

Abstract—Computational Thinking has gained popularity in

recent years within educational and political discourses. It is

more than ever crucial to discuss the term itself and what it

means. In June 2017, Denning articulated that computational

thinking can be viewed as either “traditional” or “new”. New

computational thinking highlights certain skills as desired in

solving problems, whereas traditional computational thinking is

a skill set resulting from engaging in traditional computing

activities. By looking at computational thinking through the

perspective of semiotics, it is possible to dissolve the traditional

vs new distinction and concentrate on computational thinking

having both an explicit and implicit nature. In this perspective,

a computer program becomes an algorithmic sign which can

both be interpreted by humans and machines. The double

interpretation allows for a dialectic relationship between

computing activities and Computational Thinking instead of the

dualistic traditional vs new approach.

Index Terms—Computational thinking, constructionism,

computing education, the notional machine.

I. INTRODUCTION

Computing education has gained much interest over the

last decade. The importance of computing skills in disciplines

outside of traditional computer science (CS) is apparent in

initiatives like Computing at School [1] in the UK and

Computer Science for ALL [2] in the USA. There are many

ways to talk about computing. This paper presents a

suggestion based primarily on computational thinking (CT).

In addition to CT, it also includes prior articulations of

Seymour Papert's constructionism [3]-[5] and Benedict Du

Boulay's notional machine [6]. CT has become popular in

education from K-12 to higher education [7], [8] and many

attempts have been made to define an operational description

of the term to implement it in an educational context.

Recently, a critique has been raised against CT for having

lost its heritage from traditional computing disciplines [9],

[10]. This opens for a discourse of a dualistic understanding

of CT – traditional and new as Denning [9] labels it. It means

that when turning to CT in education, decision-makers have

to choose which kind of CT to teach. In itself, that is not a

problem. The problem arises when the popular version of CT

is chosen because this version is overexposed, even though it

may not be the most suitable version for the task at hand. This

paper seeks to reform the dualistic understanding of CT into a

Manuscript received October 30, 2017; revised May 14, 2018. This work

was supported in part by the Centre for Computational Thinking and Design

which is under formation at Aarhus University in Denmark.

The authors are with the Department of Digital Design and Information

Studies, Aarhus University, Denmark (e-mail: tbhs@cc.au.dk,

brynskov@cavi.au.dk).

dialectic relationship between an implicit and explicit nature

of CT.

A. Methodological Considerations

The analysis and discussions in this paper builds on

previous exploration [11] and are based on analysis and

reasoning from the presented positions. No empirical studies

have been made. The conclusions reached here are therefore

suggestions for further studies, which may take them up as

hypotheses. Only a limited selection of the rich history of

computing education can be covered. The examples

presented in this paper are not the only voices in the field, but

their articulations seem to be a fitting introduction to the field

with the purpose to give the reader a sound starting point for

understanding the main concern for this paper.

II. TALKING ABOUT COMPUTING EDUCATION

In this section, constructionism, the notional machine and

CT will be presented.

A. The Notional Machine

Benedict du Boulay is recognised to be the first scholar to

articulate the concept of the notional machine [12]. The term

is used in the context of computing education, explicitly

learning novices how to program. The concept rests on the

assumption that the novice learner is ignorant of what the

machine (the computer) can do through the instructions of the

programming language and how the instructions are actually

carried out by the machine [13].

“The notional machine is an idealized, conceptual

computer whose properties are implied by the constructs in

the programming language employed.” [13]

The notional machine can in this sense be understood as an

abstraction of the execution of a computer program. It can be

characterised as an “idealized computer” [12] which supports

the novice learner in acquiring a certain programming

language. From this will also follow that there may exist

many different notional machines. Students may construct a

notional machine for each programming language, based on

the programming language's construction [13]. The notional

machine is also seen as a façade for the inner workings of the

real machine through a programming language controlling

the actual machine [12]. In this way, the notional machine

becomes a mental model of the real machine – an analogy

based on the constructs present in a certain programming

language. However, this does not always lead to a fruitful

understanding of the machine, as it is based on an abstraction

of its capabilities presented by the chosen programming

The Nature of Computational Thinking in Computing

Education

Thomas Hvid Spangsberg and Martin Brynskov

International Journal of Information and Education Technology, Vol. 8, No. 10, October 2018

742doi: 10.18178/ijiet.2018.8.10.1132

mailto:tbhs@cc.au.dk

language – and programming languages differ in their design.

Ideally, over time, as the novice builds more experience, the

mental model or the notional machine gains in fidelity and a

deeper and more solid and structured understanding of the

real machine emerges. Computing education should,

therefore, support this process in the mind of the novice

learner [12]. This can be done down to the level of designing

programming languages so that they make the working of the

notional machine they are supposed to control more explicit.

This may result in the language designer building smaller

machines that allow the novice to control the main machine

and build a mental model at the right level of detail [14].

B. Constructionism

Seymour Papert is commonly recognised as the creator of

constructionism, a learning theory based on cognitive

constructivism [15]. Cognitive constructivism is a concept to

explain knowledge-construction through cognition in

children’s development [15] whereby students acquire new

knowledge through the mechanisms of assimilation and

accommodation of cognitive schemata [16]. Assimilation

incorporates or interprets new information to fit in excising

cognitive schemata. Accommodation alters the schema to fit

new information [17]. In a constructivist approach to

teaching, the teaching should support the construction of

knowledge through the student's cognition. However,

cognitive constructivism does not suggest any concrete

method of teaching to achieve this. In Papert's

constructionism, the cognitive process of the student's mind

is externalised into activities that support the knowledge

construction taking place. One point that Papert makes is the

notion that the computer can aid and change the way children

learn. The basic approach in constructionism is explained

as “learning by making” [4], and the term bricolage is used to

describe some of the processes associated with

constructionist teaching. It underlines the tinkering and

explorative approach encouraged when teaching [4]. The

oppositional principles that Papert puts forward in the 1996

paper: An Exploration in the Space of Mathematics

Educations [5], [10] is a good starting point for talking about

computing education through this perspective. In the paper,

Papert explores constructionist ways of teaching

mathematics, and he puts forward a series of oppositional

principles. The three main principles are: The power

principle, the thingness principle and the dynamics before

statics principle.

The power principle is concerned with what has the power

in a learning situation: understanding or application. Papert

notes that the natural mode of acquiring knowledge is

through use which will progressively lead to a deepening of

one's understanding. Out of this also comes the notion of

"project before problem". He makes the example that

problems arise during project work, and are then solved or

dissolved through that process [5].

The thingness principle is related to the concept of

reification which is concerned with making abstract ideas

concrete through a meaningful representation. The thingness

principle is concerned with "objects before operation" in the

sense that a mathematical concept is to be understood as a

thing first and then examined like a thing to understand the

functionality [5].

Finally, the dynamics before statics principle is closely

related to the medium used for teaching. Papert is critical of

the approach where more often than not mathematical

concepts are taught the other way around, that the dynamic

nature of mathematics is not adequately captured by the static

medium of pen and paper [5].

This notion of knowledge through use is very explicit in

the way that Papert lets children explore geometry through

the use of a programmable robot (the turtle) drawing shapes

on large pieces of paper by moving around based on the

programmed instruction. By programming the turtle, children

are supported in discovering geometric principles through

using them [3]. When children discover geometric principles

through the use of the turtle, they engage in an exploration of

the principles for them to produce certain shapes in a

dynamic environment. This leads to a deeper understanding

of the basic principles which can be put to use exploring more

advanced subjects, to test assumptions and form conclusions.

In a reflection on this practice, Papert mentions that the goal

is to ”integrate computational thinking into everyday life”

[3].

C. Computational Thinking

It is outside the scope of this paper to present a

comprehensive account of the past 11 years of the CT

discourse, but a few key contributions have been selected. It

is commonly attributed to Jeanette Wing is commonly

attributed [18] to have popularised CT in a contemporary

context in the year 2006. The first mention of the term itself

seems to be by Seymour Papert in his book Mindstorms from

1980 [3], [9], [10]. CT is presented by Wing [18] as a set of

problem-solving skills. The concept relies on the

fundamental skills and abilities from CS, particularly

abstraction and decomposition and applies them to other

disciplines, e.g. biology [19]. CT is merely, according to

Wing, to think like a computer scientist [18] when

approaching a problem and in solving it. This definition has

been criticised for being too broad, and attempts have been

made to define it further [7]. Wing [20] has since put forward

a more elaborate definition:

“Computational thinking is the thought processes involved

in formulating problems and their solutions so that the

solutions are represented in a form that can be effectively

carried out by an information-processing agent.” [20]

CT has grown in popularity since 2006, and during the past

decade, several K-12 institutions have in some way

committed incorporating CT in their curricula, hoping it will

help more children and teenagers to engage in STEM

(Science, Technology, Engineering and Mathematics)

activities [21], [22]. Also in higher education, there is a

movement to introduce CT as a competence for both STEM

and non-STEM students. In the particular case of design,

media and informatics students it has been suggested that a

CS0 [23] course might be appropriate for them to get a deeper

understanding of their material of study.

Barr and Stephenson [7] are concerned with defining CT

for use in K-12 education and to explore the role of the CS

International Journal of Information and Education Technology, Vol. 8, No. 10, October 2018

743

community in this. They present an outline for how to

incorporate what they have defined as "core CT concepts and

capabilities” [7] in different subjects across a curriculum.

They present these core concepts and capabilities as being:

“Data collection, Data analysis, Data representation,

Problem Decomposition, Abstraction, Algorithms &

procedures, Automation, Parallelization and Simulation”

[7].

III. A DIALECTIC RELATIONSHIP BETWEEN IMPLICIT AND

EXPLICIT COMPUTATIONAL THINKING

CT has recently been a target for critique by both Barba

[10] and Denning [9]. The two scholars each attack CT on

their own terms but they reach more or less the same

conclusion resulting in an emerging understanding of CT as a

term having a different meaning pre- and post- 2006 [9], [10].

In this section, we suggest that instead of viewing CT as

either traditional or new [9] a more pragmatic approach of

viewing CT is as it having an explicit and implicit nature: this

gives a more vibrant picture of what CT is, and also

incorporates the other ways of talking about computing

education. Spangsberg and Brynskov [11] put forward the

idea of looking at CT through computer semiotics to reform

the dualistic “traditional” vs “new” distinction into a dialectic

relationship between an implicit and an explicit nature of CT.

This section will first introduce the concept of the

algorithmic sign as a basic framework for combining the

three ways already presented and by doing so overcoming the

concerns presented by Barba [10] and Denning [9]. Then the

actual concerns for CT will be presented and lastly, the

suggested solution for overcoming them.

A. The Algorithmic Sign

Spangsberg and Brynskov [11] are not the first to connect

CT and semiotics to each other. Souza et al. [24] present a

study for where they use a semiotic background for

characterising students’ perception of CT. We use semiotics

differently. Here, we use the notion of the algorithmic sign to

augment CT and to introduce a way to combine the three

ways presented earlier into one framework. A key factor here

is the double-sided interpretation taking place when

concerned with the algorithmic sign as opposed to the

traditional single-sided interpretation of ordinary signs

The cardinal concept to be understood to talk about the

algorithmic sign is the concept of signs – the base for

semiotic science. A sign in this context is to be understood as

something to stand for something else. The focal domain of a

sign is a matter of tradition. The three main traditions focus

on signs as a social system (European), the individual use of a

sign (American) or a philosophical inquiry where language is

its sign type among others (Peircean) [25]. It has been

suggested that software is to be understood as an algorithmic

sign [26]. Because of signs in general stand for something

else, signs need to be interpreted. What is unique about the

algorithmic sign is that it not interpreted by humans alone,

but also by the machine [26]. It is important to note that the

word ‘interpretation’, when concerned with computers, does

not share the nature of the human act of interpretation. The

machine lacks the human freedom to choose different

perspectives for interpreting. It can only interpret based on

strict and formal parameters [27]. To operationalise the

algorithmic sign as an analytical framework when it comes to

programming. It is helpful to look at the works of Peter Bøgh

Andersen [25], who worked together with Frieder Nake on

producing a textbook on computer semiotics – including the

algorithmic sign. The starting point is the Peircean

framework of the semiotic triangle (in the following referred

to as simply: “the semiotic triangle”) as shown in Fig. 1.

Fig. 1. The Peircean sign concept. Based on Andersen [25]. The

representamen is concerned with representing the object in question and the

interpretant is the human actor interpreting the sign through the

representamen. As a whole, the relationship between the three corners is

considered a sign [25].

Fig. 2. The algorithmic sign. Based on Lomanto [28]. The triangular

framework of Fig. 1 is transformed into a Quadrilateral model. The

representamen gain a surface and subface perspective and the object is also

enricged with a computed perspective.

The semiotic triangle shows the concept of a sign

understood as the relationship between the representamen

which represents an object which is interpreted by an

interpretant. Consider a computer program – the object, is

represented in the program code – the representamen. A

programmer – the interpretant, interprets the program code

while engaging with the object through the representamen

The algorithmic sign takes into consideration both the

machine and human side of the interpretation by introducing

a subface and a surface attribute to the representami.

Depending on the operating interpretant, the representamen

will be interpreted from either perspective [27]. It is

important to note that there are not two representamens in the

framework, but the same representaem is present in both

semiotic processes but with different attributes towards the

interpretant. At the surface side, the human is operating as the

interpretant, and at the subface side, the interpretant is the

computer, with the restrictions noted earlier. Normally, the

semiotic processes at the subface side are not accessible to

the human interpreter [27]. However, when taking into

account the role of program code, the human interpretant is

International Journal of Information and Education Technology, Vol. 8, No. 10, October 2018

744

constantly working both with a human interpretation of

input/output (I/O) signals and how the machine will interpret

– or execute – said signals. The framework is summarised in

Fig. 2.

The double triangle consists of two semiotic triangles

joined by the subface and surface attributes of the

representamen. The left side is concerned with the causal

interpretation made by the machine, and the right side is

concerned with the intentional interpretation made by the

human. The object is also shared between the two sides but

because of the different natures of the interpretamnts, the

object on the subface side is considered the computed

equivalent of the same object on the surface side. Againk, as

with the representamen, they are not individual instances but

perspectives of the same entity.

Consider a webpage viewed in a web browser – this will be

the object. On the surface-side, the representamen will be

what the user, the interpretant, is presented with. In this case

that would be the graphical appearance of said webpage.

Through interaction with the webpage, the user builds

knowledge on how the system works on the surface side, for

instance, that blue underlined text are links that take the user

somewhere else. On the subface-side, the object is still same

web page but its representamen will be the HTML-tags for

the web browser, the interpretant. In this way, the same

webpage is represented in two different ways, but it is still the

same web page. If the user learns the language of the web

browser (HTML), then the human user gains access to the

subface-side of the webpage and the full extent of the

representamen. When the human user sets out to build an

HTML page, the subface-side of the interpretation needs to

be taken into consideration for the web page function

according to the anticipated surface representamen. For a link

to function and have the right appearance, the correct

HTML-tag will have to be placed in the right way according

to the way the web browser interprets the finished web page.

Having gained the knowledge of how to construct a web page

and the language required to do so, a human user can begin to

comprehend the subface representamen when looking at the

surface version and vice versa.

B. A Dualistic of Computational Thinking

Most recently, in June of 2017, Denning [9] published a

viewpoint in Communications of the ACM that suggests CT

should be labelled either “traditional” or “new”. Denning [9]

draws up a series of collision points between traditional and

new CT. The most relevant in the context of this paper is the

role of programming skills as a result of CT (traditional) or

the other way around (new), and whether the understanding

of algorithms requires (traditional) or does not require (new)

an underlying computational model. Denning is not alone

with his critique of the seemingly opposite understandings of

CT. In 2016, Barba [10] put forward a similar critique of

Wing’s [18] version of CT. Barba is particularly concerned

with the origins of CT as expressed by Papert [3], [5] and

highlights the oppositional principles of Papert [5] as a way

to get to Papert’s [3], [5] understanding of CT. Barba [10]

arrives at the somewhat same conclusion as Denning [9] that

CT has a different meaning today than traditional. Both

scholars acknowledge Seymour Papert's work when it comes

to an understanding of what CT is from a traditional

perspective, that is, a constructionist approach to computing

education where CT is developed through the engagement in

traditional computing practices. In this sense, CT is a result of

engaging in programming practice and is not detached from

the computational model. This corresponds with what

Denning [9] labels traditional CT. According to Jeanette

Wing new CT is detached from traditional computing

practice and is instead a set of problem-solving skills derived

from that donain. However, a computational thinker is not

required to engage in traditional computing practices to learn

CT. In critique of this, Denning observes that computing

skills follow from learning CT as he notes that new CT is “a

conceptual framework that enables programming” [9]. In

Wing’s elaborated definition the machine is present as “(…)

information-processing agent” [20]. However, the machine’s

primary purpose is to solve the problems and follow the

algorithms put forward by the computational thinker. This is

in contrast to the traditional understanding, where

engagement with the machine helps to develop CT skills.

C. A Suggestion for Overcoming the Dualistic

Understanding of Computational Thinking

By looking at CT through the lens of the algorithmic sign,

the double interpretation opens the idea of viewing CT as one

whole which can take on one of two natures depending on the

context [11]. This idea can be linked to the notional machine

in the sense that the user through exploring the surface-side

of the representamen can achieve an understanding of how

the machine works. This understanding can be enhanced by

engaging in the subface-side as well. In an educational

setting, the first establishment of the notional machine in a

novice's mind may very well be given through the

surface-side with a gradual transition into the subface-side of

things at a later point. The point here being that with the

algorithmic sign, the notional machine is not restricted in

developing further detail at the subface-side even though the

surface side is the starting point. In fact, we suggest that the

goal is not reached just by arriving at the subface-side if the

knowledge is not linked back to the surface-side. Taking the

viewpoint of constructionism, the oppositional principles can

be interpreted as transitions between the surface and the

subface sides. The power principle describes the dialectic

relationship between understanding and application. As an

analogy, the subface-side of the algorithmic sign can

represent the understanding and the surface-side the

application of a geometric principle. Both sides are equally

valuable in building knowledge about geometric principles.

The thingness principle, in the same way, can be captured by

this analogy. The surface-side is a fully functioning webpage

which can be explored. Eventually, the subface-side can be

reached when the building blocks of a webpage are learned.

The dynamics before statics principle ensures that knowledge

on web pages are taught through a medium that enables these

transitions to take place.

The examples given above seek to show that there is a

dialectic process taking place when treating the algorithmic

sign as a framework for computing education. Applying this

dialectic to CT results in the emergence of an implicit nature

expressed in “traditional” CT and an explicit nature

International Journal of Information and Education Technology, Vol. 8, No. 10, October 2018

745

expressed in “new” CT [11]. Instead of keeping traditional

and new CT as a dualism where one is forced to make an

either-or decision, the algorithmic sign opens up the

possibility for one CT concept. This CT concept than can put

on an implicit or an explicit nature depending on the context.

In the case of forming the foundation for constructing a

notional machine to aid the novice learner in picking up

computing skills, an explicit nature of CT may be applied

while still letting the learner work on a sub-face

representamen of a computer program. An implicit nature of

CT would then operate when the learner gains more

experience in the subface-side of a computer program which

refines the initial explicit concepts of CT. There would in this

concept be a place for both the traditional and new versions

of CT, but neither of them stand alone.

IV. CONCLUSION

In this paper, computational thinking has been explored

through the perspective of semiotics. The algorithmic sign

has been utilised to gather past articulations on computing

education which can be seen as early articulations of

computational thinking. Labelling computational thinking as

either “traditional” or “new” can also be viewed as having an

implicit or explicit nature. The lack of the implicit nature and

the disconnect with traditional computing practices of “new”

computational thinking causes opposite or ambiguous

understandings of computational thinking as a whole concept.

Through the use of a semiotics perspective, a computer

program becomes a sign – an algorithmic sign for

interpretation. This includes the surface-side of the human

and the subface-side of the machine at the same time. This

helps augment the understanding of computational thinking

as a dialectic relationship between an implicit and explicit

nature. This dialectic relationship is necessary to capture both

understandings of computational thinking. It enables

decision-makers in education to choose computational

thinking as a single, rich concept.

ACKNOWLEDGMENT

The authors would like to thank their colleagues for

valuable discussions of computational thinking, especially,

Michael Caspersen Director of IT-vest, Clemens Klokmose

and Peter Vahlstrup from Department of Digital Design and

Information Studies at Aarhus University. Thomas Hvid

Spangsberg thanks, prof. Sally Fincher from the Computing

Education Group at University of Kent’s School of

Computing for valuable feedback and discussion of the

topics of this paper.

REFERENCES

[1] Computing at School. (2017). [Online]. Available:

http://www.computingatschool.org.uk

[2] Computer Science for All. (2016). [Online]. Available:

https://obamawhitehouse.archives.gov/blog/2016/01/30/computer-scie

nce-all

[3] S. Papert, Mindstorms: Children, Computers and Powerfull Ideas, 1st

ed. 1980, New York: Basic Books, Inc.

[4] I. E. Harel and S. E. Papert, Constructionism, Ablex Publishing, 1991.

[5] S. Papert, “An exploration in the space of mathematics educations,”

International Journal of Computers for Mathematical Learning, 1996.

vol. 1, no. 1.

[6] J. Monk et al., The Black Box Inside the Glass Box: Presenting

Computing Concepts to Novices, vol. 51, 1981, pp. 237-249.

[7] V. Barr and C. Stephenson, Bringing Computational Thinking to K-12:

What Is Involved and What Is the Role of the Computer Science

Education Community? ACM Inroads, 2011, vol. 2, no. 1.

[8] T. Li and T. Wang, A Unified Approach to Teach Computational

Thinking for First Year Non–CS Majors in an Introductory Course,

2012, vol. 2, pp. 498-503.

[9] P. J. Denning, “Remaining trouble spots with computational thinking,”

Commun, ACM, 2017, vol. 60, no. 6, pp. 33-39.

[10] L. Barba. (2016). Computational Thinking- I do not think it means what

you think it means. [Online]. Available:

http://lorenabarba.com/blog/computational-thinking-i-do-not-think-it-

means-what-you-think-it-means/

[11] T. H. Spangsberg and M. Brynskov, Towards a Dialectic Relationship

Between the Implicit and Explicit Nature of Computational Thinking –

A Computer Semiotics Perspective. in Koli Calling 2017, 2017.

[12] J. Sorva, “Notional machines and introductory programming

education,” Trans. Comput. Educ., 2013, vol. 13, no. 2, pp. 1-31.

[13] J. Monk et al., The Black Box Inside the Glass Box: Presenting

Computing Concepts to Novices, vol. 51, 1981, pp. 237-249.

[14] B. D. Boulay, “Some difficulties of learning to program,” Journal of

Educational Computing Research, 1986, vol. 2, no. 1, pp. 57-73.

[15] E. Ackermann, “Piaget’s Constructivism, Papert’s Constructionism:

What’s the difference?” Constructivism: Uses and Perspectives in

Education, 2001.

[16] T. H. Spangsberg and M. Brynskov, “Code-labelling: A teaching

activity encouraging deep learning in a non-STEM introductory

programming course,” presented at ICCSE 2017, 2017, Houston, TX

USA.

[17] J. Bryant and D. Miron, “Theory and research in mass communication,”

Journal of Communication, 2004, vol. 54, no. 4, pp. 662-704.

[18] J. M. Wing, “Computational thinking,” Communications of the ACM,

2006, vol. 49, no. 3.

[19] J. M. Wing, “Computational thinking and thinking about computing,”

Philos Trans A Math Phys Eng Sci, 2008, vol. 366, no. 1881, pp.

3717-25.

[20] J. M. Wing, “Research Notebook: Computational Thinking-What and

Why?” The Magazine of the Carnegie Mellon University School of

Computer Science, 2017.

[21] M. Goldweber, “Programming should not be part of a CS course for

non-majors,” ACM Inroads, 2015, vol. 6, no. 1.

[22] P. Sengupta et al., “Integrating computational thinking with K-12

science education using agent-based computation: A theoretical

framework,” Education and Information Technologies, 2013, vol. 18,

no. 2, pp. 351-380.

[23] A. Brady, P. Cutter, and K. Schultz, “Benefits of a Cs0 course in liberal

arts colleges,” Consortium for Computing Sciences in Colleges, 2004.

[24] C. S. D. Souza et al., “Semiotic traces of computational thinking

acquisition,” in Proc. the Third International Conference on End-User

Development, 2011, Springer-Verlag: Torre Canne, Italy, pp. 155-170.

[25] P. B. Andersen, “Semiotic models of algorithmic signs,” Algorithmik –

Kunst – Semiotik. Hommage für Frieder Nake, 2003, Synchron

Wissenschaftsverlag der Autoren: Heidelberg, pp. 165-210.

[26] F. Nake, “Computer art: A personal recollection,” in Proc. the 5th

Conference on Creativity & Cognition, 2005, ACM: London, United

Kingdom, pp. 54-62.

[27] F. Nake, “Surface, interface, subface. Three cases of interaction and

one concept,” Paradoxes of Interactivity. Perspectives for Media

Theory, Human-Computer Interaction, and Artistic Investigations,

Berlin: Transcript, 2008, pp. 92-109.

[28] I. Lomanto, Art after the Algorithmic Revolution - A Semiotic Approach

to Digital Art, 2011, University of Applied Sciences Bremerhaven:

University of Applied Sciences Bremerhaven.

Thomas Hvid Spangsberg (male) was born in Esbjerg,

Denmark on 7th of September 1983. He got the BSC in

IT product design, 2010 at Aarhus University,

Denmark; the MSC in digital design, 2012, Aarhus

University Denmark; the PhD fellow in the field of

information studies, 2015-2018 at Aarhus University.

He is a PhD-Fellow at the Department of Digital

Design and Information Studies at Aarhus University

and was a research assistant for two and a half years at the same department

tasked with teaching programming to non-STEM (Science Technology,

Engineering and Mathematics) students before beginning his doctoral studies.

Before beginning his University studies, Spangsberg served in the Danish

Army as a Sergeant and is still an active reservist. Spangsberg’s publications

International Journal of Information and Education Technology, Vol. 8, No. 10, October 2018

746

include: Spangsberg, T. H. and Brynskov, M. Code-labelling: A Teaching

Activity Encouraging Deep Learning in a non-STEM Introductory

Programming Course. In Proceedings of the ICCSE 2017 (Houston, TX USA,

2017) and Spangsberg, T. H. and Brynskov, M. Towards a Dialectic

Relationship Between the Implicit and Explicit Nature of Computational

Thinking – A Computer Semiotics Perspective. Proceedings of Koli Calling

2017 (Joensuu, Finland, 2017 - In print) Spangsberg’s main research interest

is teaching programming to non-STEM novices and computing education in

general.

Martin Brynskov (male) was born in Aarhus,

Denmark on 18th of November 1971. He got the MA in

information studies and classical greek, Aarhus

University. Thesis title: Digital Habitats (2003); Ph.D.

in computer science (HCI), Dept. of Computer Science,

Aarhus University. Dissertation title: Tools for Social

Construction (2007).

He is associate professor in interaction technologies

at Aarhus University, Dept. of Digital Design and

Information Studies (2011-), previously associate professor (2008-2011).

Recent works include Raetzsch, C., Brynskov, M. (forthcoming).

“Challenging the Boundaries of Journalism through Communicative Objects:

Berlin as a Bike-friendly City and #Radentscheid” in Paragrafo; Foth, M.,

Brynskov, M., Ojala, T. (Eds.) (2015). Citizen’s Right to the Digital City,

Springer; Foth, M. & Brynskov, M. (2015). “Participatory Action Research

for Civic Engagement” in Gordon et al. (Eds.) Handbook of Civic

Technologies, Cambridge, MA: MIT Press; and Brynskov, M., Halskov, K.,

Dalsgaard, P. (2015). “Media Architecture: Engaging Urban Experiences in

Public Space”, in The Use of Art in Public Space, Routledge. Current

research focus is on smart cities and the internet of things, where he

coordinates some of the largest projects in the field, including OrganiCity

(7.2m€) and SynchroniCity (20m€).

Dr. Brynskov is chair of the global Open & Agile Smart Cities initiative

(more than 100 cities in 23 countries), member of the Association for

Computing Machinery Special Interest Group for Computer-Human

Interaction, and vice-chair of the UN ITU-T Focus Group on Data Processing

and Management to support IoT and Smart Cities & Communities.

International Journal of Information and Education Technology, Vol. 8, No. 10, October 2018

747

