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Abstract—Discrete Fourier transformation (DFT) of sample 

sequence and eigenvalue decomposition of sample correlation 

matrix are two of important tools and basic parts in signal and 

information processing. Since they are used to deal with the 

same random process, although from different viewpoint, there 

may be some intrinsic relationship between them. However, they 

are often introduced, explained and learned independently in 

the traditional textbooks and courses of signal and information 

processing. Here, we discuss some intrinsic relationship between 

the problems formulation of discrete Fourier transformation of 

sample sequence and eigenvalue decomposition of sample 

correlation matrix. The results of these lecture notes can help 

students deepen the understanding of their characteristics on 

simplicity, optimality and the reason why they are so popular 

and why we analyze and deal with signal and information 

processing by using discrete Fourier transformation of sample 

sequence and eigenvalue decomposition of sample correlation 

matrix. 

 
Index Terms—Random process, autocorrelation matrix, 

Discrete Fourier transformation, eigenvalue decomposition. 

 

I. INTRODUCTION 

In the course of theory, algorithm and application of signal 

processing, Discrete Fourier Transformation (DFT) of sample 

sequence vector and eigenvalue decomposition of sample 

autocorrelation matrix are two popular tools and play an 

important role. Since they are used to analyze the same signal 

or random process, although from different viewpoint, there 

may be some intrinsic relationship between them. However, 

they are often introduced, explained and learned 

independently in the traditional textbooks and courses of 

signal and information processing. In addition, the students 

may wonder why 
j te 

 is used in Discrete Fourier 

Transformation of sample sequence vector and why we use 

normalized vector in eigenvalue decomposition of sample 

autocorrelation matrix [1]. 

In this paper, we first introduce the intrinsic relationship 

behind the definition of Discrete Fourier Transformation of a 

stochastic process and eigenvalue decomposition of its 

autocorrelation matrix, from which the students can grasp 
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their related property and review the following knowledge 

points: the relationship between the variance of a random 

process and the power spectrum density function, and the 

relationship between power spectral density function of the 

input and output stochastic process of a linear time invariant 

filter [2]. 

Second, we discuss some intrinsic relationship between the 

problems formulation and introduced respectively the 

motivation to analyzing signal and information by using 

Discrete Fourier Transformation of sample sequence vector 

and eigenvalue decomposition of sample autocorrelation 

matrix [3]. It can provide a new perspective for students to 

understand why we analyze and deal with signal and 

information processing by using Discrete Fourier 

transformation of sample sequence and eigenvalue 

decomposition of sample correlation matrix. 

Thirdly, in order to make the conclusions more rigorous, 

some derivations are provided. As the result, students could 

have a deeper understanding on the simplicity, optimality and 

the reason why Discrete Fourier Transformation of sample 

sequence vector and eigenvalue decomposition of sample 

autocorrelation matrix are so popular in the field of signal and 

information processing [4]. 

This lecture note is organized as follows. Relationship 

between the definition of Discrete Fourier transform of 

sample sequence vector and eigenvalue decomposition of 

sample autocorrelation matrix is introduced in the second 

section. Section Ⅲ briefly formulates the problems associated 

with Discrete Fourier Transformation of sample sequence 

vector and eigenvalue decomposition of sample 

autocorrelation matrix. The next section presents the solution 

to the associated problems. The last section provides a 

concluding remark to summarize the lecture notes. 

 

II. RELATIONSHIP BETWEEN THE DEFINITION OF DISCRETE 

FOURIER TRANSFORMATION AND EIGENVALUE 

DECOMPOSITION 

A. Definition 

In the course of signal and information processing, discrete 

Fourier transformation is usually used to estimate the power 

spectral density function which is defined as 

( ) ( ) j k
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where 
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is the autocorrelation function of random process ( )x t . 
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Given a sample sequence of random process, the power 

spectral density function estimated by DFT is given by 
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where 
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is a sample sequence vector,  

( 1)1
( ) 1

T
j k j Me e

M

     a L            (5) 

On the other hand, eigenvalue decomposition of the sample 

correlation matrix of a random process is defined as 
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where k  is the k-th eigenvalue in descending order, kq is 

the corresponding eigenvector, and 

1

ˆ ( ) ( )
N

H

t

t t


R x x                              (7) 

is the sample correlation matrix. 

Next, we will discuss the relationship between Discrete 

Fourier Transformation and eigenvalue decomposition of 

autocorrelation matrix, which is defined as 

 ( ) ( )HE t tR x x                                (8) 

B. Relationship between Definitions 

As we know, there is a famous relationship between 

Discrete Fourier Transformation and eigenvalue 

decomposition of circular matrix. Circular matrix is defined 

as 
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It is obvious that for 1,2,...,k M , we have [5] 
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where  
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                       (11) 

Therefore, vector given in (5) is eigenvector of circular 

matrix and the corresponding eigenvalue is Discrete Fourier 

Transformation of circular matrix elements. 

Since Discrete Fourier Transformation and eigenvalue 

decomposition of autocorrelation matrix are used to describe 

the characteristics of the same random process, although from 

different viewpoint, there may be some intrinsic relationship 

between them. For example, we have   

min maxkS S                                  (12) 

where 
k  is the eigenvalue of the autocorrelation matrix, 

1,2,...,k M ,
minS  and 

maxS  is respectively the minimum 

and maximum value of the power spectral density of the same 

stationary random process.  

Students who first get in touch with this inequality often 

have no way to start and feel that it is difficult to understand 

intuitively. However, from the point of view of signal 

processing, the derivation of the above inequality has a simple 

and clear signal processing significance.  

First, the eigenvalue of the autocorrelation matrix is 

defined by [4]  

H

k H
 

q Rq

q q
                                  (13) 

where R  and q  is respectively the autocorrelation matrix 

and the eigenvector. The denominator is obviously 

nonnegative, and the nonnegative-definite property of 

autocorrelation matrix also shows the numerator is also 

nonnegative.  

In fact, the numerator can be regarded as (0)xr , i.e., the 

variance of a stochastic process ( )x t , which is the output of 

a linear time invariant filter whose pulse response is given by 

q , and the input is a stochastic process ( )u n , whose 

autocorrelation matrix given as R . Similarly, the 

denominator can also be regarded as (0)yr , i.e., the variance 

of a stochastic process ( )y t , which is the output of the same 

linear time invariant filter whose impulse response is given by 

q , but the input is white noise process with unit variance. 

Therefore, we have 
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Then, according to the relationship between the variance of 

a random process and the power spectrum density function [2], 

we have 
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where ( )xS   and ( )yS   is the power spectral density 

function of the random process ( )x n  and ( )y n , 

respectively.  

Next, according to the relationship between power spectral 

density function of the input and output stochastic process of a 

linear time invariant filter, we have [2]  
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where ( )uS   is he power spectral density function of the 

stochastic process ( )u t , ( )Q   is the amplitude square of the 

frequency response of the linear time invariant system whose 

impulse response  is q , i.e., 
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where 

 0 1 1

T

Mq q q q L                    (18) 

Thus we can directly obtain 
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and 
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(20) 

In this section, we introduce the intrinsic relationship 

behind the definition of Discrete Fourier Transformation of a 

stochastic process and eigenvalue decomposition of its 

autocorrelation matrix, from which the students can grasp 

their related property and review the following knowledge 

points: (1) the relationship between the variance of a random 

process and the power spectrum density function. (2) The 

relationship between power spectral density function of the 

input and output stochastic process of a linear time invariant 

filter. 

III. RELATIONSHIP BETWEEN THE PROBLEMS FORMULATION 

A. Problem Formulation of DFT 

Let us approximate a sample sequence vector ( )tx  by 

using vector ( )a . This problem can be formulated as 

follows 

2

( , )
11,2,...,

min ( ) ( , ) ( )
N

Fs t
tt N

t s t


 


 x a             (21) 

The students may wonder why we use ( )a  to 

approximate a sample sequence vector. The reason is that  

( ) j tv t e                                   (22) 

is 1-dimensional signal, i.e., ( ) ( 1)jv t e v t  . In other 

word, we want to describe or analyze a stochastic process by 

the simplest signal. It can be regarded as a motivation of 

Discrete Fourier Transformation. 

B. Problem Formulation of Eigenvalue Decomposition of 

Sample Correlation Matrix 

Similarly, let us approximate a sample sequence vector 

( )tx  by using a normalized vector q , which is independent 

of time. This problem can be formulated as follows 

2
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x q
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                     (23) 

Also, the students may wonder why we use a normalized 

vector q  to approximate a sample sequence vector. The 

reason is that q  represents 1-dimensional subspace in the 

space where sample sequence vector ( )tx locates. In other 

word, we want to describe or analyze a stochastic process in 

the lowest dimensional subspace. It can be regarded as one of  

motivations of eigenvalue decomposition of sample 

autocorrelation matrix.  

 

IV. RELATIONSHIP BETWEEN THE SOLUTIONS 

A. Solution to Problem  (21) 

It is easy to see that the solution to least squares problem 

(21) is 
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for 1,2,...,t N . 

B. Solution to Problem (23) 

It is also easy to see that the optimal solution to problem 

(23) is 

 ˆ( ) ( )Ht t  q x                              (25) 

Substituting it into (23)yield 
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It is equivalent to  

    ˆminTr

. . 1
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where Tr  is the trace of a matrix 
 

and R̂ is sample 

correlation matrix. Since we have  
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problem (27) is straightforwardly reduced to 

ˆmax

. . 1

H

Hs t 

q
q Rq

q q

                                    (29) 
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Therefore, the solution is the eigenvector corresponding to 

the maximum eigenvalue of sample correlation matrix R̂ , 

i.e.,  

max
ˆ HRq q                                (30) 

Substituting the above equation into (27), we attain the 

minimum value as 

 2

max
, ( )

1 21,2,...,

ˆmin ( ) ( ) Tr
N M

kFt
t kt N

t t


  
 

    
q

x q R   (31) 

In this section, we introduced respectively the motivation 

to analyzing signal and information by using Discrete Fourier 

Transformation of sample sequence vector and eigenvalue 

decomposition of sample autocorrelation matrix. In order to 

make the conclusions more rigorous, some derivations are 

provided. As the result, students could have a deeper 

understanding on their simplicity, optimality and the reason 

why Discrete Fourier Transformation of sample sequence 

vector and eigenvalue decomposition of sample 

autocorrelation matrix are so popular in the field of signal and 

information processing.  

 

V. CONCLUSION 

When we analyze a signal or random process by using 

1-dimensional signal, we encounter the Discrete Fourier 

transformation of sample sequence, whereas by using 

1-dimensional subspace, we encounter eigenvalue 

decomposition of sample correlation matrix. Though they are 

two of important tools dealing with the signal or random 

process from different viewpoint, there are some intrinsic 

relationship between them. Therefore, they should not be 

introduced, explained or learned independently in the course 

of signal and information processing. The intrinsic 

relationship between discrete Fourier transformation of 

sample sequence and eigenvalue decomposition of sample 

correlation matrix includes the definition, problems 

formulation and their solutions. The results of these lecture 

notes can help students deepen the understanding of their 

characteristics on simplicity, optimality and the reason why 

they are so popular and why we analyze and deal with signal 

and information processing by using discrete Fourier 

transformation of sample sequence and eigenvalue 

decomposition of sample correlation matrix. 
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