• May 03, 2016 News! IJIET Vol. 5, No. 10 has been indexed by EI (Inspec).   [Click]
  • Jun 28, 2017 News!Vol. 7, No. 9 has been indexed by Crossref.
  • Jun 22, 2017 News!Vol. 7, No. 9 issue has been published online!   [Click]
General Information
    • ISSN: 2010-3689
    • Frequency: Bimonthly (2011-2014); Monthly (Since 2015)
    • DOI: 10.18178/IJIET
    • Editor-in-Chief: Prof. Dr. Steve Thatcher
    • Executive Editor: Ms. Nancy Y. Liu
    • Abstracting/ Indexing: EI (INSPEC, IET), Electronic Journals Library, Google Scholar, Crossref and ProQuest
    • E-mail: ijiet@ejournal.net
Prof. Dr. Steve Thatcher
University of South Australia, Australia
It is my honor to be the editor-in-chief of IJIET. The journal publishes good papers which focous on the advanced researches in the field of information and education technology. Hopefully, IJIET will become a recognized journal among the scholars in the filed of information and education technology.
IJIET 2016 Vol.6(4): 291-295 ISSN: 2010-3689
DOI: 10.7763/IJIET.2016.V6.702

A Behavior-Based Malware Variant Classification Technique

Guanghui Liang, Jianmin Pang, and Chao Dai
Abstract—The research on detection malware variants attracts much attention in recent years. However current variant classification methods either are interfered by some confusion technologies or have a high time or space complexity. In this paper, a classification technique using dynamic analysis based on behavior profile is proposed. We capture API calls and other essential information of running malware, then establish their multilayer dependency chain according to the dependency relationship of these function calls. In order to deal with the confusion, we remove sequence confusion, sequence noise, and other confusions to optimize the multilayer dependency chain. Finally, a similarity comparison algorithm is used to identify the degree of similarity between malware variants. The experimental results demonstrate that our classification technique is feasible and effective.

Index Terms—Malware, variants, dependency chain.

The authors are with the State Key Laboratory of Mathematical Engineering and Advanced Computing, Zhengzhou 450002, China (e-mail: lghray1987@163.com).


Cite: Guanghui Liang, Jianmin Pang, and Chao Dai, "A Behavior-Based Malware Variant Classification Technique," International Journal of Information and Education Technology vol. 6, no. 4, pp. 291-295, 2016.

Copyright © 2008-2017. International Journal of Information and Education Technology. All rights reserved.
E-mail: ijiet@ejournal.net