



Abstract—Software engineering is not just a document or

design, but a habit of the developers and a culture of the

software industry. New teaching methods to prompt creative

and practical thinking in software design have been introduced.

However, an integrated approach to put a course goals,

components together and formulating significant learning in

software engineering education was not provided. This paper

presents the taxonomy of significant learning in software

engineering course and proposes curricula goals, with major

components such as teaching and learning activities and

feedback assessment. Evaluation, lessons and impact of the

change indicate a significant learning achieved in software

engineering education.

Index Terms—Significant learning, software engineering

education, course design, software design studio.

I. INTRODUCTION

Software is closely related to our lives and its influence on

society is getting bigger. The way to grow the high added

value economy is based on an important task of software. As

applications grow and the need for software in everyday life

grows, so does the need for more software. Direction of

development of industry and the change of our life more

depends on the development direction of computer and

software. The development of AI and robot technology is also

changing the framework of the employment society.

The demand for software is getting bigger, but the supply

is not keeping up. The performance level of software

engineering is not very satisfactory in delivery rate, cost

compliance rate, defect density, productivity, quality cost.

One of the infra structure for the growth of the software

industry is education. The outcomes of the software industry

are the result of partial intellectual labor and determine most

of the performance of human resources which are the main

factor. Therefore, the key factor to success in software

industry is education. We need to think deeply about what

and how teach in software engineering education for

significant learning.

Software engineering is not just a document or design, but

a habit of the developer and a culture of the software industry.

Therefore, it cannot be achieved by only lecture training or

simple assignments. Various educational methods such as

design studio [1], problem-based learning [2], flipped

learning [3], [4], case study development [5], wiki

introduction education [6], combined research and training

Manuscript received March 25, 2019; revised September 12, 2019.

Eun Man Choi is with Dongguk University, Seoul, South Korea (e-mail:

emchoi@dongguk.edu).

[7], [8] and athletic approach [9] were tried in software

engineering education.

This paper propose the learning experience in software

engineering education resulted in something that is truly

significant in terms of the students’ lives. Process and

outcome dimension of significant learning are studied for

software engineering education. We recognized taxonomy of

significant learning, defined curricular goals, built

components of course, and designed course structure and

teaching activities.

Chapter II describes significant learning experience and

related research. Chapter III presents the taxonomy of

significant learning in software engineering course and

learning activities. In Chapter IV, the proposed curricula

goals, built components of course, and designed course

structure and teaching activities are covered. Chapter V

includes evaluation and lessons. Chapter VI includes

conclusions and future research challenges.

II. RESEARCH BACKGROUND

A. Software Engineering Education

The main purpose of software engineering education is to

raise engineers who can develop good software in a word. To

develop good software, students have to start with

programming skills, understand the computer system, learn

the development process, manage the actual project and

people, and have business sense.

A well-documented core knowledge of software

engineering is the software engineering curriculum based on

IEEE SWEBOK [10]. SWEBOK is divided into 11 areas of

knowledge and suggests topics and curriculum time in each

area.

Carnegie Mellon University implemented software

engineering education in graduate education based on

SWEBOK Core Body of Knowledge (CBOK) [11]. The

CBOK is divided into 11 topics: ethics and professional

conduct, system engineering, software requirements, design,

construction, testing, maintenance, configuration

management, software engineering management, software

engineering process, and software quality. The level of

knowledge on each topic is specified using Bloom's proposed

level of consensus [12].

 Knowledge of content - level of knowledge

 Understanding concepts - levels of understanding

 Applying what you have learned - the level you can apply

what you have learned to a specific situation

 Analysis - the level of understanding the whole contents

Software Engineering Education for Significant Learning

Experience

Eun Man Choi

International Journal of Information and Education Technology, Vol. 9, No. 12, December 2019

862doi: 10.18178/ijiet.2019.9.12.1318

of the learning contents

 Convergence - the level of understanding you use to

create new ideas

 Assessment - the level at which the value of the learning

content can be judged

TABLE I: KNOWLEDGE AREA OF SOFTWARE ENGINEERING

Knowledge Ares Topics

CMP
Computing essentials: computer science foundations,

construction tools,

FND

Mathematics, Engineering Fundamentals: logic,

engineering fundamentals for software, engineering

economy for software

PRF
Professional training: group dynamics, psychology,

communication skills, professionalism

MAA
Model and analysis: modeling basics, types of models,

basics of analysis

REQ

Requirement Analysis and Specification:

requirements base, requirement elicitation,

requirement specification and documentation,

requirement verification

DES
Software design: concept, strategy, architecture and

HCI design, detailed design, design evaluation

VAV

Software review and verification: V & V basics,

reviews and static analysis, testing, problem analysis

and reporting

PRO

Software processes: process concepts, process

implementation, project planning and tracking,

software configuration management, evolution

processes and tasks

QUA
Software quality: quality concept and culture, process

assurance, product assurance

SEC
Security: security foundation, computer and network

security, security software development

Engineering is not a science that understands simple

principles. In other words, it is the task of designing and

applying software by applying the principle, so it is necessary

to have the ability to integrate and synthesize to apply the

understanding concept.

It is pointed out that only contents taught in computer

science are difficult to handle the software development

practice because of the lack of educational integrated

approach required for significant learning. Computer science

deals with natural phenomena and principles, but software

engineering is the application of principles to the

construction of software and institutional change of work

process.

B. Significant Learning Experience

Learning experience in software engineering education

needed to be resulted in something that is truly significant in

terms of the student life. Not only will students be learning

throughout the course, by the end of the course they will

clearly have changed in some important way.

Significant learning [13] offers enhancing student work,

enabling students to contribute to the many communities of

which a student will be a part, and preparing students for the

world of work. Significant learning should not be a

content-centered course but a learning-centered approach to

teaching.

Good courses for training software engineers are courses

that challenge students to significant kinds of learning rather

than something relatively insignificant. Significant learning

course needs to use active forms of learning rather than

passive learning provided by only lecture. Teachers in

significant learning course care about the subject, students,

teaching and learning and interact well with students.

Significant learning courses have a good system of feedback,

assessment, and grading.

Fink introduced major categories in the taxonomy of

significant learning which is framework for formulating

course objectives and a basis for testing student learning as

Fig. 1.

Fig. 1. Taxonomy of Significant learning [13].

Each category of significant learning contains several

more specific kinds of learning that are related in some way

and have a distinct value for the learner. This taxonomy of

significant of learning is not hierarchical but rather

relational and even interactive. Each kind of learning is

related to the other kinds of learning and achieving any one

kind of learning simultaneously enhances the possibility of

achieving the other kinds of learning as well. For example, if

a teacher finds a way to help students learn how to use the

information and concepts in a course to solve certain of

problem effectively(application) this makes it easier for them

to get excited about the value of the subject(caring).

III. DEVELOPING LEARNING GOALS

Formulating course learning goals around significant

learning for software engineering education has two

implications. Learning goals for a course should include but

also go beyond content mastery to make learning experience

inherently more worthwhile and at the same time make more

interesting for learners. Secondly significant learning goals

will can create some interaction effects and synergy that

greatly enhance the achievement of significant learning by

students.

1) Foundational knowledge

 Have a mental map of software development process and

be able to correctly understand design model and software

artifacts.

 Understand major knowledge area – process,

requirements analysis, modeling, design principle,

UI/UX, design patterns, coding, testing, maintenance.

2) Application

International Journal of Information and Education Technology, Vol. 9, No. 12, December 2019

863

 Be able to find information on and analyze problems in

real world to build software system.

 Be able to use software tools and method in order to

develop software effectively and efficiently.

3) Integration

 Identify the integration between software and other

realms of application such as hardware. Business,

economics, biology, administration, and so on.

 Identify the integration between requirements analysis,

design, coding, testing, and maintenance.

4) Human dimension

 Be able to identify ways in which engineer’s personal life

affects and is affected by interactions with user, customer,

and other stake holders in software development.

 Be able to intelligently discuss software development

contracts with other people and the impact of software on

business or application domain.

5) Caring

 Be interested in software development and maintenance

and want to continue learning about software design,

coding, testing, deploying and maintenance.

6) Learning how to learn

 Be interpret technical significance of new technology and

ideas acquired in the future.

 Be familiar with a number of popular programming

languages and design methods with tools.

 Have some specific idea about what else it would be

desirable to know about software development.

One of the attractive features of a taxonomy is that it

encompasses and integrates a wide range of methods and

tools in software engineering on desirable kinds of learning.

IV. DESIGNING SIGNIFICANT LEARNING EXPERIENCES

When teachers face the task of putting together a course,

they use subject-centered approach to create a list of topics on

it, and then proceeds to work up lectures on each topic. The

alternative to this traditional, subject-centered approach is to

take a learning-centered approach and put together

systematically, in a process integrated course design.

The basic features of integrated course design are shown in

Fig. 2. The box at the bottom, situational factors, refers to

information that is gathered from research report by

Samsung Economy Research Institute [14]. The gap between

the technology required to develop software and the

education provided by the university education has been

pointed out several times in Korea as the curriculum

reorganization project or the Seoul Accord project. Software

engineering education is inappropriate to develop software

development ability, business understanding and practical

problem solving ability required by industry.

A. Teaching and Learning Activities

University education has traditionally relied on lectures.

Most of the lectures are student-centered, content-oriented,

and knowledge transfer-oriented. Naturally, learning

depends on memory and stays in the relationship of the

communicator rather than the personal relationship of the

student and the teacher. Most of all, lecture education relies

on evaluations that stay on individual learning and thus

stimulate competition without interacting between

instructors and students.

Fig. 2. Key components of integrated course design.

However, software engineering education is not sufficient

for instructional lectures. A new educational paradigm is

needed to complement lectures. Students and instructors

must maintain deep relationships through interaction and

exchange knowledge and experience. Cooperative learning

should be done rather than individual learning. We need to

build, inquire, and discover rather than facts, principles, and

memory.

To promote significant learning, a new paradigm

education method like design studio, game storming, flipped

learning were accepted as teaching and learning activities.

 Design studio – a method of software design studio

education which is utilized in the master program of

software engineering of Carnegie Mellon University. It is

a small design studio style education method widely used

in design education such as architecture and fashion [15].

Educational features include professional, mentoring,

and rigorous project management, with hands-on,

medium-sized projects for training purposes. In other

words, it is composed of team(customer, team member,

technical writer, mentor, studio course staff) similar to

the business and strictly manage the result. Results

include development documentation(SOW, SRS, SDD,

test plans), walkthroughs, demos, and more. Studio

education also includes training on non-technical skills

such as communication methods.

 Game storming – One good example of in-class activities

in game storming [16] is post-it game brainstorming to

find feature list. Post-it cards are given to all members of

the team attended. They think about what features can

provide. Then, each member of project team writes a

feature to be included in new system onto post-it. After a

certain amount of time to write system features on post-in

are shared to colleagues by explaining their ideas. Good

idea from another team during explanation can be added

to their post-it description. Features after explaining the

entire team gathered are pasted on board and organized

by categories.

 Flipped learning – Traditional education is taught mainly

in lecture rooms. Activities and exercises are conducted

outside the classroom. The lectures are passive education

focusing on listening, but active learning is done on

International Journal of Information and Education Technology, Vol. 9, No. 12, December 2019

864

activities and practice. Now, using the Internet, lectures

can be done outside the classroom [17]. Therefore,

passive learning is a flipped-learning concept that draws

active learning activities out of the classroom into the

classroom, and is introduced as an inverted classroom.

Most of the educational activities in flipped learning train

creative activities to make software. For example, if you

are teaching skills related to developing mobile apps,

simply learning an iOS or Android programming

language and a simple example cannot be an educational

activity. These contents are provided by VOD in advance

and learned, and in flipped learning, creativity is

demonstrated, and new mobile app is cooperated and

produced. Flipped learning can be done at low cost by

making good use of MOOC (Massive Open Online

Course), a video which is recently released at home and

abroad.

TABLE II: LEARNING ACTIVITIES IN SOFTWARE ENGINEERING EDUCATION

Activities Getting information and idea Doing Observing Reflecting

Act01: Team building

- MBTI

- Case study for process

 Questionnaire

 Process models

 Presenting MBTI

 Discussion

 MBTI of team

members

 Organizing project teams

 In-depth reflective dialogue

and writing on the process

Act02: Conceptualization

- Project concept

- Mission statements

 Lecture and textbooks

 Brainstorming

 Case study

 Writing SOW

 Success story

 Reflecting project planning

Act03: Post-it gamestorming

- Brainstorming for feature list

 Survey related domains

 Writing post-it and

circulating

 Priority of functions

 Reflecting SRS(Software

Requirements Specs)

Act04: Use-case analysis

- Write use cases

 Sample Use Cases and

template

 Drawing use case

diagram

 Writing use cases

 User interactions

 In-depth reflective dialogue

and writing on modeling

Act05: Class diagram design studio

- Pick up class candidates

- Identify relationships

- Draw class diagram

 Use cases

 Domain-driven analysis

 Drawing class diagram

with UML tools

 System structure and

components

 In-depth discussion about

good design and

improvement

Act06: Sequence diagram design

studio

 Use cases, class diagram

 Drawing sequence

diagram with tools

 System interaction

 In-depth discussion about

good design and

improvement

Act07: Finding quality characters

- Applying design principles

 Performance requirements

 Analysis of tradeoff in

architecture

 System bottle-neck

with simulation

 Reflecting architecture design

Act08: UI/UX Design studio

- UI design

 Use cases

 Drawing menus and

controls in UI

 User’s perspectives to

system

 In-depth reflective dialogue

for user friendly UI

Act09: Applying design patterns

- Detail design

 Lecture and text book

 Modifying class diagram

with patterns

 Design quality for easy

extension and

modification

 Reflecting detail designs

Act10: Writing coding standards

 Samples of coding style

 Defining coding style and

applying coding

 Code readability

 Reflecting source code

Act11: Writing test cases for

equivalence partitioning

 SRS

 Writing test cases

 Testing implemented

system

 Defects of source code

 Assessment of software

quality

Act12: Presentation of project

results

 System designs

 User experience

 Prepare demo and slides

 Usability

 Process quality

 Assessment of project results

We create the kinds of learning activities capable of

achieving significant learning experience. Table 2 illustrates

new conceptualization of active learning that makes all three

modes of learning such as experiences, information and ideas,

reflecting in software engineering education.

B. Feedbacks and Assessment

The third component of a significant learning course is

feedback and assessment. Traditional midterms and final are

not enough to measure the performance of various learning

activities in software engineering education. Those serve

only one function to audit student learning as a basis for the

grade turned in. We added more educative assessment such

as forward-looking assessment, self-assessment with criteria

and standards(CMMi) and feedback in design studio. During

the learning activities such as design studio, learners engage

in software design activities in an effort to learn how to do

International Journal of Information and Education Technology, Vol. 9, No. 12, December 2019

865

International Journal of Information and Education Technology, Vol. 9, No. 12, December 2019

866

UML modeling, apply design patterns, learners should each

be getting feedback to help them understand what are the

faults in their design and implementation and how to improve

the quality of their work and software artifacts.

As indicated in Fig. 3, educational assessment four

components: tutoring, self-assessment, feedback, criteria and

standard. In design studio students provide presentation after

self-assessment. Lecturer, peers, tutors give feedback with

tutoring and finally give grades.

Fig. 3. Educative assessment model.

C. Integrating

The final step in the course design process is to make sure

the main components are properly integrated. This means we

need to check the four components to be sure that they

support and reflect each other. Figure 4 shows that three

major set of course decisions consistent with the information

gathered about the situational factors.

TABLE III: INTEGRATE THE PRIMARY COMPONENTS

Learning goals Learning Activities Assessment

1. Understand and

remember key

concept, terms,

relationship

Act03, Act04,

Act05, Act06,

Act08, Act11

Self-assessment,

tutoring in design

studio, Grading

2. Know how to use the

content
Act02, Act04, Act09

Exam

3. Be able to relate

software engineering

to other subjects

Act02, Act07

Gamestorming

4. Understand personal

and social

implications of

knowing about the

software engineering

Act01, Act03

Peer review

5. Care about the

software development
Act10,

Feedback

Software quality

tools

6. Know how to keep on

learning about

software engineering

after the course over

Act12

Questionnaire

V. EVALUATION OF COURSE AND TEACHING

Based on course operation for significant learning, lessons

can be summarized as follows.

 The value of dialogue – Being able to talk with someone

else when working on software development is very

powerful. The value of dialogue about gamestorming,

design studio comes part from the opportunity to engage

in dialogue with someone who will use software and

varied expertise.

 The value of focusing on the significant components of

software design – It is good chance for students to prompt

non only critical thinking, but also creative and practical

thinking in software development.

 The value of training on effective development process –

Flipped learning classroom has advantage of more

opportunity for students to interact with. Even the most

interactive lectures are likely to actively involve only a

software development process. Most of the class time in

flipped learning classroom model can be spent with these

students that are struggling, as opposed to the traditional

lecture where most of the questions posed during

software process come from real world problems.

 The need for monitoring learning and tutoring – The big

breakthrough in this case, came from clear monitoring of

active learning and educative assessment. A significant

improvement in software engineering education allowed

a synergistic improvement to take place in software

process with leading-edge practices.

VI. CONCLUSION

Good teaching cane be used to foster better learning [18].

The taxonomy of significant learning offers a special kinds of

course that students might learn in software engineering in a

way that is capable of software development skills required

from software industry. The model of integrated course for

software engineering is designed and applied in university

education. Significant learning metaphor is a tool that

enables instructors to support and promote active learning.

The case study shows the positive outcomes because it

incorporates and organizes several existing and potent ideas

about teaching in software engineering, for example, flipped

learning, problem-based learning, gamestorming, software

design studio.

CONFLICT OF INTEREST

The author declares no conflict of interest.

AUTHOR CONTRIBUTIONS

Conceived and designed the analysis; Collected the data;

Performed the analysis; Wrote the paper are all the

author(Eun Man Choi)’s contribution.

REFERENCES

[1] J. Tomayko, “Teaching software development in a studio

environment,” ACM SIGCSE Bulletin, vol. 23, no. 1, pp. 300–303,

1991.

[2] I. Richardson and Y. Delaney. “Problem based learning in the software

engineering classroom,” in Proc. 22nd Conference on Software

Engineering Education and Training, pp. 174-181, Feb. 2009.

[3] G. Gannod, J. Burge, and M. Helmick, “Using inverted classroom to

teach software engineering,” in Proc. ICSE 2008, pp.777-786, 2008.

[4] E. M. Choi, “Applying inverted classroom to software engineering

education,” International Journal of e-Education, e-Business,

e-Management and e-Learning, vol. 3, no. 2, pp. 121-125, 2013.

[5] D. Dahiya, “Teaching software engineering: A practical approach,”

ACM SIGSOFT Software Engineering Notes, no. 2, pp. 1-5, 2010.

[6] K. Parker and J. Chao, “Wiki as a teaching tool,” Interdisciplinary

Journal of Knowledge and Learning Objects, vol. 3, pp. 58-72, 2007.

[7] L. Johns-Boast and S. Flint, “Providing students with 'real-world'

experience through university group projects,” in Proc. Australian

International Journal of Information and Education Technology, Vol. 9, No. 12, December 2019

867

Association for Engineering Education Conference, pp. 299-304,

2009.

[8] M. Gehrke, H. Giese, E. Kindler, and J. Niere, Software Engineering

Education: The Synergy of Combined Research and Teaching,

Paderborn, Germany, Jan. 2003.

[9] E. Hill, P. Johnson, and D. Port, “Is an athletic approach the future of

software engineering education?” IEEE Software, January/February,

pp. 97-100, 2016.

[10] Software Engineering 2014, Curriculum Guidelines for

Undergraduate Degree Programs in Software Engineering, IEEE

ACM, 2014.

[11] M. Bass, “Software engineering education in the new world: What

needs to change,” in Proc. IEEE 29th International Conference on

Software Engineering Education and Training, pp. 213-221, 2016.

[12] B. Bloom, “Handbook 1: Cognitive domain,” Taxonomy of

Educational Objectives: The Classification of Education Goals, New

York: Longman, 1956.

[13] L. Dee Fink, Creating Significant Learning Experiences, Jossey-Bass,

2003.

[14] Samsung Economic Research Institute, Challenges of Korean

University Education for IT Human Resource Development, 2011.

[15] R. Bareiss and M. Rosso-Llopart, “Software engineering education at

Carnegie Mellon University: one University; Programs taught in two

places,” Systemics, Cybernetics and Informatics, vol. 7, no. 5, pp.

72-77, 2009.

[16] D. Gray, S. Brown, and J. Macanufo, Game Storming: A Playbook for

Innovators, Rulebreakers, and Changemakers, O'Reilly, 2010.

[17] E. M. Choi, “Applying inverted classroom to software engineering

education,” International Journal of e-Education, e-Business,

e-Management and e-Learning, vol. 3, no. 2, pp. 121-125, April 2013.

[18] P. Palmer, The Courage to Teach: Exploring the Inner Landscape of

Teacher’s Life, San Francisco, Jossey-Bass, 1998.

Copyright © 2019 by the authors. This is an open access article distributed

under the Creative Commons Attribution License which permits unrestricted

use, distribution, and reproduction in any medium, provided the original

work is properly cited (CC BY 4.0).

Eun Man Choi was born in Seoul, S. Korea in 1958.

He received the B. S degree in computer science

from Dongguk University, Seoul in 1982 and the M.

S. degree from KAIST in 1985. He has got the Ph. D.

degree in computer science from Illinois Institute of

Technology, Chicago in 1993. Currently he is a full

professor in Department of Computer Science and

Engineering in Dongguk University. His major field

of study is software engineering, specially

software

testing. He was on the technical staff of computer research center working on

the computer code standards for Korean characters and software standards

for Korea Institute of Standards and Science like NIST in U.S.A. He

developed an experimental Ada maintenance environment based on a

syntax-directed editor for supporting Program Understanding. He

constructed a number of CASE tools with an emphasis on integration

mechanisms of tools and Object-Oriented Software Metrics. Prof. Choi is

senior member of Korea Information Science Society from 1985 and a

member of governing board in SIG Software Engineering, Korea

Information Science Society since 1998. He was a member of editorial board,

Journal of Korea Information Processing Society since 1997. He was a

visiting scholar in department of computer science of Colorado State

University in 2000, 2007 and Baylor University in 2014.

https://creativecommons.org/licenses/by/4.0/

