that the computer can aid and change the way children 

learn. The basic approach in constructionism is explained 

as “learning by making” [4], and the term bricolage is used to 

describe some of the processes associated with 

constructionist teaching. It underlines the tinkering and 

explorative approach encouraged when teaching [4]. The 

oppositional principles that Papert puts forward in the 1996 

paper: An Exploration in the Space of Mathematics 

Educations [5], [10] is a good starting point for talking about 

computing education through this perspective. In the paper, 

Papert explores constructionist ways of teaching 

mathematics, and he puts forward a series of oppositional 

principles. The three main principles are: The power 

principle, the thingness principle and the dynamics before 

statics principle.  

The power principle is concerned with what has the power 

in a learning situation: understanding or application. Papert 

notes that the natural mode of acquiring knowledge is 

through use which will progressively lead to a deepening of 

one's understanding. Out of this also comes the notion of 

"project before problem". He makes the example that 

problems arise during project work, and are then solved or 

dissolved through that process [5].  

The thingness principle is related to the concept of 

reification which is concerned with making abstract ideas 

concrete through a meaningful representation. The thingness 

principle is concerned with "objects before operation" in the 

sense that a mathematical concept is to be understood as a 

thing first and then examined like a thing to understand the 

functionality [5].   

Finally, the dynamics before statics principle is closely 

related to the medium used for teaching. Papert is critical of 

the approach where more often than not mathematical 

concepts are taught the other way around, that the dynamic 

nature of mathematics is not adequately captured by the static 

medium of pen and paper [5].  

This notion of knowledge through use is very explicit in 

the way that Papert lets children explore geometry through 

the use of a programmable robot (the turtle) drawing shapes 

on large pieces of paper by moving around based on the 

programmed instruction. By programming the turtle, children 

are supported in discovering geometric principles through 

using them [3]. When children discover geometric principles 

through the use of the turtle, they engage in an exploration of 

the principles for them to produce certain shapes in a 

dynamic environment. This leads to a deeper understanding 

of the basic principles which can be put to use exploring more 

advanced subjects, to test assumptions and form conclusions. 

In a reflection on this practice, Papert mentions that the goal 

is to ”integrate computational thinking into everyday life” 

[3].  

C. Computational Thinking 

It is outside the scope of this paper to present a 

comprehensive account of the past 11 years of the CT 

discourse, but a few key contributions have been selected.  It 

is commonly attributed to Jeanette Wing is commonly 

attributed [18] to have popularised CT in a contemporary 

context in the year 2006. The first mention of the term itself 

seems to be by Seymour Papert in his book Mindstorms from 

1980 [3], [9], [10]. CT is presented by Wing [18] as a set of 

problem-solving skills. The concept relies on the 

fundamental skills and abilities from CS, particularly 

abstraction and decomposition and applies them to other 

disciplines, e.g. biology [19]. CT is merely, according to 

Wing, to think like a computer scientist [18] when 

approaching a problem and in solving it. This definition has 

been criticised for being too broad, and attempts have been 

made to define it further [7]. Wing [20] has since put forward 

a more elaborate definition: 

 

“Computational thinking is the thought processes involved 

in formulating problems and their solutions so that the 

solutions are represented in a form that can be effectively 

carried out by an information-processing agent.” [20] 

 

CT has grown in popularity since 2006, and during the past 

decade, several K-12 institutions have in some way 

committed incorporating CT in their curricula, hoping it will 

help more children and teenagers to engage in STEM 

(Science, Technology, Engineering and Mathematics) 

activities [21], [22]. Also in higher education, there is a 

movement to introduce CT as a competence for both STEM 

and non-STEM students. In the particular case of design, 

media and informatics students it has been suggested that a 

CS0 [23] course might be appropriate for them to get a deeper 

understanding of their material of study.  

Barr and Stephenson [7] are concerned with defining CT 

for use in K-12 education and to explore the role of the CS 
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community in this. They present an outline for how to 

incorporate what they have defined as "core CT concepts and 

capabilities” [7] in different subjects across a curriculum. 

They present these core concepts and capabilities as being: 

“Data collection, Data analysis, Data representation, 

Problem Decomposition, Abstraction, Algorithms & 

procedures, Automation, Parallelization and Simulation” 

[7]. 

 

III. A DIALECTIC RELATIONSHIP BETWEEN IMPLICIT AND 

EXPLICIT COMPUTATIONAL THINKING 

CT has recently been a target for critique by both Barba 

[10] and Denning [9]. The two scholars each attack CT on 

their own terms but they reach more or less the same 

conclusion resulting in an emerging understanding of CT as a 

term having a different meaning pre- and post- 2006 [9], [10]. 

In this section, we suggest that instead of viewing CT as 

either traditional or new [9] a more pragmatic approach of 

viewing CT is as it having an explicit and implicit nature: this 

gives a more vibrant picture of what CT is, and also 

incorporates the other ways of talking about computing 

education. Spangsberg and Brynskov [11] put forward the 

idea of looking at CT through computer semiotics to reform 

the dualistic “traditional” vs “new” distinction into a dialectic 

relationship between an implicit and an explicit nature of CT. 

This section will first introduce the concept of the 

algorithmic sign as a basic framework for combining the 

three ways already presented and by doing so overcoming the 

concerns presented by Barba [10] and Denning [9]. Then the 

actual concerns for CT will be presented and lastly, the 

suggested solution for overcoming them. 

A. The Algorithmic Sign 

Spangsberg and Brynskov [11] are not the first to connect 

CT and semiotics to each other. Souza et al. [24] present a 

study for where they use a semiotic background for 

characterising students’ perception of CT. We use semiotics 

differently. Here, we use the notion of the algorithmic sign to 

augment CT and to introduce a way to combine the three 

ways presented earlier into one framework. A key factor here 

is the double-sided interpretation taking place when 

concerned with the algorithmic sign as opposed to the 

traditional single-sided interpretation of ordinary signs 

The cardinal concept to be understood to talk about the 

algorithmic sign is the concept of signs – the base for 

semiotic science. A sign in this context is to be understood as 

something to stand for something else. The focal domain of a 

sign is a matter of tradition. The three main traditions focus 

on signs as a social system (European), the individual use of a 

sign (American) or a philosophical inquiry where language is 

its sign type among others (Peircean) [25]. It has been 

suggested that software is to be understood as an algorithmic 

sign [26]. Because of signs in general stand for something 

else, signs need to be interpreted. What is unique about the 

algorithmic sign is that it not interpreted by humans alone, 

but also by the machine [26]. It is important to note that the 

word ‘interpretation’, when concerned with computers, does 

not share the nature of the human act of interpretation. The 

machine lacks the human freedom to choose different 

perspectives for interpreting. It can only interpret based on 

strict and formal parameters [27]. To operationalise the 

algorithmic sign as an analytical framework when it comes to 

programming. It is helpful to look at the works of Peter Bøgh 

Andersen [25], who worked together with Frieder Nake on 

producing a textbook on computer semiotics – including the 

algorithmic sign. The starting point is the Peircean 

framework of the semiotic triangle (in the following referred 

to as simply: “the semiotic triangle”) as shown in Fig. 1. 
 

 
Fig. 1. The Peircean sign concept. Based on Andersen [25]. The 

representamen is concerned with representing the object in question and the 

interpretant is the human actor interpreting the sign through the 

representamen. As a whole, the relationship between the three corners is 

considered a sign [25]. 

 

 
Fig. 2. The algorithmic sign. Based on Lomanto [28]. The triangular 

framework of Fig. 1 is transformed into a Quadrilateral model. The 

representamen gain a surface and subface perspective and the object is also 

enricged with a computed perspective.   

 

The semiotic triangle shows the concept of a sign 

understood as the relationship between the representamen 

which represents an object which is interpreted by an 

interpretant. Consider a computer program – the object, is 

represented in the program code – the representamen. A 

programmer – the interpretant, interprets the program code 

while engaging with the object through the representamen 

The algorithmic sign takes into consideration both the 

machine and human side of the interpretation by introducing 

a subface and a surface attribute to the representami. 

Depending on the operating interpretant, the representamen 

will be interpreted from either perspective [27]. It is 

important to note that there are not two representamens in the 

framework, but the same representaem is present in both 

semiotic processes but with different attributes towards the 

interpretant. At the surface side, the human is operating as the 

interpretant, and at the subface side, the interpretant is the 

computer, with the restrictions noted earlier. Normally, the 

semiotic processes at the subface side are not accessible to 

the human interpreter [27]. However, when taking into 

account the role of program code, the human interpretant is 
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constantly working both with a human interpretation of 

input/output (I/O) signals and how the machine will interpret 

– or execute – said signals. The framework is summarised in 

Fig. 2.  

The double triangle consists of two semiotic triangles 

joined by the subface and surface attributes of the 

representamen. The left side is concerned with the causal 

interpretation made by the machine, and the right side is 

concerned with the intentional interpretation made by the 

human. The object is also shared between the two sides but 

because of the different natures of the interpretamnts, the 

object on the subface side is considered the computed 

equivalent of the same object on the surface side. Againk, as 

with the representamen, they are not individual instances but 

perspectives of the same entity.  

Consider a webpage viewed in a web browser – this will be 

the object. On the surface-side, the representamen will be 

what the user, the interpretant, is presented with. In this case 

that would be the graphical appearance of said webpage. 

Through interaction with the webpage, the user builds 

knowledge on how the system works on the surface side, for 

instance, that blue underlined text are links that take the user 

somewhere else. On the subface-side, the object is still same 

web page but its representamen will be the HTML-tags for 

the web browser, the interpretant. In this way, the same 

webpage is represented in two different ways, but it is still the 

same web page. If the user learns the language of the web 

browser (HTML), then the human user gains access to the 

subface-side of the webpage and the full extent of the 

representamen. When the human user sets out to build an 

HTML page, the subface-side of the interpretation needs to 

be taken into consideration for the web page function 

according to the anticipated surface representamen. For a link 

to function and have the right appearance, the correct 

HTML-tag will have to be placed in the right way according 

to the way the web browser interprets the finished web page. 

Having gained the knowledge of how to construct a web page 

and the language required to do so, a human user can begin to 

comprehend the subface representamen when looking at the 

surface version and vice versa.  

B. A Dualistic of Computational Thinking  

Most recently, in June of 2017, Denning [9] published a 

viewpoint in Communications of the ACM that suggests CT 

should be labelled either “traditional” or “new”. Denning [9] 

draws up a series of collision points between traditional and 

new CT. The most relevant in the context of this paper is the 

role of programming skills as a result of CT (traditional) or 

the other way around (new), and whether the understanding 

of algorithms requires (traditional) or does not require (new) 

an underlying computational model. Denning is not alone 

with his critique of the seemingly opposite understandings of 

CT. In 2016, Barba [10] put forward a similar critique of 

Wing’s [18] version of CT. Barba is particularly concerned 

with the origins of CT as expressed by Papert [3], [5] and 

highlights the oppositional principles of Papert [5] as a way 

to get to Papert’s [3], [5] understanding of CT. Barba [10] 

arrives at the somewhat same conclusion as Denning [9] that 

CT has a different meaning today than traditional. Both 

scholars acknowledge Seymour Papert's work when it comes 

to an understanding of what CT is from a traditional 

perspective, that is, a constructionist approach to computing 

education where CT is developed through the engagement in 

traditional computing practices. In this sense, CT is a result of 

engaging in programming practice and is not detached from 

the computational model. This corresponds with what 

Denning [9] labels traditional CT. According to Jeanette 

Wing new CT is detached from traditional computing 

practice and is instead a set of problem-solving skills derived 

from that donain. However, a computational thinker is not 

required to engage in traditional computing practices to learn 

CT. In critique of this, Denning observes that computing 

skills follow from learning CT as he notes that new CT is “a 

conceptual framework that enables programming” [9]. In 

Wing’s elaborated definition the machine is present as “(…) 

information-processing agent” [20]. However, the machine’s 

primary purpose is to solve the problems and follow the 

algorithms put forward by the computational thinker. This is 

in contrast to the traditional understanding, where 

engagement with the machine helps to develop CT skills. 

C. A Suggestion for Overcoming the Dualistic 

Understanding of Computational Thinking 

By looking at CT through the lens of the algorithmic sign, 

the double interpretation opens the idea of viewing CT as one 

whole which can take on one of two natures depending on the 

context [11]. This idea can be linked to the notional machine 

in the sense that the user through exploring the surface-side 

of the representamen can achieve an understanding of how 

the machine works. This understanding can be enhanced by 

engaging in the subface-side as well. In an educational 

setting, the first establishment of the notional machine in a 

novice's mind may very well be given through the 

surface-side with a gradual transition into the subface-side of 

things at a later point. The point here being that with the 

algorithmic sign, the notional machine is not restricted in 

developing further detail at the subface-side even though the 

surface side is the starting point. In fact, we suggest that the 

goal is not reached just by arriving at the subface-side if the 

knowledge is not linked back to the surface-side. Taking the 

viewpoint of constructionism, the oppositional principles can 

be interpreted as transitions between the surface and the 

subface sides. The power principle describes the dialectic 

relationship between understanding and application. As an 

analogy, the subface-side of the algorithmic sign can 

represent the understanding and the surface-side the 

application of a geometric principle. Both sides are equally 

valuable in building knowledge about geometric principles. 

The thingness principle, in the same way, can be captured by 

this analogy. The surface-side is a fully functioning webpage 

which can be explored. Eventually, the subface-side can be 

reached when the building blocks of a webpage are learned. 

The dynamics before statics principle ensures that knowledge 

on web pages are taught through a medium that enables these 

transitions to take place.  

The examples given above seek to show that there is a 

dialectic process taking place when treating the algorithmic 

sign as a framework for computing education. Applying this 

dialectic to CT results in the emergence of an implicit nature 

expressed in “traditional” CT and an explicit nature 
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expressed in “new” CT [11]. Instead of keeping traditional 

and new CT as a dualism where one is forced to make an 

either-or decision, the algorithmic sign opens up the 

possibility for one CT concept. This CT concept than can put 

on an implicit or an explicit nature depending on the context. 

In the case of forming the foundation for constructing a 

notional machine to aid the novice learner in picking up 

computing skills, an explicit nature of CT may be applied 

while still letting the learner work on a sub-face 

representamen of a computer program. An implicit nature of 

CT would then operate when the learner gains more 

experience in the subface-side of a computer program which 

refines the initial explicit concepts of CT. There would in this 

concept be a place for both the traditional and new versions 

of CT, but neither of them stand alone.  

 

IV. CONCLUSION 

In this paper, computational thinking has been explored 

through the perspective of semiotics. The algorithmic sign 

has been utilised to gather past articulations on computing 

education which can be seen as early articulations of 

computational thinking. Labelling computational thinking as 

either “traditional” or “new” can also be viewed as having an 

implicit or explicit nature. The lack of the implicit nature and 

the disconnect with traditional computing practices of “new” 

computational thinking causes opposite or ambiguous 

understandings of computational thinking as a whole concept. 

Through the use of a semiotics perspective, a computer 

program becomes a sign – an algorithmic sign for 

interpretation. This includes the surface-side of the human 

and the subface-side of the machine at the same time. This 

helps augment the understanding of computational thinking 

as a dialectic relationship between an implicit and explicit 

nature. This dialectic relationship is necessary to capture both 

understandings of computational thinking. It enables 

decision-makers in education to choose computational 

thinking as a single, rich concept. 
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